This is the third of a three-part series on revenue cycle management for molecular testing laboratories and pathology practices, produced in collaboration with XiFin Inc.
Automation and AI-Powered Workflow Paves the Way for Consistent, Optimized Molecular Diagnostics and Pathology RCM
Third in a three-part series, this article will discuss how sophisticated revenue cycle management technology, including artificial intelligence (AI) capabilities, drives faster, more efficient revenue reimbursement for molecular and pathology testing.
Financial and operational leaders of molecular testing laboratories and pathology groups are under pressure to maximize the revenue collected from their services rendered. This is no easy task. Molecular claims, in particular, can be especially complex. This article outlines the specific areas in which automation and artificial intelligence (AI)-based workflows can improve revenue cycle management (RCM) for molecular diagnostic and pathology organizations so they can better meet their operational and financial goals.
AI can play a number of important roles in business. When it comes to RCM for diagnostic organizations, first and foremost, AI can inform decision-making processes by generating new or derived data, which can be used in reporting and analytics. It can also help understand likely outcomes based on historical data, such as an organization’s current outstanding accounts receivable (AR) and what’s likely to happen with that AR based on historic performance.
AI is also deployed to accelerate the creation of configurations and workflows. For example, generated or derived data can be used to create configurations within a revenue cycle workflow to address changes or shifts in likely outcomes, such as denial rates. Suppose an organization is using AI to analyze historical denial data and predict denial rates. In that case, changes in those predicted denial rates can be used to modify a workflow to prevent those denials upfront or to automate appeals on the backend. This helps organizations adapt to changes more quickly and accelerates the time to reimbursement.
“Furthermore, AI is used to automate workflows by providing or informing decisions directly,“ says Clarisa Blattner, XiFin Senior Director of Revenue and Payor Optimization. “In this case, when the AI sees shifts or changes, it knows what to do to address them. This enables an organization to take a process in the revenue cycle workflow that is very human-oriented and automate it.”
AI is also leveraged to validate data and identify outcomes that are anomalous, or that lie outside of the norm. This helps an organization:
- Ensure that the results achieved meet the expected performance
- Understand whether the appropriate configurations are in place
- Identify if an investigation is required to uncover the reason behind any anomalies so that they can be addressed
Finally, AI can be employed to generate content, such as letters or customer support materials.
Everything AI starts with data
Everything AI-related starts with the data. Without good-quality data, organizations can’t generate AI models that will move a business forward. In order to build effective AI models, an organization must understand the data landscape and be able to monitor and measure performance and progress and adjust the activities being driven, as necessary.
Dirty, unstructured data leads to unintelligent AI. AI embodies the old adage, “garbage in, garbage out.” The quality of the AI decision or prediction is entirely based on the historical data that it’s seen. If that data is faulty, flawed, or incomplete, it can lead to bad decisions or the inability to predict or make a decision at all. Purposeful data modeling is critical to AI success, and having people and processes that can understand the complicated RCM data and structure it so it can be effectively analyzed is vital to success.
The next step is automation. Having effective AI models that generate strong predictions is only as valuable as the ability to get that feedback into the revenue cycle system effectively. If not, that value is minimal, because the organization must expend a lot of human energy to try to reconfigure or act on the AI predictions being generated.
There is a typical transformation path, illustrated below, that organizations go through to get from having data stored in individual silos to fully embedded AI. If an organization is struggling with aggregating data to build AI models, it’s at stage one. The goal is stage five, where an organization uses AI as a key differentiator and AI is a currency, driving activity.
The transformation starts with structuring data with an underlying data approach that keeps it future-ready. It is this foundation that allows organizations to realize the benefits of AI in a cost-effective and efficient way. Getting the automation embedded in the workflow is the key to getting to the full potential of AI in improving the RCM process.
Real-world examples of how AI and automation improve RCM
One example of how AI can improve the RCM process is using AI to discover complex payer information. One significant challenge for diagnostic service providers is ensuring that the right third-party insurance information for patients is captured. This is essential for clean claims submission. Often, the diagnostic provider is not the organization that actually sees the patient, in which case it doesn’t have the ability to collect that information directly. The organization must rely on the referring physician or direct outreach to the patient for this data when it’s incorrect or incomplete.
Diagnostic providers are sensitive to not burdening referring clients or patients with requests for demographic or payer information. It’s important to make this experience as simple and smooth as possible. Also, insurance information is complicated. A lot of data must be collected or corrected if the diagnostic provider doesn’t have the correct information.
Automating this process is difficult. Frequently, understanding who the payer is and how that payer translates into contracts and mapping within the revenue cycle process requires an agent to be on the phone with the patient. It can be very difficult for a patient to get precise payer plan information from their insurance card without the help of a customer service representative.
This is where AI can help. The goal is to require the smallest amount of information from a patient and be able to verify eligibility through electronic means with the payer. Using optical character recognition (OCR), an organization can take an image of the front and back of a patient’s insurance card, isolate the relevant text, and use an AI model to get the information needed in order to generate an eligibility request and confirm eligibility with that payer.
In the event that taking an image of the insurance card is problematic for a patient, the organization can have the patient walk through a simplified online process, for example, through a patient portal, and provide just a few pieces of data to be able to run eligibility verification and get to confirmed eligibility with the payer.
AI can help with this process too. For example, the patient can provide high-level payer information only, such as the name of the commercial payer or whether the coverage is Medicare or Medicaid, the state the patient resides in, and the subscriber ID and AI can use this high-level data to get an eligibility response and confirmed eligibility.
Once the eligibility response is received, the more detailed payer information can be presented back to the patient for confirmation. AI can map the eligibility response to the appropriate contract or payer plan within the RCM system.
Now that the patient’s correct insurance information is captured, the workflow moves on to collecting the patient’s financial responsibility payment. To do that, the organization needs to be able to calculate the patient’s financial responsibility estimate. The RCM system has accurate pricing information and now has detailed payer and plan information, a real-time eligibility response, as well as test or procedure information. This data can be used to estimate patient financial responsibility.
AI can also be used to address and adapt to changes in ordering patterns, payer responses, and payer reimbursement behavior. The RCM process can be designed to incorporate AI to streamline claims, denials, and appeals management, as well as to assign work queues and prioritize exception processing (EP) work based on the likelihood of reimbursement, which improves efficiency.
One other way AI can help is in understanding and or maintaining “expect” prices—what an organization can expect to collect from particular payers for particular procedures. For contracted payers, contracted rates are loaded into the RCM system. It’s important to track whether payers are paying those contracted rates and whether the organization is receiving the level of reimbursement expected. For non-contracted payers, it’s harder to know what the reimbursement rate will be. Historical data and AI can provide a good understanding of what can be expected. AI can also be used to determine if a claim is likely to be rejected because of incorrect or incomplete payer information or patient ineligibility, in which case automation can be applied to resolve most issues.
Another AI benefit relates to quickly determining the probability of reimbursement and assigning how claims are prioritized if a claim requires intervention that cannot be automated. With AI, these claims that require EP are directed to the best available team member, based on that particular team member’s past success with resolving a particular error type.
The goal with EP is to ensure that the claims are prioritized to optimize reimbursement. This starts with understanding the probability of the claim being reimbursed. An AI model can be designed to assess the likelihood of the claim being reimbursed and the likely amount of reimbursement for those expected to be paid. This helps prioritize activities and optimize labor resources. The AI model can also take important factors such as timely filing dates into account. If a claim is less likely to be collected than another procedure but is close to its timely filing deadline, it can be escalated. The algorithms can be run nightly to produce a prioritized list of claims with assignments to the specific team member best suited to address each error.
AI can also be used to create a comprehensive list of activities and the order in which those activities should be performed to optimize reimbursement. The result is a prioritized list for each team member indicating which claims should be worked on first and which specific activities need to be accomplished for each claim.
Summing it all up, organizations need an RCM partner with a solid foundation in data and data modeling. This is essential to being able to effectively harness the power of AI. In addition, the RCM partner must offer the supporting infrastructure to interface with referring clients, patients, and payers. This is necessary to maximize automation and smoothly coordinate RCM activities across the various stakeholders in the process.
Having good AI and insight into data and trends is important, but the ability to add automation to the RCM process based on the AI really solidifies the benefits and delivers a return on investment (ROI). Analytics are also essential for measuring and tracking performance over time and identifying opportunities for further improvement.
Diagnostic executives looking to maximize reimbursement and keep the cost of collection low will want to explore how to better leverage data, AI, automation, and analytics across their RCM process.
This is the third of a three-part series on revenue cycle management for molecular testing laboratories and pathology practices, produced in collaboration with XiFin Inc. Missed the first two articles? www.darkdaily.com
— Leslie Williams
: