News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Findings could lead to new biomarkers for targeted therapies and clinical laboratory tests for multiple diseases

Once again, human gut microbiota are being linked to the progression of a chronic ailment. Using artificial intelligence (AI), researchers at the Cleveland Clinic Lerner Research Institute found that “metabolites produced by bacteria in the gut” may influence the course of a patient’s Alzheimer’s disease, according to a news release. Insights from the study could lead to useful biomarkers for clinical laboratory tests and as targets for prescription drugs.

Researchers have been exploring the role metabolites play in the development of disease for some time. Alzheimer’s is a progressive, degenerative brain disease typically linked to age, family history, and deposits of certain proteins in the brain that cause the brain to shrink and brain cells to eventually die. Alzheimer’s is the most common form of dementia, accounting for an estimated 60% to 80% of all dementia cases. It has no cure or proven method of prevention, according to the Alzheimer’s Association.

There are nearly seven million people living with Alzheimer’s in the US and 55 million people worldwide live with it or other forms of dementia. Patients are usually over the age of 65, but it can present in younger patients as well.

The Cleveland Clinic scientists published their findings in the journal Cell Reports titled, “Systematic Characterization of Multi-omics Landscape between Gut Microbial Metabolites and GPCRome in Alzheimer’s Disease.”

“Gut metabolites are the key to many physiological processes in our bodies, and for every key there is a lock for human health and disease,” said Feixiong Cheng, PhD (above), founding director of the Cleveland Clinic Genome Center, in a news release. “The problem is that we have tens of thousands of receptors and thousands of metabolites in our system, so manually figuring out which key goes into which lock has been slow and costly. That’s why we decided to use AI.” Findings from the study could lead to new clinical laboratory biomarkers for dementia screening tests. (Photo copyright: Cleveland Clinic Lerner Research Institute.)

Changes to Gut Bacteria

Metabolites are substances released by bacteria when the body breaks down food, drugs, chemicals, or its own tissue, such as fat or muscle. They fuel cellular processes within the body that may be either helpful or harmful to an individual’s health.

The Cleveland Clinic researchers believe that preventing detrimental interactions between metabolites and cells could aid in disease prevention. Previous studies have shown that Alzheimer’s patients do experience changes in their gut bacteria as the disease progresses.

To complete their study, the scientists used AI and machine learning (ML) to analyze more than 1.09 million potential metabolite-receptor pairs to determine the likelihood of developing Alzheimer’s.

They then examined genetic and proteomic data from Alzheimer’s disease studies and looked at different receptor protein structures and metabolite shapes to determine how different metabolites can affect brain cells. The researchers identified significant interactions between the gut and the brain. 

They discovered that the metabolite agmatine was most likely to interact with a receptor known as CA3R in Alzheimer’s patients. Agmatine is believed to protect brain cells from inflammation and damage. They found that when Alzheimer’s-affected neurons are treated with agmatine, CA3R levels reduce. Levels of phosphorylated tau proteins, a biomarker for Alzheimer’s disease, lowered as well.

The researchers also studied a metabolite called phenethylamine. They found that it too could significantly alter the levels of phosphorylated tau proteins, a result they believe could be beneficial to Alzheimer’s patients.

New Therapies for Alzheimer’s, Other Diseases

One of the most compelling results observed in the study was the identification of specific G-protein-coupled receptors (GPCRs) that interact with metabolites present in the gut microbiome. By focusing on orphan GPCRs, the researchers determined that certain metabolites could activate those receptors, which could help generate new therapies for Alzheimer’s.

“We specifically focused on Alzheimer’s disease, but metabolite-receptor interactions play a role in almost every disease that involves gut microbes,” said Feixiong Cheng, PhD, founding director of the Cleveland Clinic Genome Center in the news release. “We hope that our methods can provide a framework to progress the entire field of metabolite-associated diseases and human health.”

Researchers from the Cleveland Clinic Genome Center, the Luo Ruvo Center for Brain Health, and the Center for Microbiome and Human Health (CMHH) collaborated on the study. All three are part of the Cleveland Clinic.

The team plans to use AI technology to further develop and study the interactions between genetic and environmental factors on human health and disease progression. More research and studies are needed, but results of the Cleveland Clinic study suggest new biomarkers for targeted therapies and clinical laboratory tests for dementia diseases may soon follow.

—JP Schlingman

Related Information:

AI Connects Gut Bacteria Metabolites to Alzheimer’s Disease Progression

Researchers Use AI to Improve Alzheimer’s Disease Treatment Through the ‘Gut-brain Axis’

Machine Learning Reveals Link Between Metabolites and Alzheimer’s

Systematic Characterization of Multi-omics Landscape between Gut Microbial Metabolites and GPCRome in Alzheimer’s Disease

Phosphorylated Tau in Alzheimer’s Disease and Other Tauopathies

Orphan G Protein-Coupled Receptors (GPCRs): Biological Functions and Potential Drug Targets

;