News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

List also includes precision oncology, liquid biopsies, and early diagnosis of pancreatic cancer

Pathologists and clinical laboratory managers will be interested to learn that in a recently updated article the World Economic Forum (WEF) identified a dozen important recent breakthroughs in the ongoing fight to defeat cancer, including some related to pathology and clinical laboratory diagnostics.

The article noted that approximately 10 million people die each year from cancer. “Death rates from cancer were falling before the pandemic,” the authors wrote. “But COVID-19 caused a big backlog in diagnosis and treatment.”

The Swiss-based non-profit is best known for its annual meeting of corporate and government leaders in Davos, Switzerland. Healthcare is one of 10 WEF “centers” focusing on specific global issues.

Here are four advances identified by WEF that should be of particular interest to clinical laboratory leaders. The remaining advances will be covered in part two of this ebrief on Wednesday.

“Our study represents a major leap in cancer screening, combining the precision of protein-based biomarkers with the efficiency of sex-specific analysis,” said Novelna founder and CEO Ashkan Afshin, MD, ScD (above), in a company press release. “We’re not only looking at a more effective way of detecting cancer early but also at a cost-effective solution that can be implemented on a large scale.” The 12 breakthroughs listed in the World Economic Forum’s updated article will likely lead to new clinical laboratory screening tests for multiple types of cancer. (Photo copyright: Novelna.)

Novelna’s Early-Stage Cancer Test

Novelna, a biotech startup in Palo Alto, Calif., says it has developed a clinical laboratory blood test that can detect 18 early-stage cancers, including brain, breast, cervical, colorectal, lung, pancreatic, and uterine cancers, according to a press release.

In a small “proof of concept” study, scientists at the company reported that the test identified 93% of stage 1 cancers among men with 99% specificity and 90% sensitivity. Among women, the test identified 84% of stage 1 cancers with 85% sensitivity and 99% specificity.

The scientists published their study titled, “Novel Proteomics-based Plasma Test for Early Detection of Multiple Cancers in the General Population,” in the journal BMJ Oncology.

The researchers collected plasma samples from 440 individuals diagnosed with cancers and measured more than 3,000 proteins. They identified 10 proteins in men and 10 in women that correlated highly with early-stage cancers.

“By themselves, each individual protein was only moderately accurate at picking up early stage disease, but when combined with the other proteins in a panel they were highly accurate,” states a BMJ Oncology press release.

The company says the test can be manufactured for less than $100.

“While further validation in larger population cohorts is necessary, we anticipate that our test will pave the way for more efficient, accurate, and accessible cancer screening,” said Novelna founder and CEO Ashkan Afshin, MD, ScD, in the company press release.

Precision Oncology

According to the National Institutes of Health’s “Promise of Precision Medicine” web page, “Researchers are now identifying the molecular fingerprints of various cancers and using them to divide cancer’s once-broad categories into far more precise types and subtypes. They are also discovering that cancers that develop in totally different parts of the body can sometimes, on a molecular level, have a lot in common. From this new perspective emerges an exciting era in cancer research called precision oncology, in which doctors are choosing treatments based on the DNA signature of an individual patient’s tumor.”

This breakthrough is enabled by the emergence of next generation sequencing (NGS), wrote Genetron Health co-founder and CEO Sizhen Wang in a WEF blog post.

“These advanced sequencing technologies not only extend lifespans and improve cure rates for cancer patients through application to early screening; in the field of cancer diagnosis and monitoring they can also assist in the formulation of personalized clinical diagnostics and treatment plans, as well as allow doctors to accurately relocate the follow-up development of cancer patients after the primary treatment,” Wang wrote.

Based in China, Genetron Health describes itself as a “leading precision oncology platform company” with products and services related to cancer screening, diagnosis, and monitoring.

Liquid and Synthetic Biopsies

Liquid biopsies, in which blood or urine samples are analyzed for presence of biomarkers, provide an “easier and less invasive” alternative to conventional surgical biopsies for cancer diagnosis, the WEF article notes.

These tests allow clinicians to “pin down the disease subtype, identify the appropriate treatment and closely track patient response, adjusting course, if necessary, as each case requires—precision medicine in action,” wrote Merck Group CEO Belén Garijo, MD, in an earlier WEF commentary.

The WEF article also highlighted “synthetic biopsy” technology developed by Earli, Inc., a company based in Redwood City, Calif.

As explained in a Wired story, “Earli’s approach essentially forces the cancer to reveal itself. Bioengineered DNA is injected into the body. When it enters cancer cells, it forces them to produce a synthetic biomarker not normally found in humans.”

The biomarker can be detected in blood or breath tests, Wired noted. A radioactive tracer is used to determine the cancer’s location in the body.

The company hopes to begin clinical trials at the end of 2025, Genetic Engineering and Biotechnology News reported.

Early Diagnosis of Pancreatic Cancer

“Pancreatic cancer is one of the deadliest cancers,” the WEF article notes. “It is rarely diagnosed before it starts to spread and has a survival rate of less than 5% over five years.”

The WEF article authors highlighted an experimental blood test developed at the University of California San Diego School of Medicine.

The test is based on a technology known as high-conductance dielectrophoresis (DEP), according to a UC San Diego press release. “It detects extracellular vesicles (EVs), which contain tumor proteins that are released into circulation by cancer cells as part of a poorly understood intercellular communication network,” the press release states. “Artificial intelligence-enabled protein marker analysis is then used to predict the likelihood of malignancy.”

The UC San Diego researchers reported the results from their first clinical test of the technology in the journal Communications Medicine titled, “Early-Stage Multi-Cancer Detection Using an Extracellular Vesicle Protein-based Blood Test.”

The test detected 95.5% of stage 1 pancreatic cancers, 74.4% of stage 1 ovarian cancers, and 73.1% of pathologic stage 1A lethally aggressive serous ovarian adenocarcinomas, they wrote.

“These results are five times more accurate in detecting early-stage cancer than current liquid biopsy multi-cancer detection tests,” said co-senior author Scott M. Lippman, MD.

Look to Dark Daily’s ebrief on Wednesday for the remainder of breakthroughs the World Economic Forum identifies as top advancements in the fight to defeat cancer.

—Stephen Beale

Related Information:

Novelna Inc. Announces Groundbreaking Cancer Screening Test: A Major Step Toward Early Detection and Personalized Healthcare

Novel Proteomics-based Plasma Test for Early Detection of Multiple Cancers in the General Population

Precision Oncology: Who, How, What, When, and When Not?

Six Experts Reveal the Technologies Set to Revolutionize Cancer Care

Beyond Liquid Biopsies: How the Synthetic Biopsy Leads the Next Generation of Early Cancer Detection

A Proactive Way to Detect Cancer at Its Earliest Stages

Earli Detection: “Synthetic” Biomarkers Light Up Hidden Malignant Cancers

New Technique Detects 95% of Early-Stage Pancreatic Cancer

New Screening Tool IDs 95% of Stage 1 Pancreatic Cancer

Scientists Make DNA Discovery That Could Help Find Pancreatic Cancer Cure

Pancreatic Cancer Turns Off a Key Gene in Order to Grow

Early-Stage Multi-Cancer Detection Using an Extracellular Vesicle Protein-Based Blood Test

Promoter Methylation Leads to Hepatocyte Nuclear Factor 4A Loss and Pancreatic Cancer Aggressiveness

;