Japanese scientists who developed the detection method hope to use it to create ‘easy testing kits that anyone can use’
What do ostriches and humans have in common during the current COVID-19 pandemic? The unexpected answer is that ostrich antibodies can be used to identify humans infected with COVID-19. If proven viable in healthcare settings, the possibility exists that new clinical laboratory tests could be developed based on wearable diagnostics technologies that pathologists would interpret for doctors and patients.
This insight was the result of research conducted at Japan’s Kyoto Prefectural University. The KPU scientists found that a paper facemask coated with ostrich antibodies will give off a fluorescence in the presence of the SARS-CoV-2 coronavirus under ultraviolet (UV) light.
The KPU scientists conducted a small study with 32 COVID-19 patients over a 10-day span. The surgical-style masks they wore later glowed around the nose and mouth areas but became dimmer over time as their viral load decreased.
“The ostrich antibody for corona placed on the mouth filter of the mask captures the coronavirus in coughing, sneezing, and water,” the researchers explained in Study Finds.
Tsukamoto himself learned he had contracted COVID-19 after wearing a prototype mask and noticing it glowed under UV light. A PCR test later confirmed his diagnosis, Kyodo News reported.
The KPU team “hopes to further develop the masks so they will glow automatically, without special lighting, if the [COVID-19] virus is detected.” Reuters noted in its coverage of the ostrich-antibody masks.
Making Medicine from Ostrich Antibodies
A profile in Audubon noted that Tsukamoto, who also serves as a veterinary medicine professor at Kyoto Prefectural University, made ostriches the focus of his research since the 1990s as he looked for ways to harness the dinosaur-like bird’s properties to fight human infections. He maintains a flock of 500 captive ostriches. Each female ostrich can produce 50 to 100 eggs/year over a 50-year life span.
Tsukamoto’s research focuses on customizing the antibodies in ostrich eggs by injecting females with inactive viruses, allergens, and bacteria, and then extracting the antibodies to develop medicines for humans. Antibodies form in the egg yolks in about six weeks and can be collected without harming the parent or young.
“The idea of using ostrich antibodies for therapeutics in general is a very interesting concept, particularly because of the advantages of producing the antibodies from eggs,” Ashley St. John, PhD, an Associate Professor in Immunology, at Duke-NUS Medical School in Singapore, told Audubon.
While more clinical studies will be needed before ostrich-antibody masks reach the commercial marketplace, Tsukamoto’s team is planning to expand their experiment to 150 participants with a goal of receiving Japanese government approval to begin selling the glowing COVID-detection masks as early as 2022. But they believe the ostrich-antibody technique ultimately may lead to development of an inexpensive COVID-19 testing kit.
“We can mass-produce antibodies from ostriches at a low cost. In the future, I want to make this into an easy testing kit that anyone can use,” Tsukamoto told Kyodo News.
Harvard, MIT Also Working on COVID-19 Detecting Facemask
Not to be out done, scientists at the Massachusetts Institute of Technology (MIT) and Harvard University are participating in a similar effort to create a facemask capable of detecting COVID-19.
According to Fast Company, the MIT/Harvard COVID-19-detecting masks use the same core technology as previous paper tests for Ebola and Zika that utilize proteins and nucleic acids embedded in paper that react to target molecules.
“Our system just allows you to add on laboratory-grade diagnostics to your normal mask wearing,” Peter Q. Nguyen, PhD, lead author of a study published in Nature Biotechnology, titled, “Wearable Materials with Embedded Synthetic Biology Sensors for Biomolecule Detection.” Nguyen is a research scientist at the Wyss Institute for Bioinspired Engineering at Harvard.
“They would especially be useful in situations where local variant outbreaks are occurring, allowing people to conveniently test themselves at home multiple times a day,” he told Fast Company.
“It’s on par specificity and sensitivity that you will get in a state-of-the-art [medical] laboratory, but with no one there,” Luis Ruben Soenksen, PhD, Venture Builder in Artificial Intelligence and Healthcare at MIT and one of the co-authors of the Nature Biotechnology study, told Fast Company.
Wearable Diagnostics
This isn’t the first-time unlikely sources have led to useful diagnostic information. In “Researchers in Japan Have Developed a ‘Smart’ Diaper Equipped with a Self-powered Biosensor That Can Monitor Blood Glucose Levels in Adults,” Dark Daily reported on another Japanese research team that developed self-powered wearable biosensors in undergarments that could detect blood glucose levels in individuals with diabetes as well as “smart diapers” that detect urine changes in babies.
As the definition of “wearable diagnostic technology” broadens, pathologists and clinical laboratory scientists may see their roles expand to include helping consumers interpret data collected by point-of-care testing technology as well as performing, evaluating, and interpreting laboratory test results that come from non-traditional sources.
—Andrea Downing Peck
Related Information:
Wearable Materials with Embedded Synthetic Biology Sensors for Biomolecule Detection
Face Mask Made with Ostrich Extract Detects COVID-19 by Glowing Under UV Light
How the Biggest Birds on Earth Could Help Fend Off Epidemics
Scientists Use Ostrich Cells to Make Glowing COVID Detection Masks
Japan Researchers Use Ostrich Cells to Make Glowing COVID-19 Detection Masks
This Mask Glows If You Have COVID
This New Face Mask Tests You for COVID while Protecting You from It