News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Goal is to demonstrate how whole human genome sequencing of newborns can deliver important diagnostic findings associated with 250 genetic conditions

Clinical laboratory testing and genetics are moving closer to the delivery room than ever before. In the largest study of its kind in North America, genomic scientists plan to supplement traditional screening for inherited diseases—traditionally performed on a blood sample taken shortly after birth—with whole genome sequencing (WGS) on 100,000 newborns in New York City during their first five years of life, LifeSciencesIntelligence reported.

Conducted by genetic scientists at NewYork-Presbyterian (NYP) and Columbia University, in collaboration with genetic company GeneDx, a wholly-owned subsidiary of health intelligence company Sema4 (NASDAQ:SMFR), the genetic research study, called GUARDIAN (Genomic Uniform-screening Against Rare Diseases In All Newborns), will screen newborn babies for 250 rare diseases that are generally not tested for.

The GUARDIAN program will “drive earlier diagnosis and treatment to improve the health of the babies who participate, generate evidence to support the expansion of newborn screening through genomic sequencing, and characterize the prevalence and natural history of rare genetic conditions,” according to a Sema4 news release.

Robert Green, MD

“The appetite for this is growing. The awareness of this is growing. We all see it as inevitable,” medical geneticist Robert Green, MD, at Brigham and Women’s Hospital and Harvard Medical School told USA Today. “We are grossly underutilizing the life-saving benefits of genetics and we have to get past that.” Clinical laboratory leaders understand the value of early detection of disease and subsequent early treatment. (Photo copyright: Harvard Medical School.)

Improving Health of Babies Through Early Detection of Disease

GUARDIAN aims to use WGS to identify conditions at birth that can affect long-term health and subsequently enhance treatment options and possibly prevent disability or death.

The 250 different diseases GUARDIAN will be screening for typically strike young children. They are mostly rare conditions that:

  • have an onset before five years of age,
  • have a greater than 90% probability of the condition developing based on the genetic result,
  • have effective approaches and treatments that are already available, and/or
  • have a well-established natural history of the condition.

“We’re entering the therapeutic era and leaving the diagnostic era,” Paul Kruszka, MD, Chief Medical Officer at GeneDx told USA Today. “This potentially has the opportunity to change the way we practice medicine, especially in rare disease.”

Some Parents Reluctant to Agree to Genetic Testing

Green and his research team first began analyzing the genetic sequences of newborns back in 2013. They believe the costs of performing infant WGS is worthwhile because it can improve lives. However, Green also recognizes that some parents are reluctant to agree to this type of genetic testing due to concerns regarding privacy and the fear of discovering their baby may have an illness.

“You’ve gone through all this pregnancy and you’re sitting there with a healthy baby (and I’m) offering you the opportunity to find out something that’s devastating and terrifying,” he told USA Today. “How fun is that?”

Green continued. “We can respect people who don’t want to know, but also respect people who do want to know. Some families will say ‘I treasure the precious ignorance.’ Others will say ‘If I could have known, I would have poured my heart and soul into clinical trials or spent more time with the child when she was healthy.’”

WGS Screening Identifies Undiagnosed Illnesses in Newborn’s Family

The scientists also found that performing WGS in newborns can detect diseases in the infants as well as unknown illnesses in the families of those babies. According to Kruszka, many parents often seek a diagnosis for a rare disease present in their children for several years. Since many common diseases develop as a result of certain combinations of genes, if illnesses are diagnosed at birth, it could extradite the treatment process, prevent complications, and provide better health outcomes for patients.

“We are relentlessly focused on accelerating the adoption and use of genomic information to impact the lives of as many people as possible, particularly newborns and children,” said Katherine Stueland, President and CEO, Sema4, in the Sema4 news release. “As the first commercial laboratory to launch a rapid whole genome sequencing offering, to address broad unmet needs for early diagnosis, participation in this study is an important step forward for healthcare and in delivering on our goal to sequence once, analyze forever.”

The study is open to all babies in New York City who are born in a health system that participates in the GUARDIAN program, regardless of their race, income, or health insurance coverage.

“The results from this study will help us understand the true impact sequencing at birth can have on newborns and their families in comparison to the current standard of care, particularly as we’ll evaluate clinical outcomes in addition to the psychosocial effect on families,” said Kruszka in the Sema4 news release.

Anything that improves the health of newborn babies is a good thing. Regardless of the cost, if DNA analysis can give newborns and their families a better chance at detecting inherited diseases early while clinical laboratory treatment could make a difference, it is worth pursuing.

JP Schlingman

Related Information:

Understanding the Impacts of Newborn Whole Genome Sequencing

Sema4, GeneDx to Provide Whole Genome Sequencing and Interpretation Services for Landmark Genomic Newborn Screening Study

The Story Behind GUARDIAN, a Groundbreaking Newborn Screening Study

Can Gene Sequencing at Birth Prevent Terrible Diseases? Researchers Hope So.

;