News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Further research could eventually lead to clinical laboratory biomarkers and screening tests to identify infants whose gut bacteria may predispose them to neurodevelopment disorders later in life

Microbiologists and clinical laboratory scientists working with gut bacteria will be intrigued to learn that a study conducted by scientists from Linköping University in Sweden and the Department of Microbiology and Cell Science at the University of Florida (UFL) recently found that gut microbiota (aka, gut flora) in infancy can be correlated with developing a neurodevelopmental disorder (ND) later in life.

The researchers analyzed patient records from the 20-year All Babies in Southeast Sweden (ABIS) prospective cohort study into the etiology of obesity, diabetes, and other diseases. They found that “disturbances” in the microbiomes of children during the first years of life could be linked to later ND diagnoses, according to Neuroscience News.

Such ND diagnoses include autism spectrum disorder (autism), Attention Deficit Hyperactivity Disorder (ADHD), communication disorders, and intellectual disability.

“We’ve found associations with some factors that affect gut bacteria, such as antibiotic treatment during the child’s first year, which is linked to an increased risk of these diseases,” stated pediatrician Johnny Ludvigsson, MD, PhD, Senior Professor, Department of Biomedical and Clinical Sciences at Linköping University, who co-led the study, in a Linköping University news release.

“Analyzing over 16,000 children from the ABIS study, researchers identified significant biomarkers in cord blood and stool samples that correlate with future diagnoses of these disorders,” Neuroscience News reported.

This study adds evidence to the growing theory that every individual’s microbiome has much to do with his/her state of health and specific health conditions.

The scientists published their findings in the journal Cell titled, “Infant Microbes and Metabolites Point to Childhood Neurodevelopmental Disorders.”

“We can see in the study that there are clear differences in the intestinal flora already during the first year of life between those who develop autism or ADHD and those who don’t,” said pediatrician and study co-author Johnny Ludvigsson, MD, PhD (above), Senior Professor, Department of Biomedical and Clinical Sciences at Linköping University, in a news release. Clinical laboratory scientists and microbiologists who work with gut microbiota will find these observations intriguing. (Photo copyright: Linköping University.)

Analysis of the ABIS Study

To conduct their study, the researchers analyzed the health records of 16,440 children born between 1997 and 1999 who participated in the ABIS study. The subjects were a close representation of the general Swedish population and were followed from birth into their twenties. 

Research showed that 1,197 of the 16,440 children (7.28%) had been diagnosed with either autism, ADHD, communication disorders, or an intellectual disability. 

The researchers also surveyed the ABIS study participants concerning their lifestyles and environmental factors during childhood. They analyzed substances found in the umbilical cord blood and stool bacteria collected at age one in some of the study participants. Cord blood remains in the placenta and umbilical cord after birth and is rich in stem cells

“The remarkable aspect of the work is that these biomarkers are found at birth in cord blood or in the child’s stool at one year of age over a decade prior to the diagnosis,” said Eric Triplett, PhD, Professor and Chair of the Department of Microbiology and Cell Science at UFL and a co-leader of the study, in the Linköping University news release.

The investigation found that children who had numerous ear infections during the first year of life were more prone to receiving a diagnosis of a neurodevelopmental disorder later in life. The scientists surmised that it was not the infections that caused the issues. Rather, it was that repeated antibiotic treatments had disturbed the balance of healthy gut bacteria.

“We’re not trying to say that antibiotics are necessarily a bad thing,” stated Angelica Ahrens, PhD, Assistant Research Scientist in the Triplett Research Group at the University of Florida and first author of the study, in a UFL blog. “But perhaps overuse can be detrimental to the microbiome, and for some children, for whatever reason, their microbiome might not recover as readily.”

Deficits in Important Bacteria

The researchers discovered that the presence of Citrobacter bacteria increased the risk of a future ND diagnosis. According to ScienceDirect, “organisms of the genus Citrobacter are gram-negative bacilli that are occasional inhabitants of the gastrointestinal tract and are responsible for disease in neonates [newborns that are four weeks or younger] and debilitated or immunocompromised patients.”

They also discovered that the absence of Coprococcus bacteria increased the risk of getting an ND as well. One of the main producers of butyrate, Coprococcus is known to support gut barrier function, suppress harmful bacteria, and contain anti-inflammatory properties.

Coprococcus and Akkermansia muciniphila have potential protective effects,” said Ahrens in the Linköping University news release. “These bacteria were correlated with important substances in the stool, such as vitamin B and precursors to neurotransmitters which play vital roles orchestrating signaling in the brain. Overall, we saw deficits in these bacteria in children who later received a developmental neurological diagnosis.”

Environmental/Behavioral Findings of the ABIS Study

Through the analysis of toxins present in study participants’ cord blood, the researchers confirmed that risk of developing an ND increases when babies are exposed to parents who smoke. The scientists also found that breastfeeding offers a protective effect against NDs.

More research is needed to determine whether gut flora in infants can have an effect on developing NDs later in life, and it is not yet known if similar findings will be detected in other populations. Nevertheless, the findings that many biomarkers for NDs can be observed in infancy may enable scientists to create clinical laboratory screening protocols, preventative measures, and innovative treatments for neurodevelopmental disorders. 

Further research and studies linking certain microbiome factors to specific health conditions will create opportunities for microbiologists and clinical laboratories as well, to perform diagnostic testing that identifies if a patient—in this case a newborn or infant—has a microbiome that will lead to immediate or later neurological health conditions.   

—JP Schlingman

Related Information:

Autism and ADHD Are Linked to Disturbed Gut Flora Very Early in Life

Early Gut Flora Imbalance May Predict Autism and ADHD

Disturbed Gut Flora in Early Years Linked to Autism

Infant Microbes and Metabolites Point to Childhood Neurodevelopmental Disorders

All Babies in Southeast Sweden (ABIS) – ABIS-II. A Prospective Cohort Study of the Aetiology of Obesity, Diabetes and Other Diseases.

UF and Swedish Researchers Connect Childhood Microbiome with Development of Autism, ADHD

;