Clinical laboratories and point-of-care settings may have a new diagnostic test if this novel handheld device and related technology is validated by clinical trials
Efforts to develop breath analyzers that accurately identify viral infections, such as SARS-CoV-2 and Influenza, have been ongoing for years. The latest example is ViraWarn from Opteev Technologies in Baltimore, Maryland, and its success could lead to more follow-up PCR tests performed at clinical laboratories.
“Breath is one of the most appealing non-invasive sample types for diagnosis of infectious and non-infectious disease,” said Opteev in its FDA Pre-EUA application. “Exhaled breath is very easy to provide and is less prone to user errors. Breath contains a number of biomarkers associated with different ailments that include volatile organic compounds (VOCs), viruses, bacteria, antigens, and nucleic acid.”
Further clinical trials and the FDA Pre-EUA are needed before ViraWarn can be made available to consumers. In the meantime, Opteev announced that the CES (Consumer Electronic Show) had named ViraWarn as a 2023 Innovation Award Honoree in the digital health category.
“ViraWarn is designed to allow users an ultra-fast and convenient way to know if they are spreading a dangerous respiratory virus. With a continued increase in COVID-19 and a new surge in RSV and influenza cases, we’re eager to bring ViraWarn to market so consumers can easily blow into a personal device and find out if they are positive or negative,” said Conrad Bessemer (above), Opteev President and Co-Founder, in a news release.
Opteev is a subsidiary of Novatec, a supplier of machinery and sensor technology, and a sister company to Prophecy Sensorlytics, a wearable sensors company.
The ViraWarn breath analyzer uses a silk-based sensor that “traces the electric discharge of respiratory viruses coupled with an artificial intelligence (AI) processor to filter out any potential inaccuracies,” according to the news release.
Here is how the breath analyzer (mouthpiece, attached biosensor chamber, and attached printed circuit board chamber) is deployed by a user, according to the Opteev website:
The user turns on the device and an LED light indicates readiness.
The user blows twice into the mouthpiece.
A carbon filter stops bacteria and VOCs and allows virus particles to pass through.
As “charge carriers,” virus particles have a “cumulative charge.”
Electrical data are forwarded to the AI processor.
The AI processer delivers a result.
Within 60 seconds, a red signal indicates a positive presence of a virus and a green signal indicates negative one.
“The interaction of the virus with a specially designed liquid semiconductive medium, or a solid polymer semiconductor, generates changes in the conductivity of the electrical biosensor, which can then be picked up by electrodes. Such electrical data can be analyzed using algorithms and make a positive or negative call,” explains an Opteev white paper on the viral screening process.
While the ViraWarn breath analyzer can identify the presence of a virus, it cannot distinguish between specific viruses, the company noted. Therefore, a clinical laboratory PCR test is needed to confirm results.
Other Breath Tests
Opteev is not the only company developing diagnostic tests using breath samples.
For clinical laboratory managers and pathologists, Opteev’s ViraWarn is notable in breath diagnostics development because it is a personal hand-held tool. It empowers people to do self-tests and other disease screenings, all of which would need to be confirmed with medical laboratory testing in the case of positive results.
Further, it is important to understand that consumers are the primary target for this novel diagnostic device. This is consistent with investor-funding companies wanting to develop testing solutions that can be used by consumers. At the same time, a device like ViraWarn could be used by clinical laboratories in their patient service centers to provide rapid test results.
Device could pave the way for real-time, noninvasive breath analysis to detect and monitor diseases and be a new service medical laboratories can offer
Breathalyzer technology is not new, but until now human breath detection devices have not been comparable to clinical laboratory blood testing for disease detection and monitoring. That may soon change and there are implications for clinical laboratories, partly because breath samples are considered to be non-invasive for patients.
Scientists with JILA, a research center jointly operated by the National Institutes of Standards and Technology (NIST) and the University of Colorado Boulder, recently increased the sensitivity of their laser frequency comb breathalyzer one thousand-fold. This created a device that can detect four disease biomarkers simultaneously, with the potential to identify six more, according to an NIST news release.
Medical laboratory scientists will understand the significance of this development. JILA’s enhanced breathalyzer device could pave the way for real-time, noninvasive breath analysis to detect and monitor diseases, and potentially eliminate the need for many blood-based clinical laboratory tests.
During their research, physicist Jun Ye, PhD, and David Nesbitt, PhD, both Fellows at JILA and professors at University of Colorado Boulder, detected and monitored four biomarkers in the breath of a volunteer:
These chemicals can be indicators of various health conditions. Methane in the breath, for example, can indicate intestinal problems.
The researchers say the JILA breathalyzer also could detect six additional biomarkers of disease without any further modifications to the device. They would include:
“Determining the identity and concentration of the molecules present in breath is a powerful tool to assess the overall health of a person, analogous to blood testing in clinical medicine, but in a faster and less invasive manner,” the researchers wrote in PNAS.
“The presence of a particular molecule (or combination of molecules) can indicate the presence of a certain health condition or infection, facilitating a diagnosis. Monitoring the concentration of the molecules of interest over time can help track the development (or recurrence) of a condition, as well as the effectiveness of the administered treatment,” they added.
How the JILA Breathalyzer Detects Biomarkers
According to a 2008 NIST news release, JILA researchers had developed a prototype comb breathalyzer in that year. However, the research did not continue. But then the COVID-19 pandemic brought the JILA/NIST laboratories focus back to the breathalyzer with hopes that new research could lead to a breath test for detecting the SARS-CoV-2 coronavirus and other conditions.
“We are really quite optimistic and committed to pushing this technology to real medical applications,” Ye said in the 2021 NIST news release.
Analytical Scientist explained that JILA’s new and improved breathalyzer system “fingerprints” chemicals by measuring the amount of light absorbed as a laser frequency comb passes back and forth through breath samples loaded into a mirrored glass tube.
JILA’s original 13-year-old prototype comb analyzed colors and amounts of light in the near-infrared band. However, JILA’s recent improvements include advances in optical coatings and a shift to analyzing mid-infrared band light, allowing detection sensitivity up to parts-per-trillion level, a thousand-fold improvement over the prototype.
Corresponding study author Jutta Toscano, PhD, postdoctoral researcher at the University of Basel in Switzerland and previously Lindemann fellow at JILA, told Physics World the new frequency comb can “probe the molecular fingerprint region where fundamental, and more intense, spectroscopic transitions are found.
“By matching the frequency of the comb teeth with the cavity modes—the ‘standing modes’ of the cavity—we can increase the interaction path length between molecules inside the cavity and laser light by a factor of around 4000, equivalent to an effective path length of a few kilometers,” she added. “We then probe the light that leaks out of the cavity by sending it into an FTIR [Fourier-transform infrared] spectrometer to find out which exact comb teeth have been absorbed and by how much. In turn, this tells us which molecules are present in the breath sample and their concentration.”
Even Hippocrates Studied Breath
Ye noted in the NIST statement that JILA is the only institution that has published research on comb breathalyzers.
In their PNAS paper, the researchers wrote, “Breath analysis is an exceptionally promising and rapidly developing field of research, which examines the molecular composition of exhaled breath. … Despite its distinctive advantages of being a rapid, noninvasive technique and its long history dating back to Hippocrates, breath analysis has not yet been as widely deployed for routine diagnostics and monitoring as other methods, such as blood-based analysis.
“We have shown that this technique offers unique advantages and opportunities for the detection of light biomarkers in breath,” the researchers noted, “and it is poised to facilitate real-time, noninvasive monitoring of breath for clinical studies, as well as for early detection and long-term monitoring of temporary and permanent health conditions.”
Validation of these findings and further design research to make the system portable are required before JILA’s frequency comb breathalyzer can become a competitor to clinical laboratory blood tests for disease identification and monitoring. Nevertheless, JILA’s research brings breathalyzer technology a step closer to offering real-time, non-invasive analysis of human biomarkers for disease.
It may not be a boom trend, but more non-invasive diagnostic tests are coming to market as clinical laboratory tests that use breath as the specimen
Here’s a development that reinforces two important trends in diagnostics: non-invasive clinical laboratory assays and patient-self testing. Recently, the FDA expanded the clearance of one diagnostic test to allow patients to collect their own breath specimen at home under the supervision of the test manufacturer’s telehealth team.
Recently, however, the FDA announced it has “expanded the approval of the company’s 13C-Spirulina Gastric Emptying Breath Test (GEBT) to now include ‘at home’ administration under virtual supervision of Cairn Diagnostics.”
Self-administration of at-home tests by patients guided virtually by healthcare professionals is a major advancement in telehealth. But will this virtual-healthcare method be popular with both patients and their physicians?
Clinical Laboratory Diagnostics and Telehealth
Spurring a far greater acceptance of telehealth among patients and healthcare providers is one of the many ways the COVID-19 pandemic has impacted healthcare.
“Telehealth, particularly during the COVID-19 pandemic, has emerged as a preferred option for healthcare providers,” noted Kerry Bush, President and COO of Cairn Diagnostics, in a 2021 news release.
Cairn’s GEBT detects gastroparesis, a disease which, according to the NIH National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), affects 50 people in every 100,000. According to the CDC, it is also sometimes a complication of diabetes. Symptoms include nausea, heartburn, bloating, a feeling of fullness long after eating a meal, vomiting, belching, and pain in the upper abdomen, the NIDDK notes.
In people with gastroparesis—sometimes called “delayed gastric emptying”—muscles that normally move food from the stomach to the small intestine do not work as they should, and the food remains in the stomach for too long. The traditional diagnostic tool used to diagnose gastroparesis is scintigraphy. The patient consumes a meal that has radioactive material mixed in and the digestion process is observed using a nuclear medicine camera as the material is eliminated through the bowels.
Virtual Telehealth GEBT versus Scintigraphy
The telehealth process for Cairn Diagnostic’s Gastric Emptying Breath Test (GEBT) differs significantly from traditional scintigraphy testing. Once a physician prescribes the test, Cairn’s telehealth team contacts the patient to describe the virtual process. The team then ships the at-home test kit to the patient. To complete the testing, Cairn provides the patient with a web-based link to a secure audio/video platform.
During administration of the GEBT, a Cairn technician coaches the patient and supervises via video. Once the test is complete, the patient returns the breath samples to the CLIA-certified clinical laboratory by overnight courier. The test results are sent to the prescribing physician within 24-48 hours after the lab receives the samples.
Discovering New Uses for Breath as a Specimen for Clinical Laboratory Testing
For obvious reasons, patients prefer diagnostics that use specimens obtained noninvasively. GEBT is the latest in a growing list of diagnostic tests that use breath as a specimen.
For example, at Johns Hopkins clinicians employ breath testing to diagnose several conditions, including:
Each of these tests involves the patient consuming a particular substance, technicians capturing breath samples at certain intervals, and clinical laboratory personnel analyzing the samples to look for indicators of disease or intolerance.
New Types of Breath Tests
Breath samples are commonly used to diagnose gastrointestinal issues, but researchers also are seeking methods of using them to diagnose and monitor respiratory conditions as well.
In a recent study published in Nature Nanotechnology, scientists explored how breath can be used to monitor respiratory disease, noting that although breath contains numerous volatile metabolites, it is rarely used clinically because biomarkers have not been identified.
“Here we engineered breath biomarkers for respiratory disease by local delivery of protease-sensing nanoparticles to the lungs. The nanosensors shed volatile reporters upon cleavage by neutrophil elastase, an inflammation-associated protease with elevated activity in lung diseases such as bacterial infection and alpha-1 antitrypsin deficiency,” the researchers wrote.
Indeed, the search for new ways to use breath as a biological sample is being pursued by numerous groups and organizations. Owlstone Medical in the UK, for example, is developing breathalyzer tests for the detection of cancer as well as inflammatory and infectious disease.
“Whilst we are still in this discovery stage it is time to refine our study designs so that we can make progress towards tailored clinical application,” they wrote. “Breathomics is perhaps at the ‘end of the beginning’ for asthma at least; it has a ‘sexy’ name, some promising and consistent findings, and the key questions are at least being recognized.”
Better for Patients, Clinicians, and Clinical Laboratories
Virtual telehealth tests, ordered by physicians, administered at home, and interpreted in CLIA-certified clinical laboratories, is a trend pathologists may want to watch carefully, along with the development of other tests that use human breath as the specimen.
Less invasive, more personalized diagnostic tools that can be administered at home are better for patients. When those tools also provide detailed information, clinicians can make better decisions regarding care. Clinical laboratories that approach the use of at-home tests creatively, and which can accurately and quickly process these new types of tests, may have a market advantage and an opportunity to expand and grow.
As demand rises, Canadian clinical laboratories must learn to juggle test systems automation, funding challenges, and staffing shortages
Canada’s clinical laboratories are deeply affected by many of the trends impacting the Canadian healthcare system overall. Deployment of new technologies, such as test automation and artificial intelligence (AI) for example, are forcing Canadian labs to adapt during times of changing demographics and funding pressures.
Thus, the Canadian Diagnostic Executive Forum (CDEF), which takes place October 24-25 at the Westin Harbour Castle Hotel in Toronto, will provide an opportunity for clinical laboratory leaders to learn how to leverage technology and create positive change in their medical laboratory operations.
Change Management and Clinical Laboratory Leaders
The development of disruptive new technologies is becoming the norm and the laboratory’s role in healthcare delivery is growing. That’s why change management has become a focus of clinical laboratory leaders.
Sheila Woodcock, Convenor, WG 1 Quality and Competence in the Medical Laboratory at ISO/TC 212, and President and Principal Consultant at QSE Consulting Inc., Nova Scotia, Canada, says “allocation of resources” is a challenge for senior diagnostic executives juggling financial, technology, and staffing decisions.
In an exclusive interview with Dark Daily, Woodcock
said, “The number one lab challenge today is not having enough money; second is
not having enough people. Because if you don’t have enough money, even if there
are people out there, you can’t hire them. Money, people, and trying to keep up
with all the technological innovations bombarding us nowadays are the main
reasons to make changes.”
From deployment of digital pathology services and point-of-care (POC) testing to the introduction of automation and AI, innovation is happening at a rapid pace. It may or may not increase medical laboratory efficiency or support precision medicine, but it definitely alters laboratory infrastructure.
“Change is nearly constant in the clinical laboratory and
the healthcare network worlds, and there are many complexities that go with
that,” Woodcock said. “With the implementation of new technologies, and the
rapidly advancing world of automation in clinical laboratories that have never before
been automated, how do we ensure that when we automate new technology it
doesn’t negatively impact the quality of the testing process?”
Disruptive Changes are Redefining Clinical Laboratories
As Clinical Lab Products (CLP) points out, medical laboratories have become a reservoir of data that can “guide fact-based decisions to improve operational, financial, and clinical performance throughout their institutions.” As a result, clinical laboratories are increasingly shedding their “traditional and narrowly defined roles” in which “physicians order tests and labs report results.”
Emerging technologies also are ushering change outside of the medical laboratory. Drones soon may routinely transport patient specimens across healthcare networks. Dark Daily has reported on several new drone transport systems under development around the globe. One such system in the US involves UPS, the FAA, and WakeMed. Such high-tech specimen tracking and delivery systems could lead to fewer spoiled samples and possibly save lives, and clinical laboratories are at the heart of these innovations.
Kevin D. Orr, Senior Director, Hospital Business at In-Common Laboratories, believes technology may help laboratories overcome one major issue—a growing demand for testing services at a time when the laboratory workforce is shrinking, and provincial and territorial global funding is not keeping pace with diagnostic utilization rates. Orr points to digital pathology as an example of a technology that may enable labs to “do more with less” in terms of both funding and staffing.
“As people get older, there’s more demand for healthcare
services and because of that more clinical laboratory testing has to be done,”
Orr told Dark Daily. “The peak of the Baby Boomers is starting to get
sick now. We need to focus on innovations and technologies clinical
laboratories are employing to address the overarching issue of doing more with
less.”
How Clinical Laboratories Should Demonstrate Value
Woodcock, however, maintains that clinical laboratories also
need to do a better job of lobbying for funding, so they have the money needed
to implement new technologies.
“Traditionally, when labs are told they have cutbacks, they
do their utmost to work within what they have been assigned. But other
departments might be jumping up and down, getting more attention, and getting
more funding,” she said. “One of the things lab people have to learn—and are
getting better at as time goes on—is giving the lab a voice and making known
the contributions the lab makes to diagnosis and treatment of patients in a
facility.”
The Canadian Diagnostic Executive Forum on October 24-25 at
the Westin Harbour Castle Hotel in Toronto provides such an opportunity for
laboratory leaders to learn how to leverage technology to create positive
change in lab operations.
“We want to inspire people,” Orr told Dark Daily. “We
want people to leave this conference excited about what diagnostics is doing
and where it’s headed and what other people are doing. We want to show them the
bright light at the end of the tunnel, because sometimes when you’re dealing
with the negative aspects of no money or no staff or no this or that, it gets
pretty awful. We want to breathe some life and show them the rainbow and that the
light at the end of the tunnel could be just around the corner.”
The CDEF conference will be hosted by In-Common Laboratories, in conjunction with The Dark Report, Dark Daily’s sister publication. This two-day event will be packed with thought-provoking sessions on digital pathology, next-generation technology, precision medicine, blockchain, sample tracking, and artificial intelligence, as well as updates from across Canada on the latest innovations and technologies being implemented in medical laboratories.
It has been regularly demonstrated in recent decades that human breath contains elements that could be incorporated into clinical laboratory tests, so the decision to use this “breath biopsy” test in a therapeutic drug trial will be closely watched
When a major pharma company pays attention to a breath test, implications for clinical laboratories are often forthcoming. Such may be the case with GlaxoSmithKline (GSK). The global healthcare company has selected Owlstone Medical’s Breath Biopsy technology for use in its Phase II clinical trial of danirixin (DNX), a respiratory drug under development by GSK for treatment of chronic obstructive pulmonary disease (COPD), an Owlstone Medical news release announced.
Anatomic pathologists and medical laboratory leaders will be intrigued by GSK’s integration of breath-based specimens in a clinical trial of a respiratory drug. The partners in the trial aim to analyze breath samples to better understand the drug’s treatment effects and to discover personalized medicine (AKA, precision medicine) opportunities.
GSK (NYSE:GSK), headquartered in the UK but with a large presence in the US, researches and develops pharmaceutical medicines, vaccines, and other consumer health products.
Owlstone Medical, a diagnostic company, is developing a breathalyzer for disease and says it is on a mission to save 100,000 lives and $1.5 billion in healthcare costs. Dark Daily previously reported on Owlstone Medical’s Breath Biopsy platform. The Cambridge, England-based company has raised significant funding ($23.5 million) and already garnered credible cancer trial collaborators including the UK’s National Health Service (NHS).
Now, Owlstone Medical has brought its breath analysis technology to bear on chronic disease outside of cancer diagnostics development. A pharmaporum article called Owlstone’s Medical’s work with GSK an “additional boost of confidence” in the company’s technology, as well as a means for revenue.
Billy Boyle, co-founder and Chief Executive Officer, Owlstone Medical (above), shown with the company’s ReCIVA Breath Sampler device. This will be used by GSK in its Phase II respiratory disease clinical trial of danirixin to “capture VOC biomarkers in breath samples.” (Photo copyright: Business Weekly UK.)
GSK Studying Future Treatments for Respiratory Diseases
COPD affects about 700 million people worldwide, an increase of about 65% since 1990, GSK pointed out. In September 2017, GSK presented respiratory disease data and its pipeline medications at the European Respiratory Society in Milan, Italy. Included was information on danirixin (an oral CXCR2 antagonist), which is part of the company’s focus on COPD disease modification, according to a GSK news release.
“Each of our studies sets the bar for our future research and innovation,” noted Neil Barnes, MA Cantab, FRCP, FCCP(Hon), Vice President, Global Franchise Medical Head, GSK Respiratory, in the GSK press release.
Clinical Trial Aimed at Identifying the ‘Right’ Patients
With Owlstone Medical’s breathalyzer, GSK plans to explore how volatile organic compounds (VOCs) can help identify patients who will benefit most from the company’s medications, as well as evaluate Danirixin’s effects. A critical element of personalized medicine.
“It’s part of our efforts to identify the right patient for the right treatment,” said Ruth Tal-Singer, PhD, GSK’s Vice President of Medicine Development Leader and Senior Fellow, Respiratory Research and Development, in the Owlstone Medical news release.
VOCs in breath will be captured in a non-invasive way from patients who wear Owlstone Medical’s ReCIVA Breath Sampler, which, according to Owlstone Medical, has CE-mark clearance, a certification noting conformity with European health and safety standards. The VOCs breath samples will then be sent to Owlstone Medical’s lab for high-sensitivity analysis.
“Non-invasive Breath Biopsy can establish a role in precision medicine applications such as patient stratification and monitoring treatment response,” said Billy Boyle, Owlstone Medical’s co-Founder and Chief Executive Officer.
VOC Biomarkers in Respiratory Disease
VOC profiles can be characteristic of COPD as well as other respiratory diseases including asthma, tuberculosis, and cystic fibrosis, reported Science/Business.
According to Owlstone Medical’s Website, VOCs are gaseous molecules produced by the human body’s metabolism that are suitable for Breath Biopsy. Their research suggests that exhaled breath reflects molecular processes responsible for chronic inflammation. Thus, VOCs captured through Breath Biopsy offer insight into respiratory disease biomarkers.
Breath also includes VOCs that originate from circulation, which can provide information on a patient’s response to medications.
How the Breath Biopsy Platform Works
Owlstone Medical’s platform relies on its patented Field Asymmetric Ion Mobility Spectrometry (FAIMS) technology, which “has the ability to rapidly monitor a broad range of VOC biomarkers from breath, urine and other bodily fluids with high sensitivity and selectivity,” according to the company’s website. During the process:
Gases are exchanged between circulating blood and inhaled fresh air in the lungs;
VOC biomarkers pass from the circulation system into the lungs along with oxygen, carbon dioxide, and other gases;
Exhaled breath contains exiting biomarkers.
It takes about a minute for blood to flow around the body. So, a breath sample during that time makes possible collection and analysis of VOC biomarkers from any part of the body touched by the circulatory system.
The medical analysis is enabled by software in the Owlstone Medical lab, Boyle told the Cambridge Independent.
“There’s an analogy with blood prints—you get the blood and can look for different diseases, and we’ve developed core hardware and technology to analyze the breath sample,” he said.
Another Breath Sample Device
The ReCIVA Breath Sampler is not the only breathalyzer focused on multiple diseases. Dark Daily reported on research conducted by Technion, Israel’s Institute of Technology, into a breath analyzer that can detect up to 17 cancers, and inflammatory and neurological diseases.
But Owlstone Medical stands out due, in part, to its noteworthy partners: the UK’s National Health Service, as well as the:
And now the company can add collaboration with GSK to its progress. Though some question the reliability of breath tests as biomarkers in the areas of sensitivity and specificity required for cancer diagnosis, Owlstone Medical appears to have the wherewithal to handle those hurdles. It is a diagnostics company that many pathologists and medical laboratory professionals may find worth watching.