News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Amazon’s Prime Air Drone Fleet Receives FAA Approval to Make Deliveries to Customers, Could Clinical Laboratory Specimens and Supplies be Next?

Delivery of clinical laboratory specimens and medical supplies by drone is beginning to happen in different parts of the world

The idea that fleets of flying drones may someday legally transport clinical laboratory specimens may sound good—it may even be beneficial from a healthcare perspective—but it also could be hugely disruptive to medical labs that maintain large and expensive courier/logistics capabilities. 

So, the announcement that the FAA had granted approval to Amazon’s new drone delivery fleet—Amazon Prime Air—may come as something of a mixed blessing to clinical laboratory managers and large healthcare networks.

Nevertheless, it’s done. Amazon Prime Air has joined Alphabet Inc’s Wing and the United Parcel Services’ Flight Forward as “the only companies that have gotten FAA approval to operate under the federal regulations governing charter operators and small airlines,” Bloomberg reported.

But will this trend bode well for clinical laboratories?

Does Amazon Plan to Deliver Clinical Laboratory Specimens?

As yet, Amazon has not announced its intention to deliver clinical laboratory specimens. But given the company’s trajectory as a disrupter of traditional retail and shipping industries, it seems reasonable that competing with Wing and Flight Forward might be part of Amazon’s plan.

Wing and UPS are already operating fledgling clinical laboratory delivery networks in the US and other nations, such as Australia and Switzerland. Wing has been testing limited drone deliveries in Christiansburg, VA, since it received FAA approval to operate drone deliveries last year. UPS received similar approval last year to operate drones to deliver biological specimens and clinical laboratory supplies between physicians’ offices and the central clinical laboratory on WakeMed’s medical campus in Raleigh, NC.

Dark Daily covered both of these events in “UPS and WakeMed Now Use Aerial Drone for Daily Transport of Clinical Laboratory Specimens; In Australia, Google Wing Initiates Drone Delivery Service.”

Amazon’s MK27 drone
Amazon’s MK27 drone (above) is a hybrid aircraft that can take off and land vertically like a helicopter and sustain forward flight. The drone has several built-in safety features, including thermal cameras, depth cameras, onboard computers and sonar to detect hazards in its path and navigate around them. Click here to watch a video of the drone in flight. (Video copyright: Amazon.)

Amazon’s drones can fly up to 7.5 miles from a distribution site (a 15-mile round trip) and can deliver packages that weigh less than five pounds to customers. The goal is to deliver small items that can fit in the drone’s cargo box to consumers in under 30 minutes. 

Are Drones the Future of Medical Laboratory Specimen Delivery?

Routine deliveries via drones are still a long way off as more trial runs are needed and the FAA has to develop standards and regulations for drone delivery operations to maintain order in the skies. However, in a statement, the FAA said it is trying to support innovation in the expanding drone arena while ensuring that the devices operate safely. The FAA plans to finalize a set of regulations for drones by the end of this year, Bloomberg reported.

“This certification is an important step forward for Prime Air and indicates the FAA’s confidence in Amazon’s operating and safety procedures for an autonomous drone delivery service that will one day deliver packages to our customers around the world,” David Carbon, Vice President Prime Air at Amazon, said in a statement to Business Insider. “We will continue to develop and refine our technology to fully integrate delivery drones into the airspace and work closely with the FAA and other regulators around the world to realize our vision of 30-minute delivery.”

So, will Amazon one day announce plans to deliver medical supplies and clinical laboratory specimens in under 30 minutes too? It wouldn’t be unreasonable to believe in the possibility.

Dark Daily previously covered similar drone delivery services under development for healthcare situations around the world. In “Drones Used to Deliver Clinical Laboratory Specimens in Switzerland,” we reported how a multiple-facility hospital group in Switzerland was using drones to deliver lab samples between two of their locations.

In “WakeMed Uses Drone to Deliver Patient Specimens,” our sister publication, The Dark Report, covered how in April, 2019, clinical lab professionals at WakeMed Health and Hospitals completed the first successful revenue-generating commercial transport of lab supplies by drone in the United States. The satellite lab now sends urine, blood, and other patient specimens for routine testing to the main lab.

And in “California Company Creates ‘Uber for Blood’ to Speed the Transport of Life-Saving Medical Laboratory Supplies and Blood Products in Rwanda,” we reported how drones are being utilized to transport vital blood supplies to remote areas of Rwanda and Tanzania.

Dark Daily also reported in 2017 that researchers from Johns Hopkins University had successfully flown a drone carrying lab specimens more than 161 miles across the Arizona desert, setting a US record for the longest distance drone delivery of viable medical specimens.

Amazon would fit right in.

Though regular drone delivery of medical supplies and clinical laboratory specimens may take some time to develop, it is a trend that laboratory managers should watch closely. The potential for drones to safely and inexpensively transport clinical laboratory specimens could become a reality sooner than expected.

—JP Schlingman

Related Information:

Amazon’s Drone Delivery Fleet Hits Milestone with FAA Clearance

FAA Approves Amazon’s Drone Delivery Fleet

FAA Clears Amazon’s Fleet of Prime Air Drones for Liftoff

Here’s Amazon’s New Transforming Prime Air Delivery Drone

UPS and WakeMed Now Use Aerial Drone for Daily Transport of Clinical Laboratory Specimens; In Australia, Google Wing Initiates Drone Delivery Service

Drones Used to Deliver Clinical Laboratory Specimens in Switzerland

California Company Creates ‘Uber for Blood’ to Speed the Transport of Life-Saving Medical Laboratory Supplies and Blood Products in Rwanda

Johns Hopkins’ Test Drone Travels 161 Miles to Set Record for Delivery Distance of Clinical Laboratory Specimens

Chairman and CEO David Abney Explains UPS’ Drive Toward Drone Technology

February COVID-19 Superspreader Event in Boston Confirmed by Use of Genetic Sequencing as Next-Gen Sequencing Is Put to Novel Uses, including in Clinical Laboratories

Gene sequencing is enabling disease tracking in new ways that include retesting laboratory specimens from before the SARS-CoV-2 outbreak to determine when it arrived in the US

On February 26 of this year, nearly 200 executives and employees of neuroscience-biotechnology company Biogen gathered at the Boston Marriott Long Wharf hotel for their annual leadership conference. Unbeknownst to the attendees, by the end of the following day, dozens of them had been exposed to and become infected by SARS-CoV-2, the coronavirus that causes the COVID-19 illness.

Researchers now have hard evidence that attendees at this meeting returned to their communities and spread the infection. The findings of this study will be relevant to pathologists and clinical laboratory managers who are cooperating with health authorities in their communities to identify infected individuals and track the spread of the novel coronavirus.

This “superspreader” event has been closely investigated and has led to intriguing conclusions concerning the use of genetic sequencing to revealed vital information about the COVID-19 pandemic. Recent improvements in gene sequencing technology is giving scientists new ways to trace the spread of COVID-19 and other diseases, as well as a method for monitoring mutations and speeding research into various treatments and vaccines. 

Genetic Sequencing Traces an Outbreak

“With genetic data, a record of our poor decisions is being captured in a whole new way,” Bronwyn MacInnis, PhD, Director of Pathogen Genomic Surveillance at the Broad Institute of MIT and Harvard, told The Washington Post (WaPo) during its analysis of the COVID-19 superspreading event. MacInnis is one of many Broad Institute, Harvard, MIT, and state of Massachusetts scientists who co-authored a study that detailed the coronavirus’ spread across Boston, including from the Biogen conference.

Titled, “Phylogenetic Analysis of SARS-CoV-2 in the Boston Area Highlights the Role of Recurrent Importation and Superspreading Events,” the paper explains how the researchers “sequenced and analyzed 772 complete SARS-CoV-2 genomes from the region” in order to investigate how the virus was introduced and spread through the area. They traced a specific mutation in the virus—“a simple switch of two letters in the virus’ 30,000-character genetic code,” WaPo reported.

What they discovered is both surprising and enlightening. According to WaPo’s report, at least 35 new cases of the virus were linked directly to the Biogen conference, and the same strain was discovered in outbreaks in two homeless shelters in Boston, where 122 people were infected. The variant tracked by the Boston researchers was found in roughly 30% of the cases that have been sequenced in the state, as well as in Alaska, Senegal, and Luxembourg.

“The data reveal over 80 introductions into the Boston area, predominantly from elsewhere in the United States and Europe. We studied two superspreading events covered by the data, events that led to very different outcomes because of the timing and populations involved. One produced rapid spread in a vulnerable population but little onward transmission, while the other was a major contributor to sustained community transmission,” the researchers noted in their study abstract.

“The same two events differed significantly in the number of new mutations seen, raising the possibility that SARS-CoV-2 superspreading might encompass disparate transmission dynamics. Our results highlight the failure of measures to prevent importation into [Massachusetts] early in the outbreak, underscore the role of superspreading in amplifying an outbreak in a major urban area, and lay a foundation for contact tracing informed by genetic data,” they concluded.

Anthony Fauci, MD
Some experts think humankind may be entering a period of increased pandemics. In their report published in Cell, titled, “Emerging Pandemic Diseases: How We Got to COVID-19,” Anthony Fauci, MD (above) Director of the National Institute of Allergy and Infectious Diseases (NIAID), and David Morens, MD, a senior associate professor at Johns Hopkins School of Public Health and Senior Advisor to Fauci, wrote, “One can conclude from this recent experience that we have entered a pandemic era. The causes of this new and dangerous situation are multifaceted, complex, and deserving of serious examination.” (Photo copyright: NIAID.)

Genetic Sequencing and Mutation Tracking

The use of genetic sequencing to trace the virus could inform measures to control the spread in new ways, but currently, only about 0.33% of cases in the United States are being sequenced, MacInnis told WaPo, and that not sequencing samples is “throwing away the crown jewels of what you really want to know.”

Another role that genetic sequencing is playing in this pandemic is in tracking viral mutations. One of the ways that pandemics worsen is when viruses mutate to become deadlier or more easily spread. Scientists are using genetic sequencing to monitor SARS-CoV-2 for such mutations.

A group of scientists at Texas A&M University led by Yue Xing, PhD, published a paper titled, “MicroGMT: A Mutation Tracker for SARS-CoV-2 and Other Microbial Genome Sequences,” which explains that “Although most mutations are expected to be selectively neural, it is important to monitor if SARS-CoV-2 will eventually evolve to be a stronger or weaker infectious agent as time goes on. Therefore, it is vital to track mutations from newly sequenced SARS-CoV-2 genome.”

Another group of researchers have identified such a mutation. “A SARS-CoV-2 variant carrying the Spike protein amino acid change D614G has become the most prevalent form in the global pandemic. Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 increase at multiple geographic levels: national, regional, and municipal,” Bette Korber, PhD and her colleagues wrote in “Tracking Changes in SARS-CoV-2 Spike: Evidence That D614G Increases Infectivity of the COVID-19 Virus,” published in Cell. Korber is a Laboratory Fellow at Los Alamos National Laboratory and visiting faculty at Santa Fe Institute.

Korber’s findings are important because the mutation the scientists identified appears to have a fitness advantage. “Our data show that, over the course of one month, the variant carrying the D614G Spike mutation became the globally dominant form of SARS-CoV-2,” they wrote. Additionally, the study noted, people infected with the mutated variant appear to have a higher viral load in their upper respiratory tracts.

Genetic Sequencing, the Race for Treatments, Vaccines, and Managing Future Pandemics

A vaccine is the best hope for stopping a pandemic, but short of a vaccine, an effective clinical laboratory treatment is the next best thing. And as Dark Daily reported in “Advances in Gene Sequencing Technology Enable Scientists to Respond to the Novel Coronavirus Outbreak in Record Time with Medical Lab Tests, Therapies,” genetic sequencing is quickly becoming a critical tool to develop both.

If, as Fauci and Morens predict, future pandemics are likely, improvements in gene sequencing and analysis will become even more important for tracing, monitoring, and suppressing outbreaks. Clinical laboratory managers will want to watch this closely, as medical labs that process genetic sequencing will, no doubt, be part of that operation.

—Dava Stewart

Related Information:

Genetic Data Show How a Single Superspreading Event Sent Coronavirus Across Massachusetts and the Nation

How the Biogen Leadership Conference in Boston Spread the Coronavirus

How a Premier U.S. Drug Company Became a Virus ‘Super Spreader’

This Cambridge Drug Company Inadvertently Spread the Coronavirus. Now, It’s Creating A ‘Biobank’ To Hopefully Treat the Disease

Phylogenetic Analysis of SARS-CoV-2 in the Boston Area Highlights the Role of Recurrent Importation and Superspreading Events

MicroGMT: A Mutation Tracker for SARS-CoV-2 and Other Microbial Genome Sequences

Tracking Changes in SARS-CoV-2 Spike: Evidence That D614G Increases Infectivity of the COVID-19 Virus

The D614G Mutation in the SARS-CoV-2 Spike Protein Reduces S1 Shedding and Increases Infectivity

Emerging Pandemic Diseases: How We Got to COVID-19 Advances in Gene Sequencing Technology Enable Scientists to Respond to the Novel Coronavirus Outbreak in Record Time with Medical Lab Tests, Therapies

Canada’s Early Response to COVID-19 Garnered Praise, But Critical Shortages of Clinical Lab Tests and Delays in Test Results Brought Criticism of the Government’s Actions. Sound Familiar?

Though coronavirus infections were detected nearly simultaneously in both Canada and the US, total cases and total deaths vary dramatically leading experts to question how differences in healthcare systems might have contributed

Can clinical laboratories in the United States learn from Canada’s response to the COVID-19 pandemic? While our northern neighbor won praise for its early response to the coronavirus, since then Canada has faced criticism over a lack of access to SARS-CoV-2 testing and long wait times for test results—criticism levied at the United States’ response to the outbreak as well.

In “Canada Shows How Easy Virus Testing Can Be,” Foreign Policy reported that Canada was more prepared to mount a successful response to COVID-19 because it systematically improved its pandemic-response preparedness and testing capacity after the 2003 SARS coronavirus (SARS-CoV-1) outbreak.

“Provincial laboratories put the infrastructure in place that would allow them to run their own testing and validation without help from the federal government,” Foreign Policy wrote. “At the same time, the federally run National Microbiology Laboratory in Winnipeg expanded its own capacity to support those efforts.”

However, Canada’s pandemic response has not been criticism free. In “Health Minister Says Test Result Wait Times ‘Not Acceptable’ As Ontario Confirms 25 New COVID-19 Cases,” CBC News reported in late March about COVID-19 testing shortages and four-day wait times for test results that were “not acceptable,” particularly in Ontario, where people with mild symptoms were being refused testing and sent home unless they worked in high-risk settings.

In “Why It’s So Difficult to Get Tested for COVID-19 in Canada,” CBC News suggested that Canada’s test rationing was due to a laboratory-supply shortage, a problem which The New York Timesreports still has not been overcome in the US more than six months into the pandemic.

Government Bureaucracy’s Effect on Response to COVID-19

In “Canada’s Coronavirus Response Has Not Been Perfect. But It’s Done Far Better than the US,” The Washington Post reported that the initial exposure to the virus by the US and Canada was similar. Both the US and Canada have extensive ties to Europe and China, resulting in the two countries identifying their first cases of COVID-19 within a week of one another in January. Since then, however, the progression of the disease diverged dramatically in the two nations.

To date, the US has experienced 7,361,611 total cases with 209,808 total deaths, placing it in the number one spot globally on Worldometers’ COVID-19 tracking site. By contrast, Canada is in 26th place, with 155,301 total cases and 9,278 total deaths. However, to date the US has conducted 105,401,706 total clinical laboratory tests, as opposed to Canada’s 7,220,108 total tests. This might account for the disparity in total cases, but what accounts for the huge difference in total US deaths due to COVID-19 compared to Canada?

A Fraser Institute blog post authored by Steven Globerman, PhD, Resident Scholar and Addington Chair in Measurement at the Institute and Professor Emeritus at Western Washington University, titled, “US COVID Experience Highlights Risks of Centralized Management of Healthcare,” blamed the US’ “top-down, centralized approach to testing” for the “testing fiasco” that marked the US’ initial slow response to the pandemic. Globerman maintained the Centers for Disease Control and Prevention’s insistence on producing its own COVID-19 diagnostic test, rather than using a proven German-produced test, was the first of several missteps by the US.

Steven Globerman, PhD
“While there has been much criticism of the decentralized private insurance industry in the US, the major shortcomings in testing that characterize the US experience during the current pandemic seem to be the result of the government healthcare bureaucracy,” wrote Steven Globerman, PhD, (above), Resident Scholar and Addington Chair in Measurement at the Fraser Institute and Professor Emeritus at Western Washington University. (Photo copyright: Fraser Institute.)

Globerman also noted the problems were compounded by the US government’s low initial Medicare payments to private laboratories for COVID-19 tests. “Medicare is reputed to have paid about half the price it pays for a flu test, even though the coronavirus test is substantially more expensive to produce. The price forced labs to take losses on the test, blocking many labs from scaling up production to expand the nation’s testing capacity.

“Only after major lab organizations made public pleas for increased Medicare reimbursement, and long backlogs emerged for testing and reporting test results, did Medicare agree to double its payments for coronavirus tests,” Globerman wrote.

Could National Differences in Healthcare Systems Be to Blame for Disparate COVID-19 Outcomes?

In “Canada Succeeded on Coronavirus Where America Failed. Why?” Canadian public health experts told Vox differences in the two countries’ political leadership, public health funding, and healthcare systems are to blame for the US experiencing a worse coronavirus outbreak than Canada.

Is that true? Sally C. Pipes, CEO, and Thomas W. Smith Fellow in Health Care Policy at the Pacific Research Institute, a former resident of Canada and an ardent critic of single-payer healthcare, argued that Canada’s healthcare system is plagued by long waits for elective procedures, equipment shortages, and limited access to cutting-edge drugs and therapies.

In “The Canadian Health-Care Scare,” Pipes wrote, “Our northern neighbors wait months for routine care and lack access to the latest life-saving medications and technology. Importing this system would lead to widespread misery,” adding, “Is a six-month wait for a knee replacement—the median in Canada last year—reasonable, when it keeps someone in pain and unable to work? One study puts the total cost of waiting for joint-replacement surgery after taking into account lost wages and additional tests and scans at almost $20,000. It’s no wonder that more than 323,000 Canadians left the country to seek care abroad in 2017.”

A Fraser Institute study of wait times in Canada for medically-necessary treatments underscores Pipes’ claims. According to the study, the median wait time—from general practitioner referral to treatment—across 12 medical specialties was 20.9 weeks in 2019, the second highest recorded by the Institute. If this is the case, how did Canada earn praise for its early COVID-19 response?

It’s unclear what lessons American clinical laboratories can glean from Canada’s response to COVID-19. Nevertheless, lab managers should closely watch their counterparts in other nations around the world. The coronavirus does not respect borders or care about disparities in healthcare systems.

—Andrea Downing Peck

Related Information:

The Canadian Health-Care Scare

Waiting Your Turn: Waiting Times for Healthcare in Canada, 2019 Report

Worldometers COVID-19 Coronavirus Pandemic Tracking

Canada Succeeded on Coronavirus Where America Failed. Why?

Coronavirus Test Results Are Still Delayed

U.S. Doctor in Canada: Medicare for All would Have Made America’s COVID Response Much Better

Canada’s Coronavirus Response Has Not Been Perfect. But It’s Done Far Better than the U.S.

Why It’s so Difficult to Get Tested for COVID-19 in Canada

Health Minister Says Test Result Wait Times ‘Not Acceptable’ as Ontario Confirms 25 New COVID-19 Cases

Canada Shows How Easy Virus Testing Can Be

CDC, HHS Create National Wastewater Surveillance System to Help Monitor and Track Spread of COVID-19

Though not a replacement for clinical laboratory testing, the CDC says the surveillance system will help slow spread of COVID-19 in vulnerable communities

Clinical laboratory testing for COVID-19 is receiving an ally. In mid-August, the Centers for Disease Control and Prevention (CDC) and the US Department of Health and Human Services (HHS) announced they were initiating a National Wastewater Surveillance System (NWSS) in response to the COVID-19 pandemic. 

In collaboration with other federal agencies, the NWSS will work with state, local, territorial, and tribal health departments to collect data on wastewater (aka, sewage) samples throughout the United States.

The goal of the NWSS is to detect SARS-CoV-2, the coronavirus that causes COVID-19, before it spreads by detecting traces of it in local sewer systems. The level of the virus detected in wastewater can be a leading indicator of a worsening outbreak in a community, according to a CDC statement

“Quantitative SARS-CoV-2 measurements in untreated sewage can provide information on changes in total COVID-19 infection in the community contributing to that wastewater treatment plant,” noted the CDC.

People infected with the coronavirus discard traces of it—whether they are symptomatic or asymptomatic—and levels of the virus in untreated sewage can provide scientists with information about the degree of outbreak in specific areas.

The NWSS will not include or monitor homes that use septic tanks or entities with decentralized systems that treat their own waste, such as hospitals, universities, and prisons. 

Not a Replacement for Clinical Laboratory Testing

The CDC stressed that sewage testing is not meant to replace clinical laboratory testing, but it can be a valuable tool in communities where COVID-19 tests are underutilized or unavailable. Wastewater testing, CDC noted in its statement, could have an enormous reach as 80% of households in the US are connected to a municipal sewage system. 

The CDC is not actively taking samples from wastewater, but relying on local partners to take samples, test them, and enter data into the NWSS portal for the purpose of summarizing and interpreting for public health action.

The agency predicts that participation in a national database will ensure data comparability across separate jurisdictions. 

Could Testing Raw Sewage Be More Effective than Contact Tracing for Tracking COVID-19 Outbreaks?

A Yale University study published in Nature Biotechnology, titled, “Measurement of SARS-CoV-2 RNA in Wastewater Tracks Community Infection Dynamics,” detected SARS-CoV-2 concentrations in sewage sludge in  New Haven, Conn., over a 10-week period earlier this year. The results of the study “show the utility of viral RNA monitoring in municipal wastewater for SARS-CoV-2 infection surveillance at a population-wide level,” the study authors noted.

The published study states that “SARS-CoV-2 RNA was detected throughout the more than 10-week study and, when adjusted for time lags, tracked the rise and fall of cases seen in SARS-CoV-2 clinical test results and local COVID-19 hospital admissions. Relative to these indicators, SARS-CoV-2 RNA concentrations in sludge were 0–2 [days] ahead of SARS-CoV-2 positive test results by date of specimen collection, 0–2 [days] ahead of the percentage of positive tests by date of specimen collection, 1–4 [days]  ahead of local hospital admissions and 6–8 [days] ahead of SARS-CoV-2 positive test results by reporting date.”

The Yale researchers concluded, “Our results demonstrate that measurement of SARS-CoV-2 RNA concentrations in primary sludge provides an approach to estimate changes in COVID-19 prevalence on a population level. Sludge results were not a leading indicator compared to positive test results or percentage of positive tests by date of specimen collection. However, they led hospitalizations by 1–4 [days] and test results by report date by ~1 week. Thus, in communities where test reporting is delayed, sludge results, if analyzed and reported on the same day as sampling, can provide substantial advance notice of infection dynamics.”

Jordan Peccia, Jr., PhD
Jordan Peccia, Jr., PhD (above), Professor of Chemical and Environmental Engineering at the Yale School of Engineering and Applied Science, and study author, told NBC News, “There’s still a lot more to do. We’re one of the earlier groups to have developed a robust relationship between wastewater and coronavirus cases, but this is just a first step.” He added, “It doesn’t replace contact tracing. [But] if we know a little bit ahead of time, we can raise the alarm.” (Photo copyright: Yale University.)

Sewage Testing for COVID-19 Around the World

Sewage testing can provide data to complement other collected information about COVID-19 and steer public health decision-making. However, the CDC notes that “it is not possible to reliably and accurately predict the number of infected individuals in a community based on sewage testing” and that “more data on fecal shedding by infected individuals over the course of disease are needed to better understand the limits of detection.” 

Nevertheless, some experts have leaned heavily on sewage sample testing for their conclusions about the origination of the coronavirus. In August, Dark Daily reported on a theory based on finding remnants of SARS-CoV-2 in sewage systems that suggested the virus may not have originated in Wuhan, China. Analysis of sewage samples in Italy, Spain, and Brazil indicated the virus was present in those countries before the disease was known to exist outside of China. The controversy over these findings has motivated virologists to expand wastewater testing.

The creation of the NWSS by the CDC validates growing interest in new methods of testing for infectious disease. Lower cost, faster response time, more automation of genetic sequencing, and improved analytical software has enabled this type of testing to become a useful tool. It would be wise for clinical laboratory managers to monitor the expanded use of new testing technologies for infectious diseases. 

—JP Schlingman

Related Information:

CDC to Start Surveying Nation’s Wastewater

National Wastewater Surveillance System (NWSS): A New Public Health Tool to Understand COVID-19 Spread in a Community

The CDC Wants State and Local Sewage Systems Tested for Coronavirus

CDC Developing Sewage Surveillance System for COVID-19

CDC Will Survey Wastewater for COVID-19 Spread

‘Sewer Sludge’ Detects Coronavirus Outbreaks Days Faster than Contact Tracing, Study Finds

Measurement of SARS-CoV-2 RNA in Wastewater Tracks Community Infection Dynamics

Studies Finding Remnants of SARS-CoV-2 in Sewage Suggest COVID-19 May Not Have Originated at Wuhan Market, Some Scientists Dispute the Findings

Clinical Laboratories in Hospitals Continue to Experience Reductions in Test Orders as Emergency Department Visits for Common Conditions Slowly Climb Back to Pre-Pandemic Levels

Multiple recent studies reveal a substantial number of patients continue to delay needed healthcare in the months since the onset of the SARS-CoV-2 outbreak

Based on an analysis of hospital emergency department (ED) usage, federal researchers concluded that patients continue to be cautious when visiting healthcare providers, including clinical laboratories, and that people are altering how they seek and utilize emergency care due to the COVID-19 pandemic. This not only reduces the number of typical test orders from the ER to the hospital lab, but also reduces the source of inpatient admissions.

The study, titled, “Impact of the COVID-19 Pandemic on Emergency Department Visits—United States, January 1, 2019–May 30, 2020,” found that ED visits declined 42% during the early stages of the COVID-19 pandemic. It was conducted by the federal Center for Disease Control and Prevention’s National Syndromic Surveillance Program (NSSP) and published in the CDC’s Morbidity and Mortality Weekly Report (MMWR).

Between March 29 and April 25 of this year, facilities the CDC examined recorded 1.2 million visits to EDs, compared to 2.1 million visits between March 31 and April 27 of last year. The steepest decrease in patient demographics was for individuals under the age of 14, women, and people living in the Northeast region.

The CDC’s data showed that 12% of ED visits were for children in pre-pandemic 2019, which dropped to 6% during the 2020 pandemic period. The CDC included ED visits from hospitals in 47 states (excluding Hawaii, South Dakota, and Wyoming) and captured information from approximately 73% of ED visits in the US.

Delaying Healthcare Visits Worsens Medical Conditions, Reduces Revenues

ED visits are an important referral source for inpatient admissions. Fewer patients in EDs means lost revenue for hospitals. However, one positive aspect of the waning number of ED visits is that it may be keeping patients with non-emergency situations away from emergency departments, thus reducing the overuse of costly ED visits. But healthcare professionals are concerned that individuals also may be avoiding or delaying care when needed, which could worsen medical situations and outcomes. 

“We saw people, with COVID-19 and without, coming into the ED who were very ill,” Vik Reddy, MD, Chief Medical Officer at Wellstar Kennestone Hospital and Wellstar Windy Hill Hospital in the Atlanta area, told Modern Healthcare. He noted that some patients delayed care for critical non-COVID-19 illnesses. “The good news is that we’re seeing that trend reverse this time around. It was scary in March when we knew that people weren’t coming into the ED for heart attacks.”

The NSSP’s analysis concluded that the report’s findings were subject to at least four limitations:

  • The number of hospitals reporting to NSSP changes over time as facilities are added or closed. For example, 3,173 hospitals reported data in April of 2019, while 3,467 reported data in April 2020.
  • Diagnostic categories rely on the use of specific codes, which were missing in 20% of the ED visits reported.
  • NSSP coverage is not uniform across or within all the participating states.
  • The analysis is limited only to ED visits and does not take into account patients who did not go to an ED, but instead received treatment in other healthcare environments, such as urgent care clinics. 
Map analysis of smartphone location data of hospital traffic in 2020
The graphics above are taken from a Washington Post article which reported that the newspaper’s analysis of smartphone location data of hospital traffic in 2020 showed the “drop” in hospital usage had turned into “a crash,” compared to the same two months last year, and that, “As in many other industries, those lost visits represented a widespread financial crisis for hospitals and other healthcare providers, even in places the novel coronavirus hardly touched.” (Graphics copyright: The Washington Post.)

Additional Studies Show Patients Avoiding Hospital EDs, Delaying Care

Other sources also are reporting similar findings regarding consumer attitudes towards seeking medical care during the COVID-19 pandemic. A PricewaterhouseCoopers survey released in May found that about 45% of 2,500 consumers surveyed plan to forgo their annual physical in 2020, due to the pandemic, Modern Healthcare reported.

In addition, an Optum Consumer Pulse Survey released in May found that nearly 20% of 700 surveyed individuals stated they were likely to avoid hospital EDs even if they were showing signs of a heart attack or appendicitis. Another 40% stated they were likely to avoid the ED if they had a cut that required stitches.

In “Americans Are Delaying Medical Care, and It’s Devastating Health-Care Providers,” The Washington Post analyzed hospital use during the pandemic based on smartphone tracking data. WaPo’s report found a significant drop in patients seeking in-person healthcare with many areas across the country reporting a 50% reduction in patients when compared to last year.

The article also states that almost 94 million people have delayed medical care due to the COVID-19 pandemic, and that 66 million of those individuals needed medical care unrelated to the virus but did not receive it.

These studies and others are showing a pattern. The COVID-19 pandemic has changed when and where patients access healthcare, and if the trend continues, it could have a long-term impact on clinical laboratories. Since fewer people are seeking medical care, fewer laboratory tests are being ordered and performed, which means less work and revenue for the nations’ hospital and independent clinical labs.

—JP Schlingman

Related Information:

Emergency Department Visits Continue to Lag

Impact of the COVID-19 Pandemic on Emergency Department Visits—United States, January 1, 2019-May 30, 2020

COVID-19 Caused Hospital ED Visits to Dive More than 40%

Learning from the Decrease in US Emergency Department Visits in Response to the Coronavirus Disease 2019 Pandemic

With Emergency Visits Down 42%, US Hospitals Reeling from COVID-19

Trends in Emergency Department Visits and Hospital Admissions in Health Care Systems in 5 States in the First Months of the COVID-19 Pandemic in the US

How Patients Feel About Returning to Care

Americans are Delaying Medical Care, and It’s Devastating Healthcare Providers

;