Supplychain shortages involving clinical laboratory products may not ease up any time soon, as China’s largest shipping province is once again in COVID-19 lockdown
Following two years of extremely high demand, pathology laboratories as well as non-medical labs in the United Kingdom (UK) and Europe are experiencing significant shortages of laboratory resources as well as rising costs. That’s according to a recently released survey by Starlab Group, a European supplier of lab products.
In its latest annual “mood barometer” survey of around 200 lab professionals in the UK, Germany, Austria, Italy, and France, Starlab Group received reports of “empty warehouses” and a current shortage of much needed lab equipment, reportedly as a result of rising costs, high demand, and stockpiling of critical materials needed by pathology laboratories during the COVID-19 pandemic, according to Laboratory News.
The survey respondents, who represented both medical laboratories and research labs, noted experiencing more pressure from staff shortages and insufficient supplies required to meet testing demands in 2021 as compared to 2020. For example, only 23% of respondents said they had enough liquid handling materials—such as protective gloves and pipettes—in 2021, down from 39% who responded to the same question in 2020.
“The entire laboratory industry has been in a vicious circle for two years. While more and more materials are needed, there’s a lack of supplies. At the same time, laboratories want to stockpile material, putting additional pressure on demand, suppliers, and prices,” Denise Fane de Salis, Starlab’s UK Managing Director and Area Head for Northern Europe, told Process Engineering. “Institutes that perform important basic work cannot keep up with the price competition triggered by COVID-19 and are particularly suffering from this situation,” she added.
Lab Supply Shortages Worsen in 2021
With a UK office in Milton Keynes, Starlab’s network of distributors specialize in liquid handling products including pipette tips, multi-channel pipettes, and cell culture tubes, as well as PCR test consumables and nitrile and latex gloves.
According to Laboratory News, Starlab’s 2021 annual survey, released in March 2022, found that:
64% cited late deliveries contributing to supply woes.
58% noted medical labs getting preference over research labs, up from 46% in 2020.
57% said demand for liquid handling products was the same as 2020.
30% of respondents said material requirements were up 50% in 2021, compared to 2020.
76% reported dealing with rising prices in lab operations.
29% expect their need for materials to increase by 25% in 2022, and 3% said the increase may go as high as 50%.
17% of respondents said they foresee challenges stemming from staff shortages, with 8% fearing employee burnout.
UK-European Medical Laboratories on Waiting Lists for Supplies
Could import of lab equipment and consumables from Asia and other areas outside UK have contributed to the shortages?
“A substantial portion of the world’s clinical laboratory automation, analyzers, instruments, and test kits are manufactured outside UK. Thus, UK labs may face a more acute shortage of lab equipment, tests, and consumables because governments in countries that manufacture these products are taking ‘first dibs’ on production, leaving less to ship to other countries,” said Robert Michel, Editor-in-Chief of Dark Daily and our sister publication The Dark Report.
Indeed, a statement on Starlab’s website describes challenges the company faces meeting customers’ requests for supplies.
“The pandemic also has an impact on our products that are manufactured in other countries. This particularly affects goods that we ship from the Asian region to Europe by sea freight. Due to the capacity restrictions on the ships, we expect additional costs for the transport of goods at any time. Unfortunately, the situation is not expected to ease for the time-being,” Starlab said.
Furthermore, economists are forecasting probable ongoing supply chain effects from a new SARS-CoV-2 outbreak in China.
Lockdown of China’s Largest Shipping Province Threatens Supply Chains Worldwide
According to Bloomberg News, “Shenzhen’s 17.5 million residents [were] put into lockdown on [March 13] for at least a week. The city is located in Guangdong, the manufacturing powerhouse province, which has a gross domestic product of $1.96 trillion—around that of Spain and South Korea—and which accounts for 11% of China’s economy … Guangdong’s $795 billion worth of exports in 2021 accounted for 23% of China’s shipments that year, the most of any province.”
Bloomberg noted that “restrictions in Shenzhen could inflict the heaviest coronavirus-related blow to growth since a nationwide lockdown in 2020, with the additional threat of sending supply shocks rippling around the world.”
“Given that China is a major global manufacturing hub and one of the most important links in global supply chains, the country’s COVID policy can have notably spillovers to its trading partners’ activity and the global economy,” Tuuli McCully, Head of Asia-Pacific Economies, Scotiabank, told Bloomberg News.
Wise medical laboratory leaders will remain apprised of supply chain developments and possible lockdowns in Asia while also locating and possibly securing new sources for test materials and laboratory equipment in anticipation of future supply shortages.
The technology is similar to the concept of a liquid biopsy, which uses blood specimens to identify cancer by capturing tumor cells circulating in the blood.
According to the American Cancer Society, lung cancer is responsible for approximately 25% of cancer deaths in the US and is the leading cause of cancer deaths in both men and women. The ACS estimates there will be about 236,740 new cases of lung cancer diagnosed in the US this year, and about 130,180 deaths due to the disease.
Early-stage lung cancer is typically asymptomatic which leads to later stage diagnoses and lowers survival rates, largely due to a lack of early disease detection tools. The current method used to detect early lung cancer lesions is low-dose spiral CT imaging, which is costly and can be risky due to the radiation hazards of repeated screenings, the news release noted.
MGH’s newly developed diagnostic tool detects lung cancer from alterations in blood metabolites and may lead to clinical laboratory tests that could dramatically improve survival rates of the deadly disease, the MGH scientist noted in a news release.
Detecting Lung Cancer in Blood Metabolomic Profiles
The MGH scientists created their lung-cancer predictive model based on magnetic resonance spectroscopy which can detect the presence of lung cancer from alterations in blood metabolites.
The researchers screened tens of thousands of stored blood specimens and found 25 patients who had been diagnosed with non-small-cell lung carcinoma (NSCLC), and who had blood specimens collected both at the time of their diagnosis and at least six months prior to the diagnosis. They then matched these individuals with 25 healthy controls.
The scientists first trained their statistical model to recognize lung cancer by measuring metabolomic profiles in the blood samples obtained from the patients when they were first diagnosed with lung cancer. They then compared those samples to those of the healthy controls and validated their model by comparing the samples that had been obtained from the same patients prior to the lung cancer diagnosis.
The predictive model yielded values between the healthy controls and the patients at the time of their diagnoses.
“This was very encouraging, because screening for early disease should detect changes in blood metabolomic profiles that are intermediate between healthy and disease states,” Cheng noted.
The MGH scientists then tested their model with a different group of 54 patients who had been diagnosed with NSCLC using blood samples collected before their diagnosis. The second test confirmed the accuracy of their model.
Predicting Five-Year Survival Rates for Lung Cancer Patients
Values derived from the MGH predictive model measured from blood samples obtained prior to a lung cancer diagnosis also could enable oncologists to predict five-year survival rates for patients. This discovery could prove to be useful in determining clinical strategies and personalized treatment decisions.
The researchers plan to analyze the metabolomic profiles of the clinical characteristics of lung cancer to understand the entire metabolic spectrum of the disease. They hope to create similar models for other illnesses and have already created a model that can distinguish aggressive prostate cancer by measuring the metabolomics profiles of more than 400 patients with that disease.
In addition, they are working on a similar model to screen for Alzheimer’s disease using blood samples and cerebrospinal fluid.
More research and clinical studies are needed to validate the utilization of blood metabolomics models as early screening tools in clinical practice. However, this technology might provide pathologists and clinical laboratories with diagnostic tests for the screening of early-stage lung cancer that could save thousands of lives each year.
Researchers say their method can trace ancestry back 100,000 years and could lay groundwork for identifying new genetic markers for diseases that could be used in clinical laboratory tests
Cheaper, faster, and more accurate genomic sequencing technologies are deepening scientific knowledge of the human genome. Now, UK researchers at the University of Oxford have used this genomic data to create the largest-ever human family tree, enabling individuals to trace their ancestry back 100,000 years. And, they say, it could lead to new methods for predicting disease.
This new database also will enable genealogists and medical laboratory scientists to track when, where, and in what populations specific genetic mutations emerged that may be involved in different diseases and health conditions.
New Genetic Markers That Could Be Used for Clinical Laboratory Testing
As this happens, it may be possible to identify new diagnostic biomarkers and genetic indicators associated with specific health conditions that could be incorporated into clinical laboratory tests and precision medicine treatments for chronic diseases.
“We have basically built a huge family tree—a genealogy for all of humanity—that models as exactly as we can the history that generated all the genetic variation we find in humans today,” said Yan Wong, DPhil, an evolutionary geneticist at the Big Data Institute (BDI) at the University of Oxford, in a news release. “This genealogy allows us to see how every person’s genetic sequence relates to every other, along all the points of the genome.”
Researchers from University of Oxford’s BDI in London, in collaboration with scientists from the Broad Institute of MIT and Harvard; Harvard University, and University of Vienna, Austria, developed algorithms for combining different databases and scaling to accommodate millions of gene sequences from both ancient and modern genomes.
The BDI team overcame the major obstacle to tracing the origins of human genetic diversity when they developed algorithms to handle the massive amount of data created when combining genome sequences from many different databases. In total, they compiled the genomic sequences of 3,601 modern and eight high-coverage ancient people from 215 populations in eight datasets.
The ancient genomes included three Neanderthal genomes, a Denisovan genome, and a family of four people who lived in Siberia around 4,600 years ago.
The University of Oxford researchers noted in their news release that their method could be scaled to “accommodate millions of genome sequences.”
“This structure is a lossless and compact representation of 27 million ancestral haplotype fragments and 231 million ancestral lineages linking genomes from these datasets back in time. The tree sequence also benefits from the use of an additional 3,589 ancient samples compiled from more than 100 publications to constrain and date relationships,” the researchers wrote in their published study.
Wong believes his research team has laid the groundwork for the next generation of DNA sequencing.
“As the quality of genome sequences from modern and ancient DNA samples improves, the tree will become even more accurate and we will eventually be able to generate a single, unified map that explains the descent of all the human genetic variation we see today,” he said in the news release.
Developing New Clinical Laboratory Biomarkers for Modern Diagnostics
In a video illustrating the study’s findings, evolutionary geneticist Yan Wong, DPhil, a member of the BDI team, said, “If you wanted to know why some people have some sort of medical conditions, or are more predisposed to heart attacks or, for example, are more susceptible to coronavirus, then there’s a huge amount of that described by their ancestry because they’ve inherited their DNA from other people.”
Wohns agrees that the significance of their tree-recording methods extends beyond simply a better understanding of human evolution.
“[This study] could be particularly beneficial in medical genetics, in separating out true associations between genetic regions and diseases from spurious connections arising from our shared ancestral history,” he said.
The underlying methods developed by Wohns’ team could have widespread applications in medical research and lay the groundwork for identifying genetic predictors of disease risk, including future pandemics.
Clinical laboratory scientists will also note that those genetic indicators may become new biomarkers for clinical laboratory diagnostics for all sorts of diseases currently plaguing mankind.
This “Virus Trap” might eventually be manufactured by clinical laboratories for the diagnostic process
Clinical laboratory managers and pathologists will be fascinated by this new treatment coming out of Germany for viral infections. It’s an entirely different technology approach to locating and neutralizing live viruses that may eventually be able to control anti-viral-resistant strains of specific viruses as well.
As virologists and microbiologists are aware, even in our present era of technological and medical advances, viral infections are extremely difficult to treat. There are currently no effective antidotes against most viral infections and antibiotics are only successful in fighting bacterial infections.
Thus, this new technology developed by a research team at the Technical University of Munich (TUM) in Munich, Germany, that uses DNA origami to neutralize and trap viruses and render them harmless is sure to gain swift attention, especially given the world’s battle with the SARS-CoV-2 Omicron variant.
DNA origami is the nanoscale folding of DNA to create two- and three-dimensional complex shapes that can be manufactured with a high degree of precision at the nanoscale. Researchers have been working with and enhancing this technique for about 15 years.
However, scientists at TUM wondered if they could create such hollow structures based on the capsules that encompass viruses to entrap those viruses. They developed a method that made it possible to create artificial hollow bodies the size of a virus and explored using those hollow bodies as a type of “virus trap.”
The researchers theorized that if those hollow bodies could be lined on the inside with virus-binding molecules, they could tightly bind the viruses and remove them from circulation. For this method to be successful, however, those hollow bodies had to have large enough openings to ensure the viruses could get into the shells.
“None of the objects that we had built using DNA origami technology at that time would have been able to engulf a whole virus—they were simply too small,” said Hendrik Dietz, PhD, Professor of Physics at TUM and an author of the study in a press release. “Building stable hollow bodies of this size was a huge challenge,” he added.
So, the team of researchers used the icosahedron geometric shape, which is an object comprised of 20 sides. They engineered the hollow bodies for their virus trap from three-dimensional, triangular plates which had to have slightly beveled edges to ensure the binding points would assemble properly to the desired objects.
“In this way, we can now program the shape and size of the desired objects using the exact shape of the triangular plates,” Dietz explained. “We can now produce objects with up to 180 subunits and achieve yields of up to 95%. The route there was, however, quite rocky, with many iterations.”
By varying the binding points on the edges of the triangles, the scientists were able to create closed hollow spheres and spheres with openings or half-shells that could be utilized as virus traps. They successfully tested their virus traps on adeno-associated viruses (AAV) and hepatitis B viruses in cell cultures.
“Even a simple half-shell of the right size shows a measurable reduction in virus activity,” Dietz stated in the press release. “If we put five binding sites for the virus on the inside—for example suitable antibodies—we can already block the virus by 80%. If we incorporate more, we achieve complete blocking.”
The team irradiated their finished building blocks with ultraviolet (UV) light and then treated the outside with polyethylene glycol and oligolysine. This process prevented the DNA particles from being immediately degraded in body fluids. Those particles were stable in mouse serum for 24 hours. The TUM scientists plan to test their building blocks on living mice soon.
“We are very confident that this material will also be well tolerated by the human body,” Dietz said.
Could Clinical Laboratories Manufacture Components of the Virus Traps?
The researchers noted that the starting materials for their virus traps can be mass produced at a very reasonable cost and may have other uses.
“In addition to the proposed application as a virus trap, our programmable system also creates other opportunities,” Dietz said. “It would also be conceivable to use it as a multivalentantigen carrier for vaccinations, as a DNA or RNA carrier for gene therapy, or as a transport vehicle for drugs.”
There is much research yet to be done on this cutting-edge technology. However, for this therapy to be appropriate for a patient, a specimen of the virus will need to be identified and studied. Then, the DNA origami would be tailored to capture that specific virus. Thus, it’s conceivable that clinical laboratories, if used for the diagnostic step, might also be able to then manufacture the virus trap that is customized to locate, surround, and neutralize that specific virus.
Its low cost may advance liquid biopsy cancer testing used by anatomic pathologists and improve outcomes by speeding time to diagnosis and treatment
Researchers in Japan say they have created a circulating tumor cell (CTC) detection solution that is inexpensive and easy to run. Such a device would be of huge interest to investors and companies wishing to develop clinical laboratory tests that use circulating tumor cells in the blood to identify patients with cancer.
In a proof-of-concept study, researchers at Kumamoto University (KU) in Japan have developed and tested a microfilter device they claim can separate and capture CTCs in blood without large equipment, a KU news release reported.
According to Medgadget, the device is an “inexpensive, convenient, and highly sensitive filter that can successfully work in samples containing as few as five tumor cells in one milliliter of blood and does not require expensive equipment or reagents, unlike certain pre-existing cell capture technologies.”
This Technology Could Give Pathologists a Less-Invasive Cancer Test
As medical laboratory scientists and anatomic pathologists know, a CTC test is less invasive than tissue biopsy, which benefits patients. Furthermore, such a CTC test may enable earlier detection of cancer and start of treatment improving odds for success.
Still, there are many pitfalls to overcome when the challenge is to detect cancer cells in a milliliter (about .03 fluid ounce) of blood. As Medgadget put it, “A needle in a haystack doesn’t even come close.”
“Cancer cell count in the blood of cancer patients is extremely low. If these cells are easily detectable, cancer diagnosis may be possible by simply using a blood test, thus reducing patient burden,” the researchers wrote in their paper.
It includes slits to enable a deformation with force of blood pumping through the device.
As blood flows over the microfilter, cancer cells bind to the nucleic acid aptamer.
Force of blood flow opens microfilter slits, pushing away the healthy cells.
Cancer cells are left on the microfilter.
To test the microfilter the researchers used one milliliter of blood that was “spiked with cancer cells,” according to the paper. Findings include:
Detection of five CTCs in one milliliter of blood.
Blood cell removal rate of 98% suggested “no blood cells were absorbed by the microfilter,” the news release said.
The method “showed higher accuracy than the CellSearch System,” the Talanta paper noted.
The KU research team compared their microfluidic device to CellSearch, an FDA-cleared system for detecting CTCs from a blood sample.
CellSearch enables “identification, isolation, and enumeration of CTCs of epithelial origin,” according to Menarini Silicon Biosystems of Castel Maggiore, Italy. It works from a blood sample of 7.5 millimeters with “high level of sensitivity and specificity,” notes the company’s website.
According to Menarini, labs offering CellSearch CTC testing include:
The UK scientists admit that their research needs further study. Nakashima indicated he plans to test blood samples donated by cancer patients in subsequent device trials.
“Although great progress has been made, there is a long way to go before CTC-based liquid biopsy is widely used as a routine test in clinical application,” the authors of that study noted.
Nevertheless, even with more to do, liquid biopsy testing has come a long way, as multiple Dark Daily eBriefs reported over the years.
If the KU scientists succeed in bringing to market a microfilter that can reduce the cost of CTC detection by clinical laboratories while also improving cancer diagnostics, that will have a huge impact on cancer patients and is worthy of clinical laboratory leaders’ attention.
Scientists working to sequence all 1.66 million animal species say this is a missed opportunity to better understand our own genetics; such research would identify biomarkers useful for clinical laboratory testing
For 23 years, the world’s genomic scientists have been on a mission to sequence the genomes of all animal species. And they’ve made great progress. However, according to a recent study conducted by researchers at Washington State University (WSU) and Brigham Young University (BYU), only a fraction of the sequences are from invertebrate species. And that, according to the study’s authors, is “overlooking huge swathes of diversity and opportunity.”
The push to sequence the whole genomes of all animals began in 1998 with the sequencing of the Caenorhabditis elegans roundworm, according to a WSU news release. It was the first animal genome sequence, but it was not to be the last. Nearly 25 years later, genomic scientists have sequenced about 3,300 animal genomes. And while that’s a lot of genomic sequences, it’s a drop in bucket of the approximately 1.7 million animal species on the planet.
But here’s where the missed opportunity comes in. According to the WSU news release, “Vertebrates account for 54% of all genome sequencing assemblies, despite representing only 3.9% of animal species. In contrast, the invertebrates of the Arthropoda phylum, which includes insects and spiders, comprise only 34% of current datasets while representing 78.5% of all species.”
The scientists analyzed the best available genome assemblies found in GenBank, the world’s most extensive genetic database. They found that 3,278 unique animal species across 24 phyla, 64 classes, and 258 orders have been sequenced and assembled to date.
They also found that sequencing efforts have focused heavily on species that most resemble humans. The Hominidae, a taxonomic family of primates that includes humans as well as great apes, bonobos, chimpanzees, orangutans, and gorillas, has the most contiguous genome data assembled.
The team discovered that vertebrates account for 54% of the animal genome sequencing that has been performed even though they make up less than four percent of known animal species. By comparison, invertebrates of the Arthropoda phylum, which represent 78.5% of all animal species, comprise only 34% of the completed animal genome sequencing. And yet, the Arthropoda phylum is the largest phylum in the animal kingdom and includes insects, spiders, scorpions, centipedes, millipedes, crabs, crayfish, lobsters, and barnacles.
“With genome assemblies accumulating rapidly, we want to think about where we are putting our efforts. It’s not being spread evenly across the animal tree of life,” said lead author Scott Hotaling, PhD, post-doctoral researcher at WSU, in the news release. “Invertebrates are still very underrepresented, which makes sense given that people seem to care more about vertebrates, the so-called ‘charismatic megafauna.’”
The team discovered that only five arthropod groups: ants, bees, butterflies, fruit flies, and mosquitos, were well represented in genome sequencing. The longest genome sequenced so far belongs to the Australian lungfish, the only surviving member of the family Neoceratodontidae.
1,100 Years to Sequence All Eukaryotic Life
The scientists also discerned that animal genome assemblies have been produced by 52 countries on every continent with permanent inhabitants. The majority of animal genome sequencing (77%) that is being performed is mostly occurring in developed countries located in the Northern Hemisphere, often referred to as the Global North. Nearly 70% of all animal genome assemblies have been produced by just three countries: the United States, China, and Switzerland.
There are geographic differences between regions regarding the types of animals being sequenced and assembled with North America concentrating on mammals and insects, Europe focusing on fish, and birds being the main type of animals sequenced in Asia.
The scientists would like to see more animal genome sequencing happening in countries from the Global South, or Southern Hemisphere, particularly in tropical regions that contain a myriad of diversity among animal species.
“If we want to build a global discipline, we need to include a global people,” Hotaling said. “It’s just basic equity, and from a pure scientific standpoint, the people who live in areas where species are being sequenced have a lot of knowledge about those species and ecosystems. They have a lot to contribute.”
But the WSU/BYU scientists found that many species in GenBank only have low-quality assemblies available. They noted that “the quality of a genome assembly is likely the most important factor dictating its long-term value.”
Fortunately, several animal genome sequencing ventures have been announced in recent years, so the amount of available data is expected to rise exponentially. These projects include:
The Earth BioGenome Project (EBP) which aspires to sequence and catalog the genes of all the eukaryotic species on the planet within ten years.
The Vertebrate Genomes Project which seeks to generate high-quality assemblies for 70,000 extant vertebrate species.
The Bird 10K Project that seeks to generate assemblies for all extant birds.
The i5K Project which plans to produce 5,000 arthropod genome assemblies.
The authors of the PNAS paper noted that there are currently only about four genome assemblies happening each day and, at that rate, the sequencing of all eukaryotic life will not be completed until the year 3130.
So, microbiologists, clinical laboratory professionals, and genomic scientists have plenty of time to get up to speed.