Clinical laboratories continue to test sample delivery by drone as a viable alternative to ground transport
In Switzerland, another clinical laboratory drone delivery service recently launched and it has several unique capabilities. This new pilot project to test the delivery of medical laboratory samples by UAV (unmanned aerial vehicle, aka drone) is being conducted by the Dr. Risch laboratory group and start-up drone company Jedsy.
What makes the Risch/Jedsy drone delivery service unique when compared to other drone delivery services is their drone’s capability to deliver directly to windows, regardless of where that window is. This, according to a Jedsy news release, “makes the transport of samples faster and more environmentally friendly.”
Dr. Risch group has 14 clinical laboratories and eight sample collection locations throughout Switzerland. The Swiss Federal Office of Civil Aviation (FOCA) approved Dr. Risch’s first flight between its lab in Vaduz, the capital of Liechtenstein, to its lab in Buchs St. Gallen, sUAS News reported. Risch began transporting lab samples between those locations on an experimental basis in December of 2022.
The Jedsy glider, as the drone is called, has a distinctive vertical takeoff, hover, and landing capability. Once it achieves a safe altitude, it transitions to forward flight and can travel at speeds up to 150 kilometers per hour or about 93 miles per hour.
All systems on the Jedsy drone are redundant and developed to be fail-safe. A human drone operator follows the flight visually via a livestream connection. Once the drone approaches a building for landing, with the exception of the docking station the entire surrounding area is blurred to ensure the privacy of nearby individuals.
The Jedsy Glider (above) is quieter than other multicopters, according to Jedsy, and is able to dock outside a window or balcony. This enables the convenient loading and unloading of clinical laboratory specimens in any type of weather. The docking station also serves as a charger for the drone’s battery to ensure the craft is available for use at any time. Similar medical laboratory sample drone delivery services have been tested in Switzerland but none with Dr. Risch Labs’ unique window delivery option. (Photo copyright: Jedsy.)
Why Transport Clinical Laboratory Samples by Drone?
“The last two years during the COVID-19 pandemic have shown convincingly how important this service is for the healthcare sector,” explained the medical laboratory group’s founder and CEO, Martin Risch, MD, in the Jedsy press release.
Risch envisions a need for drones in certain medical situations. Dr. Risch currently employs about 50 courier drivers who transport by ground medical samples to regional medical laboratories throughout Switzerland every day.
“If, however, the courier vehicles are stuck in traffic or if they are driving during rush hour, the planned daily routine regarding the analysis and the medical diagnosis is delayed. We hope that this will allow us to offer an even better service, which will ultimately benefit the patients,” Risch stated.
Jedsy has already utilized its glider drone successfully in Africa to deliver laboratory specimens and medicines to remote locations and looks forward to its continued benefits.
“With the new drone, we have already gained important flying experience in Malawi, where over 5,000 flights have been performed as part of the UNICEF drone corridor,” said aerospace engineer Herbert Weirather, founder and CEO of Jedsy, in the press release. “Health centers have already been supplied with critical medicines by Jedsy and the service is being expanded continuously,” he added.
Use of Drones to Deliver Clinical Laboratory Samples Growing Worldwide
Utilizing drones to deliver medical supplies and laboratory specimens is not a new concept and has been tested several times in the past. Dark Daily has previously reported on some of the projects that have been attempted.
The use of drones to deliver clinical laboratory specimens is a rising trend that could be extremely beneficial for healthcare systems, medical professionals, and patients. A number of clinical laboratories in the US and around the world have initiated drone pilot programs, however, there has been little follow-up press coverage about either the success of these efforts or whether they continue to operate.
Nevertheless, faster delivery of laboratory specimens can lead to more timely diagnoses which can potentially lead to better patient outcomes. In the future, it’s likely more clinical laboratories will receive specimens via drones.
University of Cincinnati researchers hypothesize that low levels of amyloid-beta protein, not amyloid plaques, are to blame
New research from the University of Cincinnati (UC) and Karolinska Institute in Sweden challenges the prevailing theory about the causes of Alzheimer’s disease, suggesting the possibility of new avenues for the development of effective clinical laboratory assays, as well as effective therapies for treating patients diagnosed with Alzheimer’s.
Scientists have long theorized that the disease is caused by a buildup of amyloid plaques in the brain. These plaques are hardened forms of the amyloid-beta protein, according to a UC news story.
“The paradox is that so many of us accrue plaques in our brains as we age, and yet so few of us with plaques go on to develop dementia,” said Alberto Espay, MD, one of the lead researchers of the study, in another UC news story. Espay is Professor of Neurology at the UC College of Medicine and Director and Endowed Chair of the Gardner Center for Parkinson’s Disease and Movement Disorders.
“Yet the plaques remain the center of our attention as it relates to biomarker development and therapeutic strategies,” he added.
“It’s only too logical, if you are detached from the biases that we’ve created for too long, that a neurodegenerative process is caused by something we lose, amyloid-beta, rather than something we gain, amyloid plaques,” said Alberto Espay, MD (above), in a University of Cincinnati news story. “Degeneration is a process of loss, and what we lose turns out to be much more important.” The UC study could lead to new clinical laboratory diagnostics, as well as treatments for Alzheimer’s and Parkinson’s diseases. (Photo copyright: University of Cincinnati.)
.
High Levels of Aβ42 Associated with Lower Dementia Risk
In their retrospective longitudinal study, the UC researchers looked at clinical assessments of individuals participating in the Dominantly Inherited Alzheimer Network (DIAN) cohort study. DIAN is an ongoing effort, sponsored by the Washington University School of Medicine in St. Louis, to identify biomarkers associated with Alzheimer’s among people who carry Alzheimer’s mutations.
The researchers found that study participants with high levels of a soluble amyloid-beta protein, Aβ42, were less likely to develop dementia than those with lower levels of the protein, regardless of the levels of amyloid plaques in their brains or the amount of tau protein—either as phosphorylated tau (p-tau) or total tau (t-tau)—in their cerebral spinal fluid. P-tau and t-tau are proteins that form “tau tangles” in the brain that are also associated with Alzheimer’s.
One limitation of the study was that the researchers were unable to include Aβ40, another amyloid-beta protein, in their analysis. But they noted that this “did not limit the testing of our hypothesis since Aβ40 exhibits lower fibrillogenicity and lesser depletion than Aβ42, and is therefore less relevant to the process of protein aggregation than Aβ42.” Fibrillogenicity, in this context, refers to the process by which the amyloid-beta protein hardens into plaque.
While the presence of plaques may be correlated with Alzheimer’s, “Espay and his colleagues hypothesized that plaques are simply a consequence of the levels of soluble amyloid-beta in the brain decreasing,” UC news stated. “These levels decrease because the normal protein, under situations of biological, metabolic, or infectious stress, transform into the abnormal amyloid plaques.”
The UC News story also noted that many attempts to develop therapeutics for Alzheimer’s have focused on reducing amyloid plaques, but “in some clinical trials that reduced the levels of soluble amyloid-beta, patients showed worsening in clinical outcomes.”
New Therapeutics for Multiple Neurodegenerative Diseases
Eisai, a Japanese pharmaceutical company, recently announced phase three clinical trial results of lecanemab, an experimental drug jointly developed by Eisai and Biogen, claiming that the experimental Alzheimer’s drug modestly reduced cognitive decline in early-stage patients, according to NBC News.
Espay noted that lecanemab “does something that most other anti-amyloid treatments don’t do in addition to reducing amyloid: it increases the levels of the soluble amyloid-beta.” That may slow the process of soluble proteins hardening into plaques.
Beyond their findings about Alzheimer’s, the researchers believe similar mechanisms could be at work in other neurodegenerative diseases such as Parkinson’s disease, where the soluble alpha-synuclein protein also hardens into deposits.
“We’re advocating that what may be more meaningful across all degenerative diseases is the loss of normal proteins rather than the measurable fraction of abnormal proteins,” Espay said. “The net effect is a loss not a gain of proteins as the brain continues to shrink as these diseases progress.”
Espay foresees two approaches to treating these diseases: Rescue medicine, perhaps based on increasing levels of important proteins, and precision medicine, which “entails going deeper to understand what is causing levels of soluble amyloid-beta to decrease in the first place, whether it is a virus, a toxin, a nanoparticle, or a biological or genetic process,” according to UC News. “If the root cause is addressed, the levels of the protein wouldn’t need to be boosted because there would be no transformation from soluble, normal proteins to amyloid plaques.”
Clinical Laboratory Impact
What does this mean for clinical laboratories engaged in treatment of both Alzheimer’s and Parkinson’s patients? A new understanding of the disease would create “the opportunity to identify new biomarkers and create new clinical laboratory tests that may help diagnose Alzheimer’s earlier in the disease progression, along with tests that help with the patient’s prognosis and monitoring his or her progression,” said Robert Michel, Editor-in-Chief of Dark Daily and its sister publication The Dark Report.
Given the incidence of Alzheimer’s disease in the population, any clinical laboratory test cleared by the FDA would be a frequently-ordered assay, Michel noted. It also would create the opportunity for pathologists and clinical laboratories to provide valuable interpretation about the test results to the ordering physicians.
Similar health monitoring devices have been popular with chronic disease patients and physicians who treat them; this technology may give clinical laboratories a new diagnostic tool
There is an ever-increasing number of companies working to develop lab testing technologies that would be used outside of the traditional clinical laboratory. One such example is Nutromics, an Australia-based medical technology company which recently announced it has raised US $14 million to fund its new lab-on-a-patch platform, according to a company press release.
Nutromics’ lab-on-a-patch device “uses DNA sensor technology to track multiple targets in the human body, including disease biomarkers and hard-to-dose drugs,” according to MobiHealthNews. Notably, Nutromics’ technology uses interstitial fluid as the sample source.
Nutromics raised $4 million last year to support a manufacturing facility and an initial human clinical trial of its “continuous molecular monitoring (CMM) platform technology that is able to track multiple targets in the human body via a single wearable sensor. The platform provides real-time, continuous molecular-level insights for remote patient monitoring and hospital-at-home systems,” MobiHealthNews reported.
“We are aiming to cause a paradigm shift in diagnostic healthcare by essentially developing a lab-on-a-patch. A lack of timely and continuous diagnostic insights can strongly impact outcomes when dealing with critical disease states. With this strategic industry and VC (venture capital) investment in us, we see more confidence in our technology and hope to accelerate our growth,” said entrepreneur and chemical engineer Peter Vranes (above), co-founder and CEO of Nutromics, in a press release. Clinical laboratory leaders have watched similar biometric monitoring devices come to fruition. (Photo copyright: Nutromics.)
.
How Nutromics’ Lab-on-a-Patch Works
“Our technology is, in fact, two technologies coming together—a marker and needle. What that does is give us access to fluid under your skin called interstitial fluid. If you’re going to measure something continuously, that’s a really good fluid [to measure],” Vranes told Outcomes Rocket.
Vranes calls the system’s aptamer-based sensor platform technology the “jewel in the crown.” An aptamer is a short sequence of artificial DNA or RNA that binds a specific target molecule. Nutromics’ aptamer sensor, Vranes said, enables targeting of analytes, unlike continuous glucose monitors (CGMs).
“[CGMs] are limited to metabolites—things that are already in the body like glucose and lactate. We’re not limited to those. We can do a whole range of different targets. And what that gives us is a ‘blue ocean’ opportunity to go in and solve problems in areas that other technologies just can’t solve,” Vranes said.
Nutromics plans to develop multiple aptamer-based sensors that measure a variety of analytes in interstitial fluid, Medtech Insight noted.
Nutromics’ wearable DNA sensor lab-on-a-patch technology (above) enables monitoring of multiple targets, including disease biomarkers and some medications, MobiHealthNews explained. The wearable patch contains microneedles that painlessly access interstitial fluid under the skin. Collected data is wirelessly transmitted to a software application and integrates with consumer health software and provider platforms, according to Nutromics. Medical laboratories could have a role in collecting this data and adding it other test results from patients using the wearable patch. (Photo copyright: Nutromics.)
Initial Launch Will Include Antibiotic Monitoring
Nutromics expects to initially launch therapeutic monitoring of vancomycin, a glycopeptide antibiotic medication used to treat various bacterial infections. The company says 60% of doses for this prescription antibiotic are not within therapeutic range.
“Interstitial fluid originates in the blood and then leaks out of capillaries to bring nutrients to cells in the body’s tissues. Because interstitial fluid is in direct communication with the cells, it should have information about the tissues themselves beyond what can be measured from testing the blood,” said Mark Prausnitz, PhD, Regents Professor and J. Erskine Love Jr. Chair, Georgia Tech School of Chemical and Biomolecular Engineering, in a 2020 news release announcing results of human trials of microneedle-based ISF sampling.
“We sampled interstitial fluid from 21 human participants and identified clinically relevant and sometimes distinct biomarkers in interstitial fluid when compared to companion plasma samples based on mass spectrometry analysis,” the scientists wrote.
Clinical laboratory leaders and pathologists will find it useful to monitor the development of diagnostics for use outside the lab. Nutromics is an example of a company developing wearable health technology that painlessly gathers data for lab tests to be conducted in point-of-care and near-patient settings.
Experts cite high vaccination rates and behavioral changes among at-risk groups, but warn about complacency; clinical laboratories should remain vigilant
In July, Scott Gottlieb, MD, Commissioner of the US Food and Drug Administration (FDA) from May 2017 to April 2019, wrote an op-ed in The New York Times titled, “Monkeypox Is About to Become the Next Public Health Failure.” In it, he wrote, “Our country’s response to monkeypox has been plagued by the same shortcomings we had with COVID-19.” But has it improved? Clinical laboratory leaders and pathology group managers will find it informative to find out what has taken place since Gottlieb made his stark prediction.
The global monkeypox outbreak that emerged last spring appears to have subsided in the US and Europe, though it remains to be seen if the disease can be completely eradicated, according to multiple media reports. As of Oct. 26, 2022, the Centers for Disease Control and Prevention (CDC) reported a 7-day rolling average of 30 cases per day in the US, down from a peak of nearly 440/day in early August.
Cases are also down in cities that earlier reported heavy outbreaks. For example, the New York City Health Department reported a 7-day average of just two cases per day on Oct. 25, compared with 73/day on July 30.
And the San Francisco Department of Public Health announced on Oct. 20 that it would end the city’s public health emergency on monkeypox (MPX) effective on Oct. 31. “MPX cases have slowed to less than one case per day and more than 27,000 San Franciscans are now vaccinated against the virus,” the agency stated in a press release.
“Once again, we caution that a declining outbreak can be the most dangerous outbreak, because it can tempt us to think that the crisis is over and to let down our guard,” said World Health Organization (WHO) Director-General Tedros Adhanom Ghebreyesus, PhD, in an Oct. 12 global press briefing. “That’s not what WHO is doing. We are continuing to work with countries around the world to increase their testing capacity, and to monitor trends in the outbreak.” Clinical laboratories should not assume the outbreak has passed but continue to be vigilant and prepared for increased demand in monkeypox testing. (Photo copyright: ITU Pictures.)
Changing Behavior Lowers Infection Rates
In addition to high vaccination rates, public health experts have attributed the decline to behavioral changes among at-risk groups. “There were really substantial changes among men who have sex [with] men,” infectious disease physician Shira Doron, MD, of Tufts Medical Center in Boston, told ABC News.
On September 2, the CDC published the results of a survey indicating that about half of men who have sex with men “reported reducing their number of sex partners, one-time sexual encounters, and use of dating apps because of the monkeypox outbreak.”
Another likely factor is the disease’s limited transmissibility. “Initially, there was a lot of concern that monkeypox could spread widely at daycares or in schools, but, overall, there has been very little spread among children,” NPR reported.
But citing multiple studies, the NPR story noted “that often there isn’t very much virus in the upper respiratory tract,” where it might spread through talking or coughing. “Instead, the highest levels of virus occur on sores found on the skin and inside the anus.”
These studies, along with earlier research, “explain why monkeypox is spreading almost exclusively through contact during sex, especially anal and oral sex, during the current outbreak,” NPR reported.
Monkeypox Could Mutate, experts say
Despite the promising numbers, public health experts are warning that monkeypox could remain as a long-term threat to public health. According to an article in Nature, “At best, the outbreak might fizzle out over the next few months or years. At worst, the virus could become endemic outside Africa by reaching new animal reservoirs, making it nearly impossible to eradicate.”
In addition to the limited transmissibility of the virus, Nature noted that the outbreak stems from a relatively mild form of the pathogen and is rarely fatal. As of Oct. 28, the CDC reported a total of just six confirmed deaths in the US out of a total of 28,302 confirmed cases since the first infections were reported in May.
It is possible that the virus could mutate into a more contagious form, but Nature noted that monkeypox is a DNA virus, and that they tend to mutate more slowly than RNA viruses such as SARS-CoV-2 and HIV. Nevertheless, University of Alabama at Birmingham School of Medicine bioinformatician Elliot Lefkowitz, PhD, warned that a “worrisome mutation” could arise if the outbreak continues for much longer.
“I have no confidence that all the people who need to be tested are being tested,” she told Nature. She expressed concerns that people could resume risky behavior if they think the danger has passed.
Another question is whether currently available vaccines offer long-lasting protection. And though reported case numbers are down in the US and Europe, they are rising in parts of Africa and South America, Nature noted.
Gottlieb’s Dire Prediction
The decline in new infections followed dire warnings last summer about the possible consequences of the outbreak. In his New York Times op-ed, former Gottlieb criticized the CDC for being slow to test for the virus. He wrote, “[I]f monkeypox gains a permanent foothold in the United States and becomes an endemic virus that joins our circulating repertoire of pathogens, it will be one of the worst public health failures in modern times not only because of the pain and peril of the disease but also because it was so avoidable.”
At the time of his writing, Gottlieb was right to be concerned. On July 29, the CDC reported a seven-day moving average of 390 reported cases per day. According to the federal agency, a reported case “Includes either the positive laboratory test report date, CDC call center reporting date, or case data entry date into CDC’s emergency response common operating platform, DCIPHER.”
Quashing the outbreak, Gottlieb estimated, would have required about 15,000 tests per week among people presenting symptoms resembling monkeypox. But between mid-May and the end of June, he noted, the CDC had tested only about 2,000 samples, according to the federal agency’s July 15 Morbidity and Mortality Weekly Report (MMWR).
As a remedy, Gottlieb called on the Biden administration to re-focus the CDC’s efforts more on disease control “by transferring some of its disease prevention work to other agencies,” including the FDA.
There was cautious optimism about the ability of Canada’s medical laboratories to innovate in ways that advance patient care, while recognizing the ongoing challenge of adequate lab staffing and budget constraints
TORONTO, ONTARIO, CANADA—This week, more than 150 leaders representing clinical laboratories, anatomic pathology labs, in vitro diagnostics (IVD) companies, and provincial health officials gathered for the first “Canadian Diagnostic Executive Forum” (CDEF) since 2019. It would be apt to say that the speakers objectively addressed all the good, the bad, and the ugly of Canada’s healthcare system and its utilization of medical laboratory testing services.
Over the two days of the conference, speakers and attendees alike concurred that the two biggest issues confronting clinical laboratories in Canada were inadequate staffing and an unpredictable supply chain. There also was agreement that the steady increase in prices, fueled by inflation, is exacerbating continuing cost increases in both lab salaries and lab supplies.
Canada’s Health System Has Several Unique Attributes
Canada’s healthcare system has two unique attributes that differentiate it from those of other nations. First, healthcare is mandated by a federal law, but generally each of Canada’s 13 provinces and territories operates its own health plan. Thus, the health system in each province and territory may cover a different mix of clinical services, therapeutic drugs, and medical procedures. The federal government typically pays 40% of a province’s health costs and the province funds the balance.
Second, it is a fact that 90% of the Canadian population lives within 150 miles of the United States border. Yet there are provinces with large populations that have geography that ranges from the US border to north of the Arctic Circle. These provinces have a major challenge to ensure equal access to healthcare regardless of where their citizens live.
During day one of the conference, several presentations addressed innovations that supported those labs’ efforts to deliver value and timely insights during the COVID-19 pandemic. For example, a lab team in Alberta launched a research study involving SARS-CoV-2 virus surveillance from the earliest days of the outbreak. This study was presented by Mathew Diggle, PhD, FRCPath, Associate Professor and Program Lead for the Public Health Laboratory (ProvLab) Medical-Scientific Staff at Alberta Precision Laboratories in Edmonton, Alberta.
Study Designed to Identify Coinfections with COVID-19
While performing tens of thousands of COVID-19 tests from the onset of the pandemic, and identifying the emergence of variants, the ProvLab team also tracked co-infection involving other respiratory viruses.
“This is one of the largest eCoV [endemic coronavirus] studies performed during the COVID-19 pandemic,” Diggle said. “This broad testing approach helped to address a pivotal diagnostic gap amidst the emergence of a novel pathogen: cross-reactivity with other human coronaviruses that can cause similar clinical presentations. This broad surveillance enabled an investigation of cross-reactivity of a novel pathogen with other respiratory pathogens that can cause similar clinical presentations.
“Fewer than 0.01% of specimens tested positive for both SARS-CoV-2 and an eCoV,” he explained. “This suggested no significant cross-reactivity between SARS-CoV-2 and eCoVs on either test and provided a SARS-CoV-2 negative predictive value over 99% from an eCoV-positive specimen … The data we collected was highly compelling and the conclusion was that there was no coinfection.”
Chairing the two days of presentations at this weeks’ Canadian Diagnostic Executive Forum was Kevin D. Orr (above), Senior Director of Hospital Business at In-Common Laboratories. He also served on the program for this national conference serving clinical laboratories, anatomic pathology labs, and in vitro diagnostics (IVD) companies throughout Canada. This was the first gathering of this conference since 2019. Attendees were enthusiastic about the future of medical laboratory services in Canada, despite lab staffing shortages and rising costs due to inflation. (Photo copyright The Dark Report.)
Clinical Laboratory Regionalization in Quebec
One of Canada’s largest projects to regionalize and harmonize clinical laboratory services is proceeding in Quebec. Leading this effort is Ralph Dadoun, PhD, Project Director for OPTILAB Montreal, which is part of the Ministry of Health and Social Services in Quebec. The ambitious goal for this project is to move the 123 clinical laboratories within the province into 12 clusters. Initial planning was begun in 2013, so this project is in its ninth year of implementation.
During his presentation, Dadoun explained that the work underway in the 12 clusters involves creating common factors in these categories:
Implementation consistent with and respecting ISO-15189 criteria.
Another notable achievement in Quebec is the progress made to implement a common laboratory information system (LIS) within all 12 clusters. The first three laboratory clusters are undergoing their LIS conversions to the same platform during the next 180 days. The expectation is that use of a common LIS across all clinical laboratory sites in Quebec will unlock benefits in a wide spectrum of lab activities and work processes.
The 2022 CDEF featured speakers from most of the provinces. The common themes in these presentations were the shortage of lab personnel across all technical positions, disruptions in lab supplies, and the need to support the usual spectrum of lab testing services even as lab budgets are getting squeezed.
At the same time, there was plenty of optimism. Presentations involving adoption of digital pathology, advances in early disease detection made possible by new diagnostic technologies, and the expansion of precision medicine showed that clinical laboratories in Canada are gaining tools that will allow them to contribute to better patient care while helping reduce the downstream costs of care.
The Canadian Diagnostics Executive Forum is organized by a team from In-Common Laboratories in North York, Toronto, Ontario. Founded in 1967, it is a private, not-for-profit company that works with public hospitals and laboratory medicine providers. Information about CDEF can be found at its website, where several of this year’s presentations will be available for viewing.
Clinical laboratories and pathology groups can benefit from knowing how genetic testing is being used for other than medical testing purposes
It is useful for pathologists and clinical laboratory managers to be aware of the different ways genetic testing and DNA sequencing is being conducted. That’s because a genetic test for one purpose—such as identifying an individual’s relatives and connection to a region or a cultural group—might generate data that could become part of that person’s medical care.
Thus, an ongoing genetic study in South Africa highlighting the issue of so-called “helicopter research” will be informative for Dark Daily’s readers.
Also known as “neo-colonial science,” helicopter research describes when scientists from wealthy countries perform research in lower-income countries in ways that may be deemed exploitative or disrespectful to local populations.
“Scientists conduct helicopter research when they collect data from developing countries and marginalized communities with little to no involvement from local researchers and community members,” wrote researchers Dana Al-Hindi, and Brenna Henn PhD, in an article for The Conversation. “Helicopter research also occurs when researchers take data out of the country they collected it from without either providing benefit to or sharing the results with the community.”
In an article for The Conversation, UC Davis researchers Brenna Henn, PhD (left), and Dana Al-Hindi (right), wrote, “While we have learned a great deal from these communities, we have been unable to fulfill a common request: providing them their individual genetic ancestry result. In our attempts to overcome the logistical challenges of providing this information, we’ve grappled with the common question of how to ensure an equitable balance of benefits between researchers and the community they study. What we’ve found is that there is no easy answer.” Clinical laboratories will want to remember the term “Helicopter Research” in relation to these types of studies. (Photos copyright: UC Davis/The Conversation.)
The South Africa study, conducted over the past 12 years, aims to use genetic data “to help unravel the history and prehistory of southern Africans and their relationship to populations around the world,” the authors wrote in The Conversation.
The researchers have been using the genetic data to trace the ancestry of indigenous Khoekhoe and San peoples in South Africa as well as other populations that self-identify as “Colored.”
“Early European colonizers initially used this term to refer to indigenous Khoekhoe and San groups long before it was codified by the apartheid government in 1948,” the researchers wrote. “It persists today as an ethnic category, broadly encompassing Khoe-San groups, various East African, Indian, and Southeast Asian populations brought by the slave trade, and people of mixed ancestry.”
Challenges Sharing Genetic Data with Study Participants
Participants in the study have asked to see their personal genetic ancestry results, but the researchers noted several challenges, including local restrictions and the difficulty of presenting complex data in “an accessible and digestible form.” So, the researchers partnered with consumer-focused genetic testing company 23andMe (NASDAQ:ME).
23andMe provided additional funding for the research, assisted the researchers in community outreach, and “expanded our ability to ‘capacity-build’—that is, to make sure that the knowledge and skills we gain are shared with local institutions,” Henn and Al-Hindi wrote in The Conversation. They added that they are still dealing with questions about whether their efforts to provide equitable benefits are sufficient.
“Our research team, local collaborators, and 23andMe are all concerned about how to best address the risk of helicopter research, coercion, and any unknown risks that may arise from disclosing personal ancestry results,” they wrote.
Cape Town Statement on Fostering Research Integrity
The issue of helicopter research was a major focus at the 7th World Conference on Research Integrity (WCRI), held May 29-June 1 in Cape Town, South Africa. It was the first WCRI to be held in Africa and adopted the theme “Fostering Research Integrity in an Unequal World.”
One outcome of the conference will be an effort to produce what is known as the Cape Town Statement on Fostering Research Integrity. The statement will “highlight the importance of fairness in international research partnerships,” noted Research Professional News.
The statement “compels institutions and researchers alike to act on their responsibilities to promote equity, diversity, and fairness in research partnerships,” conference speaker Retha Visagie, DCur, told the publication. She leads the Research Integrity Office at the University of South Africa.
Conference co-chair Lyn Horn, PhD, director the Office of Research Integrity at the University of Cape Town, told the publication that it could take up to a year before a draft of the statement is ready for comment.
One overarching goal will be to “demonstrate why inequity and unfair practices in research collaborations and contexts is a research integrity (RI) matter,” the authors wrote. “Second it must identify some key values or principles and action guides that will address the issue of equity and fairness in research within the context of the complete research life cycle from research agenda setting and call to proposal development, through grant application, allocation and management of funding, data production, analysis, management and sharing, to outputs, translation, and evaluation.”
Another conference speaker, Francis Kombe PhD, told attendees the statement will offer guidance specifically to institutions such as universities, journals, and funding organizations, the journal Science reported. That stands in contrast to earlier statements on helicopter research, which were geared more toward individuals and small groups.
How any of this will impact clinical laboratories and pathology groups remains unclear. Nevertheless, it is worthwhile knowing how gene sequencing is being used by researchers for purposes other than to guide diagnoses and treatment of patients.