‘Aerosol and Surface Stability’ study shows that the virus can remain infectious in aerosol form for hours and on surfaces for days
By now, clinical laboratory workers, microbiologists, and phlebotomists should be fully aware of the potential for transmission on surfaces of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the novel coronavirus that causes Coronavirus disease 2019 (COVID-19). The CDC’s latest Morbidity and Mortality Weekly Report revealed that the coronavirus “was identified on a variety of surfaces in cabins of both symptomatic and asymptomatic infected passengers up to 17 days after cabins were vacated on the Diamond Princess, but before disinfection procedures had been conducted,” the New York Post reported. That means the virus can survive on surfaces significantly longer than CDC previously believed.
But did you know a recent study published in the New England Journal of Medicine (NEJM) found that SARS-CoV-2 can also survive in the air for many hours, potentially allowing aerosolized transmission of the virus as well?
The NEJM study also showed that the stability of SARS-CoV-2 to survive on surfaces and in aerosolized form mirrors the stability of the SARS coronavirus (SARS-CoV) that caused the severe acute respiratory syndrome (SARS) outbreak of 2003.
This is critically important information for clinical laboratory professionals in open-space laboratories, phlebotomists collecting medical laboratory specimens, and frontline healthcare workers who come in direct contact with potentially infected patients. They should be aware of every potential COVID-19 transmission pathway.
Hospital infection control teams will be particularly
interested in the possibility of airborne transmission, as they often visit
infected patients and are tasked with tracking both the source of the infection
as well as individuals who may be exposed to sick patients.
The NEJM study, titled “Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1” was conducted by scientists at the National Institute of Allergy and Infectious Diseases (NIAID), an agency of the US Department of Health and Human Services (HHS), the Centers for Disease Control and Prevention (CDC), Princeton University, and University of California, Los Angeles. The researchers concluded that SARS-CoV-2 remains in the air “up to three hours post aerosolization.”
FREE Webinar | What Hospital and Health System Labs Need to Know About Operational Support and Logistics During the COVID-19 Outbreak Wednesday, April 1, 2020 @ 1PM EDT — Register now
They also found the virus was detectable for up to four
hours on copper and up to 24 hours on cardboard. The scientists concluded SARS-CoV-2
can remain on plastic and stainless-steel surfaces for two to three days,
though the amount of the virus on surfaces decreases over time.
“Our results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days,” the study states. “These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events, and they provide information for pandemic mitigation efforts.”
But Can COVID-19 Be Caught Through Air?
However, as noted in Wired, the researchers did not clearly state that infected persons can spread COVID-19 to others in the same airspace. Some experts have pointed out that there is a difference between a virus that can exist as an aerosol—defined as a liquid or solid suspended in gas under only limited conditions—and the measles virus, for example, which the CDC estimates “can live for up two hours in an airspace where the infected person has coughed or sneezed.”
“While the researchers tested how long the virus can survive
in aerosols suspended in the air, they didn’t actually sample the air around
infected people,” Wired noted. “Instead, they put the virus into a
nebulizer and puffed it into a rotating drum to keep it airborne. Then, they
tested how long the virus could survive in the air inside the drum.”
Neeltje van Doremalen, PhD, a research fellow at National Institutes of Health (NIH) and researcher at the NIAID’s Rocky Mountain Laboratories in Hamilton, Montana, who coauthored the NEJM study, cautioned against an overreaction to this latest research. On Twitter she wrote, “Important: we experimentally generated [COVID-19] aerosols and kept them afloat in a drum. This is not evidence of aerosol transmission.”
Nonetheless, the World House Organization (WHO) took note of the study’s findings and on March 16, 2020, announced it was considering “airborne precautions” for healthcare workers, CNBC reported in its coverage of a virtual press conference on March 16, 2020, led by Maria Van Kerkhove, MS, PhD, Technical Lead for WHO’s Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Task Force.
Van Kerkhove emphasized that health officials were
monitoring results from other studies investigating how environmental
conditions such as humidity, temperature, and ultraviolet light affect
the disease and its ability to live on different surfaces.
“When you do an aerosol-generating procedure like in a medical care facility, you have the possibility to what we call aerosolize these particles, which means they can stay in the air a little bit longer,” said Maria Van Kerkhove, MS, PhD (above), Technical Lead for WHO’s Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Task Force during a virtual press conference, CNBC reported. “It’s very important that healthcare workers take additional precautions when they’re working on patients and doing these procedures,” she added. [Photo copyright: World Health Organization/YouTube.)
To Be or Not to Be an Airborne Pathogen
Stanley Perlman, MD, PhD, Professor of Microbiology and Immunology at the University of Iowa, believes aerosol transmission ultimately will be found not to play a large role in COVID-19 transmission.
“I think the answer will be, aerosolization occurs rarely, but not never,” Perlman told STAT. “You have to distinguish between what’s possible and what’s actually happening.”
In an NEJM editorial, Perlman expanded on those thoughts. “Although specific anti-coronaviral therapies are still in development, we now know much more about how to control such infections in the community and hospitals, which should alleviate some of this fear,” he wrote. “Transmission of [SARS-CoV-2] probably occurs by means of large droplets and contact and less so by means of aerosols and fomites, on the basis of our experience with SARS-CoV and MERS-CoV. Public health measures, including quarantining in the community as well as timely diagnosis and strict adherence to universal precautions in healthcare settings, were critical in controlling SARS and MERS. Institution of similar measures will be important and, it is hoped, successful in reducing the transmission of [SARS-CoV-2].”
An NIH news release announcing the SARS-CoV-2 stability study highlighted two additional observations:
“If the viability of the two coronaviruses is
similar, why is SARS-CoV-2 resulting in more cases? Emerging evidence suggest
that people infected with SARS-CoV-2 might be spreading virus without
recognizing, or prior to recognizing, symptoms. That would make disease control
measures that were effective against SARS-CoV-1 less effective against its
successor.
In contrast to SARS-CoV-1, most secondary cases
of virus transmission of SARS-CoV-2 appear to be occurring in community
settings rather than healthcare settings. However, healthcare settings are also
vulnerable to the introduction and spread of SARS-CoV-2, and the stability of
SARS-CoV-2 in aerosols and on surfaces likely contributes to transmission of
the virus in healthcare settings.”
Clearly, the scientific community has not agreed on
aerosolization as a definite source of infection. Nevertheless, clinical
laboratory workers in settings where potential exposure to SARS-CoV-2 exists
should take precautions against airborne transmission until scientists can
definitively determine whether this latest coronavirus can be acquired through
the airborne transmission.
Scientist described the speed at which SARS-CoV-2’s full sequence of genetic material was made public as ‘unprecedented’ and medical labs are rushing to validate tests for this new disease
In the United States, headlines scream about the lack of
testing for the novel Coronavirus
disease 2019 (COVID-19). News reporters ask daily why it is taking so long
for the US healthcare system to begin testing large numbers of patients for
SARS-CoV-2, the virus that causes COVID-19. Yet, pathologists
and clinical
laboratory scientists know that new technologies for gene sequencing
and diagnostic testing are helping public health laboratories bring up tests
for a previously unknown new disease faster than at any time in the past.
At the center of the effort to develop accurate new assays
to detect SARS-CoV-2 and help diagnose cases of the COVID-19 disease are medical laboratory
scientists working in public health
laboratories, in academic medical centers, and in research labs across the
United States. Their collective efforts are producing results on a faster
timeline than in any previous discovery of a new infectious disease.
For example, during the severe
acute respiratory syndrome (SARS) outbreak in 2003, five months passed
between the first recognized case of the disease in China and when a team of
Canadian scientists cracked the genetic code of the virus, which was needed to
definitively diagnose SARS patients, ABC
News reported.
In contrast, Chinese scientists sequenced this year’s
coronavirus (originally named 2019-nCoV) and made it available on Jan. 10,
2020, just weeks after public health officials in Wuhan, China, reported the
first case of pneumonia from the unknown virus to the World Health Organization
(WHO), STAT
reported.
Increases in sequencing speed enabled biotechnology
companies to quickly create synthetic copies of the virus needed for research. Roughly
two weeks later, scientists completed sequencing nearly two dozen more samples
from different patients diagnosed with COVID-19.
Molecular biologist Kristian Andersen, PhD (above right, with graduate students who helped sequence the Zika virus), an Associate Professor in the Department of Immunology and Microbiology at Scripps Research in California and Director of Infectious Disease Genomics at Scripps’ Translational Research Institute, worked on the team that sequenced the Ebola genome during the 2014 outbreak. He told STAT that the pace of sequencing of the SARS-CoV-2 coronavirus is “unprecedented.” (Photo copyright: Scripps Research.)
Lower Sequencing Costs Speed COVID-19 Diagnostics Research
Additionally, a significant decline in the cost of genetic synthesis is playing an equally important role in helping scientists slow the spread of COVID-19.In its coverage of the SARS-CoV-2 outbreak, The Verge noted that two decades ago “it cost $10 to create a synthetic copy of one single nucleotide, the building block of genetic material. Now, it’s under 10 cents.” Since the coronavirus gene is about 30,000 nucleotides long, that price reduction is significant.
Faster sequencing and cheaper access to synthetic copies is
contributing to the development of diagnostic tests for COVID-19, an important
step in slowing the disease.
“This continues to be an evolving situation and the ability to distribute this diagnostic test to qualified medical laboratories is a critical step forward in protecting the public health,” FDA Commissioner Stephen M. Hahn, MD, said in an FDA statement.
However, the Washington Post soon reported that the government-created coronavirus test kits contained a “faulty component,” which as of February 25 had limited testing in the US to only 426 people, not including passengers who returned to the US on evacuation flights. The Post noted that the nation’s public health laboratories took “the unusual step of appealing to the FDA for permission to develop and use their own [laboratory-developed] tests” for the coronavirus.
“This is an extraordinary request, but this is an extraordinary time,” Scott Becker,
Parallel efforts to develop and validate tests for COVID-19
are happening at the clinical laboratories of academic medical centers and in a
number of commercial laboratory companies. As these labs show their tests meet
FDA criteria, they become available for use by physicians and other healthcare
providers.
Dark Daily’s sister publication, The Dark Report just published an intelligence briefing about the urgent effort at the clinical laboratory of Northwell Health to develop both a manual COVID-19 assay and a test that can be run on the automated analyzers already in use in the labs at Northwell Health’s 23 hospitals. (See TDR, “Northwell Lab Team Validates COVID-19 Test on Fast Timeline,” March 9, 2020.)
Following the FDA’s March 13 EUA for the Thermo Fisher test,
Hahn said, “We have been engaging with test developers and encouraging them to
come to the FDA and work with us. Since the beginning of this outbreak, more
than 80 test developers have sought our assistance with development and
validation of tests they plan to bring through the Emergency Use Authorization
process. Additionally,” he continued, “more than 30 laboratories have notified
us they are testing or intend to begin testing soon under our new policy for
laboratory-developed tests for this emergency. The number of products in the
pipeline reflects the significant role diagnostics play in this outbreak and
the large number of organizations we are working with to bring tests to
market.”
Pharma Company Uses Sequencing Data to Develop Vaccine in
Record Time
Even as clinical laboratories work to develop and validate diagnostic tests for COVID-19, drug manufacturers are moving rapidly to develop a COVID-19 vaccine. In February, Massachusetts-based biotechnology company Moderna Therapeutics (NASDAQ:MRNA) announced it had shipped the first vials of its potential coronavirus vaccine (mRNA-1273) to the National Institute of Allergy and Infectious Disease (NIAID) for use in a Phase One clinical trial.
“The collaboration across Moderna, with NIAID, and with CEPI [Coalition for Epidemic Preparedness Innovations] has allowed us to deliver a clinical batch in 42 days from sequence identification,” Juan Andres, Chief Technical Operations and Quality Officer at Moderna, stated in a news release.
The Wall Street Journal (WSJ) reported that NIAID expects to start a clinical trial of about 20 to 25 healthy volunteers by the end of April, with results available as early as July or August.
“Going into a Phase One trial within three months of getting the sequence is unquestionably the world indoor record,” NIAID Director Anthony Fauci, MD, told the WSJ. “Nothing has ever gone that fast.”
There are no guarantees that Moderna’s coronavirus vaccine
will work. Furthermore, it will require further studies and regulatory
clearances that could delay widespread distribution until next year.
Nonetheless, Fauci told the WSJ, “The only way you
can completely suppress an emerging infectious disease is with a vaccine. If
you want to really get it quickly, you’re using technologies that are not as
time-honored as the standard, what I call antiquated, way of doing it.”
In many ways, the news media has overlooked all the important
differences in how fast useful diagnostic and therapeutic solutions for
COVID-19 are moving from research settings into clinical use, when compared to
early episodes of the emergence of a new infectious disease, such as SARS in
2003.
The story the American public has yet to learn is how new
genetic sequencing technologies, improved diagnostic methods, and enhanced
informatics capabilities are being used by researchers, pathologists, and
clinical laboratory professionals to understand this new disease and give
healthcare professionals the tools they need to diagnose, treat, and monitor
patients with COVID-19.
Strategists agree that big tech is disrupting healthcare,
so how will clinical laboratories and anatomic pathology groups serve virtual
healthcare customers?
Visionary XPRIZE founder Peter Diamandis, MD, sees big tech as “the doctor of the future.” In an interview with Fast Company promoting his new book, “The Future Is Faster Than You Think,” Diamandis, who is the Executive Chairman of the XPRIZE Foundation, said that the healthcare industry is “phenomenally broken” and that Apple, Amazon, and Google could do “a thousandfold” better job.
Diamandis, who also founded Singularity University, a global learning and innovation community that uses exponential technologies to tackle worldwide challenges, according to its website, said, “We’re going to see Apple and Amazon and Google and all the data-driven companies that are in our homes right now become our healthcare providers.”
If this prediction becomes reality, it will bring significant changes in the traditional ways that consumers and patients have selected providers and access healthcare services. In turn, this will require all clinical laboratories and pathology groups to develop business strategies in response to these developments.
Amazon Arrives in Healthcare Markets
Several widely-publicized business initiatives by Amazon, Google, and Apple substantiate these predictions. According to an Amazon blog, healthcare insurers, providers, and pharmacy benefit managers are already operating HIPAA-eligible Amazon Alexa for:
Alexa also enables HIPAA-compliant blood glucose updates as part of the Livongo for Diabetes program. “Our members now have the ability to hear their last blood glucose check by simply asking Alexa,” said Jennifer Schneider, MD, President of Livongo, a digital health company, in a news release.
And Cigna’s “Answers By Cigna” Alexa “skill” gives members who install the option responses to 150 commonly asked health insurance questions, explained a Cigna news release.
“Google plans to disrupt healthcare and use data and artificial intelligence,” Toby Cosgrove, Executive Advisor to the Google Cloud team and former Cleveland Clinic President, told B2B information platform PYMNTs.com.
PYMNTs speculated that Google, which recently acquired Fitbit, could be aiming at connecting consumers’ Fitbit fitness watch data with their electronic health records (EHRs).
“Ultimately what’s best is human and AI collaboratively,” Peter Diamandis, MD, founder of XPRIZE Foundation and Singularity University told Fast Company. “But I think for reading x-rays, MRIs, CT scans, genome data, and so forth, that once we put human ego aside, machine learning is a much better way to do that.” (Photo copyright: SALT.)
Apple Works with Insurers, Integrating Health Data
The Apple Watch health app also enables people to access medical laboratory test results and vaccination records, and “sync up” information with some hospitals, Business Insider explained.
Virtual Care, a Payer Priority: Survey
Should healthcare providers feel threatened by the tech giants? Not necessarily. However, employers and payers surveyed by the National Business Group on Health (NBGH), an employer advocacy organization, said they want to see more virtual care solutions, a news release stated.
“One of the challenges employers face in managing their healthcare costs is that healthcare is delivered locally, and change is not scalable. It’s a market-by-market effort,” said Brian Marcotte, President and CEO of the NBGH, in the news release. “Employers are turning to market-specific solutions to drive meaningful changes in the healthcare delivery system.
“Virtual care solutions bring healthcare to the consumer
rather than the consumer to healthcare,” Marcotte continue. “They continue to
gain momentum as employers seek different ways to deliver cost effective,
quality healthcare while improving access and the consumer experience.”
“In AI, there are three trends to watch,” said health strategist Ted Schwab (above) while speaking at the 2019 Executive War College. “The first major AI trend will affect clinical laboratories and pathologists. It involves how diagnosis will be done on the Internet and via telehealth. The second AI trend is care delivery, such as what we’ve seen with Amazon’s Alexa—you should know that Amazon’s business strategy is to disrupt healthcare. And the third AI trend involves biological engineering,” he concluded. (Photo copyright: Dark Daily.)
“If you use Google in the United States to check symptoms,
you’ll get five-million to 11-million hits,” Schwab told The Dark Report.
“Clearly, there’s plenty of talk about symptom checkers, and if you go online
now, you’ll find 350 different electronic applications that will give you
medical advice—meaning you’ll get a diagnosis over the internet. These
applications are winding their way somewhere through the regulatory process.
“The FDA just released a report saying it plans to regulate
internet doctors, not telehealth doctors and not virtual doctors,” he
continued. “Instead, they’re going to regulate machines. This news is
significant because, today, within an hour of receiving emergency care, 45% of
Americans have googled their condition, so the cat is out of the bag as it
pertains to us going online for our medical care.”
Be Proactive, Not Reactive, Health Leaders Say
Healthcare leaders need to work on improving access to primary care, instead of becoming defensive or reactive to tech companies, several healthcare CEOs told Becker’s Hospital Review.
Clinical laboratory leaders are advised to keep an eye on
these virtual healthcare trends and be open to assisting doctors engaged in
telehealth services and online diagnostic activities.
By offering DTC preventative gene sequencing, hospital leaders
hope to help physicians better predict cancer risk and provide more accurate
diagnoses
Two Boston health systems, Brigham and Women’s Hospital and Massachusetts General Hospital (MGH), are the latest to open preventative gene sequencing clinics and compete with consumer gene sequencing companies, such as 23andMe and Ancestry, as well as with other hospital systems that already provide similar services.
This may provide opportunities for clinical laboratories. However, some experts are concerned that genetic sequencing may not be equally available to patients of all socioeconomic classes. Nor is it clear how health systems plan to pay for the equipment and services, since health insurance companies continue to deny coverage for “elective” gene sequencing, or when there is not a “clear medical reason for it, such as for people with a long family history of cancer,” notes STAT.
Therefore, not everyone is convinced of the value of gene sequencing to either patients or hospitals, even though advocates tout gene sequencing as a key element of precision medicine.
Is Preventative Genetic Sequencing Ready for the Masses?
Brigham’s Preventive Genomics Clinic offers comprehensive DNA sequencing, interpretation, and risk reporting to both adults and children. And MGH “plans to launch its own clinic for adults that will offer elective sequencing at a similar price range as the Brigham,” STAT reported.
The Brigham and MGH already offer similar gene sequencing services as other large health systems, such as Mayo Clinic and University of California San Francisco (UCSF), which are primarily used for research and cancer diagnoses and range in price depending on the depth of the scan, interpretation of the results, and storage options.
However, some experts question whether offering the
technology to consumers for preventative purposes will benefit anyone other
than a small percentage of patients.
“It’s clearly not been demonstrated to be cost-effective to promote this on a societal basis,” Robert Green, MD, MPH, medical geneticist at Brigham and Women’s Hospital, and professor of genetics at Harvard, told STAT. “The question that’s hard to answer is whether there are long-term benefits that justify those healthcare costs—whether the sequencing itself, the physician visit, and any downstream testing that’s stimulated will be justified by the situations where you can find and prevent disease.”
Additionally, large medical centers typically charge more
for genomic scans than consumer companies such as 23andMe and Ancestry. Hospital-based
sequencing may be out of the reach of many consumers, and this concerns some
experts.
“The idea that genomic sequencing is only going to be
accessible by wealthy, well-educated patrons who can pay out of pocket is
anathema to the goals of the publicly funded Human Genome Project,” Jonathan
Berg, MD, PhD, Genetics Professor, University of North Carolina at Chapel
Hill, told Scientific
American.
And, according to the American Journal of Managed Care, “It’s estimated that by 2021, 100 million people will have used a direct-to-consumer (DTC) genetic test. As these tests continue to gain popularity, there is a need for educating consumers on their DTC testing results and validating these results with confirmatory testing in a medical-grade laboratory.”
This is why it’s critical that clinical laboratories and
anatomic pathology groups have a genetic testing and gene sequencing strategy,
as Dark
Daily reported.
David Bick, MD, Chief Medical Officer at the HudsonAlpha Institute for Biotechnology and Medical Director of the Smith Family Clinic for Genomic Medicine, told Scientific American, “there’s just more and more interest from patients and families not only because of 23andMe and the like, but because there’s just this understanding that if you can find out information about your health before you become sick, then really our opportunity as physicians to do something to help you is much greater.”
In an article he penned for Medium, Robert Green, MD, MPH (shown above counseling a patient), medical geneticist at Brigham and Women’s Hospital and professor of genetics at Harvard, wrote, “The ultimate aim of our Genomes2People Research Program is to contribute to the transformation of medicine from reactive to proactive, from treatment-oriented to preventive. We are trying to help build the evidence base that will justify societal decision to make these technologies and services accessible to anyone who wants them, regardless of means, education or race and ethnicity.” (Photo copyright: Wall Street Journal.)
Is Preventative Genomics Elitist?
As large medical centers penetrate the consumer genetic
testing market some experts express concerns. In a paper he wrote for Medium,
titled, “Is Preventive Genomics Elitist?” Green asked, “Is a service like this
further widening the inequities in our healthcare system?”
Green reported that while building the Preventive Genomics Clinic at Brigham, “we … struggled with the reality that there is no health insurance coverage for preventive genomic testing, and our patients must therefore pay out of pocket. This is a troubling feature for a clinic at Brigham and Women’s Hospital, which is known for its ties to communities in Boston with diverse ethnic and socioeconomic backgrounds.”
Most of Brigham’s early genetics patients would likely be “well-off,
well-educated, and largely white,” Green wrote. “This represents the profile of
typical early adopters in genetic medicine, and in technology writ large. It
does not, however, represent the Clinic’s ultimate target audience.”
More Data for Clinical Laboratories
Nevertheless, preventive genomics programs offered by large
health systems will likely grow as primary care doctors and others see evidence
of value.
Therefore, medical laboratories that process genetic
sequencing data may soon be working with growing data sets as more people reach
out to healthcare systems for comprehensive DNA sequencing and reporting.
Medical laboratory leaders need to take opportunities to stay abreast of government and payer activity, particularly as payer audits become tougher, say legal experts
Even compliant clinical laboratories and anatomic pathology groups are reporting tougher audits and closer scrutiny of the medical lab test claims they submit for payment. This is an unwelcome development at a time when falling lab test prices, narrowing networks, and more prior-authorization requirements are already making it tough for labs to get paid for the tests they perform.
Clinical laboratory leaders can expect continued scrutiny of
their labs’ operations and financials as government and commercial payers move
forward with invasive programs and policies designed to ferret out fraud and
bad actors.
Federal officials are focusing their investigations on healthcare providers who mismanage or inappropriately use Medicare and Medicaid programs, while commercial payers are closely scrutinizing areas such as genetic testing prior authorization, say healthcare attorneys with Cleveland Ohio-based McDonald Hopkins, LLC.
“The government is looking at fraud, waste, and abuse, and all the different ways they come into play,” said Elizabeth Sullivan, Esq., a Member and Co-Chair of the firm’s Healthcare Practice Group, in an exclusive interview with Dark Daily. “We anticipate there will be more enforcement [of fraud and abuse laws] centered around different issues—anything that can be a false claim.”
Specifically, government officials will key in on violations of the Stark Law, EKRA (the Eliminating Kickback in Recovery Act of 2018), and other anti-kickback statutes and laws, Sullivan said.
“And clinical laboratories, by virtue of the type of
services and service arrangements they offer, will continue to be a target,” she
added.
Medical laboratory leaders also must prepare for aggressive tactics by insurance companies. “On the commercial side, payers are getting more aggressive and more willing to take things to ligation if they don’t get what they want and don’t see a settlement that satisfies their concerns over issues,” said Courtney Tito, Esq., also a Member with McDonald Hopkins, in the Dark Daily interview.
Current Investigations Likely to Impact Clinical
Laboratories
Sullivan and Tito advise clinical labs to be aware of the
following issues being fast-tracked by government and private payers:
EKRA (Eliminating Kickback in Recovery Act of 2018).
The TPE audits program, according to CMS, is focused on providers with high claim error rates or unusual billing practices. During a TPE, a Medicare administrative contractor (MAC) works with a provider to identify and correct errors.
“The TPE audits are real hot right now. We are seeing a lot
of clients go through this,” Tito said.
Feds Crack Down on Genetic Testing Fraud Schemes
Genetic testing is another “hot button” issue for
enforcement by government and private payers, Sullivan and Tito state.
CMS is taking action against testing companies and
practitioners who submitted more than $1.7 billion in claims to Medicare, the
statement added.
The scheme involved medical laboratories conducting the genetic tests, McDonald Hopkins noted in an Alert about the DOJ investigation. The alert described how the scam operated:
Scam recruiters approached Medicare
beneficiaries at health fairs;
In exchange for a DNA sample (in the form of a
cheek swab) and a copy of the victim’s driver’s license, the “representative”
offered a free genetic test;
Representatives allegedly asked the seniors’
doctors to sign-off on test orders. If the seniors’ physicians refused, the
scammers offered kickbacks to doctors already in their group;
Clinical laboratories that performed the tests
were reimbursed from Medicare and, allegedly, shared the proceeds with the scammers.
“Although these opportunities may seem appealing as an
additional revenue source for providers, it is always important to review the
regulatory requirements as well as the potential anti-kickback statute and
Stark implications for any new arrangement,” Sullivan and Tito wrote in the McDonald
Hopkins Alert article.
Criminal Behavior in CMS Programs
Effective Nov. 4, 2019, CMS issued a final rule intended to stop fraud before it happens by keeping “unscrupulous providers” out of the federal healthcare programs in the first place, states a CMS news release.
Additionally, EKRA establishes “criminal penalties for unlawful payments for referrals to recovery homes and clinical treatment facilities,” Dark Daily recently reported. However, as the e-briefing points out, it is unclear whether EKRA applies to clinical laboratories.
Nevertheless, Sullivan points out that, “Even without EKRA,
the anti-kickback statute applies to any arrangement between individuals. And,
it is good to have an attorney look at those arrangements. What your sales reps
are doing in the field, how they are communicating, and their practices warrant
oversight. EKRA just makes it all the more important.”
During an upcoming Dark Daily webinar, attorneys Elizabeth Sullivan (left) and Courtney Tito (right) of McDonald Hopkins, LLC, will advise clinical laboratory leaders and financial staff on how to prepare for future aggressive payer audits, rigid enforcement of fraud and abuse laws, and more. (Photos copyright: LinkedIn/Dark Daily.)
Clinical Laboratories Need Compliance Plan, Focus on
Payers
With so many legal requirements and payer programs, Sullivan
advises medical labs and pathology group practices to work with resources they
trust and to have a compliance plan at the ready. “Have resources in place,
including but not limited to a compliance officer, a committee, and someone who
is spending time on these issues. Monitoring government enforcement and payer
activity is the most critical,” she said.
To assist labs in remaining fully informed on these critical
compliance topics, and the federal government’s latest legislation to combat
fraud, Dark Daily is offering a webinar on November 20th at 1pm Eastern
time. Sullivan and Tito will offer their insights and advice on how labs should
prepare for CMS’ battle to reign in fraud and commercial payers’ increased
scrutiny into prior authorizations.
Clinical laboratory leaders, compliance officers, and
finance staff will benefit greatly from this crucial resource.
How medical laboratories can show value through process improvement methods and analytics will be among many key topics presented at the upcoming Lab Quality Confab conference
Quality management is the clinical laboratory’s best strategy for surviving and thriving in this era of shrinking lab budgets, PAMA price cuts, and value-based payment. In fact, the actions laboratories take in the next few months will set the course for their path to clinical success and financial sustainability in 2020 and beyond.
But how do medical laboratory managers and pathologists address these challenges while demonstrating their lab’s value? One way is through process improvement methods and another is through the use of analytics.
Clinical pathologists, hospital lab leaders, and independent lab executives have told Dark Daily that the trends demanding their focus include:
Ensuring needed resources and appropriate tests,
while the lab is scrutinized by insurance companies and internally by hospital
administration;
“Our impact on patient care, in many cases, is very
indirect. So, it is difficult to point to outcomes that occur. We know things
we do matter and change patient care, but objectively showing that is a real
struggle. And we are being asked to do more than we ever had before, and those
are the two big things that keep me up at night these days,” he added.
This is where process improvement methods and analytics are
helping clinical laboratories understand critical issues and find opportunities
for positive change.
“You need to have a strategy that you can adapt to a changing landscape in healthcare. You have to use analytics to guide your progress and measure your success,” Patricia Nortmann, System Director of Laboratory Services at St. Elizabeth Healthcare, Erlanger, Ky., told Dark Daily.
Clinical Laboratories Can Collaborate Instead of Compete
Prior to a joint venture with TriHealth in Cincinnati, St. Elizabeth lab leaders used data to inform their decision-making. Over about 12 years preceding the consolidation of labs they:
Implemented front-end automation outside the core area and in the microbiology lab.
“We are now considered a regional reference lab in the state
of Kentucky for two healthcare organizations—St. Elizabeth and TriHealth,”
Nortmann said.
Thanks to these changes, the lab more than doubled its
workload, growing from 2.1 million to 4.3 million outreach tests in the core
laboratory, she added.
Christopher Doern, PhD (left), Director of Microbiology and Associate Professor of Pathology at Virginia Commonwealth University Health System; Patricia Nortmann (center), System Director of Laboratory Services at St. Elizabeth Healthcare; and Joseph Cugini (right), Manager Client Solutions at Health Network Laboratories, will present practical solutions and case studies in quality improvement and analytics for clinical laboratory professionals at the 13th Annual Lab Quality Confab, October 15-16, 2019, at the Hyatt Regency in Atlanta, Ga. (Photo copyright: The Dark Report.)
Using Analytics to Test the Tests
Clinical laboratories also are using analytics and information technology (IT) to improve test utilization.
At VCH Health, Doern said an analytics solution interfaces
with their LIS, providing insights into test orders and informing decisions
about workflow. “I use this analytics system in different ways to answer
different questions, such as:
How are clinicians using our tests?
When do things come to the lab?
When should we be working on them?
“This is important for microbiology, which is a very delayed
discipline because of the incubation and growth required for the tests we do,”
he said.
Using analytics, the lab solved an issue with Clostridium
difficile (C diff) testing turnaround-time (TAT) after associating it with
specimen transportation.
Inappropriate or duplicate testing also
can be revealed through analytics. A physician may reconsider a test after discovering
another doctor recently ordered the same test. And the technology can guide
doctors in choosing tests in areas where the related diseases are obscure, such
as serology.
Avoiding Duplicate Records While
Improving Payment
Another example of process
improvement is Health Network Laboratories (HNL) in Allentown, Pa. A team there established an enterprise master patient index (EMPI) and implemented digital tools to find and eliminate
duplicate patient information and improve lab financial indicators.
“The system uses trusted sources of data to make sure data is clean and the lab has what it needs to send out a proper bill. That is necessary on the reimbursement side—from private insurance companies especially—to prevent denials,” Joseph Cugini, HNL’s Manager Client Solutions, told Dark Daily.
HNL reduced duplicate records in its database from 23% to
under one percent. “When you are talking about several million records, that is
quite a significant improvement,” he said.
Processes have improved not only on the billing side, but in
HNL’s patient service centers as well, he added. Staff there easily find
patients’ electronic test orders, and the flow of consumers through their
visits is enhanced.
Learn More at Lab Quality Confab Conference
Cugini, Doern, and Nortmann will speak on these topics and more during the 13th Annual Lab Quality Confab (LQC), October 15-16, 2019, at the Hyatt Regency in Atlanta, Ga. They will offer insights, practical knowledge, and case studies involving Lean, Six Sigma, and other process improvement methods during this important 2-day conference, a Dark Dailynews release notes.
Register for LQC, which is produced by Dark Daily’s sister publication The Dark Report, online at https://www.labqualityconfab.com/register, or by calling 512-264-7103.