Jun 22, 2015 | Coding, Billing, and Collections, Digital Pathology, Laboratory Operations, Laboratory Pathology, Laboratory Testing, Managed Care Contracts & Payer Reimbursement, Management & Operations
Innovative medical laboratories shared their successes in improving lab test utilization that included physician engagement and close monitoring of key metrics
DATELINE: ORLANDO, FLORIDA—One big challenge facing medical laboratories and anatomic pathology groups in the United States today is the need to transition from a transaction-based business model (increasing specimen volume leads to increasing revenue) to a value-based business model (helping providers improve their use of clinical laboratory tests in ways that measurably improve patient outcomes while controlling or reducing the cost of care.)
Two trends reinforce the need for clinical laboratories to craft strategies to develop new ways to add value to lab testing services.
One trend is the move by Medicare and private health insurers to shift reimbursement for providers away from fee-for-service and toward bundled reimbursement and budgeted reimbursement.
The second trend is the emergence of integrated clinical care organizations. The most visible of these are accountable care organizations (ACO) and patient-centered medical homes (PCMH). What these care delivery organizations have in common is that they require hospitals, physicians, clinical laboratories, imaging centers, nursing homes and other types of providers to work together more effectively so that patients receive healthcare in a seamless fashion because there is a continuum: primary care to specialty care to acute care and back again. (more…)
May 29, 2015 | Digital Pathology, Instruments & Equipment, Laboratory Instruments & Laboratory Equipment, Laboratory Management and Operations, Laboratory News, Laboratory Operations, Laboratory Pathology, Management & Operations
This technology has potential to create a demand for pathologists to do genetic analysis as a companion diagnostic in support of physicians treating patients with gene-editing proteins
Researchers at Harvard University have demonstrated a new method to deliver gene-editing proteins into cells. This breakthrough could eventually trigger a demand for pathologists to do genetic analysis as the companion diagnostic needed to help clinicians select appropriate gene-editing therapies for their patients.
Of course, it will be several years before such a scenario is feasible. The related example are the companion diagnostic tests that clinical laboratories perform to guide a physician’s decision on an appropriate therapeutic drug. Continued development of gene-editing therapies has the potential to increase the need for pathologists and medical laboratory scientists to do genetic analysis as a companion diagnostic for patients who would benefit from a gene-editing therapy.
The Harvard University researchers used commercially available cationic lipids to deliver genome-editing proteins into cells. The system works on living animals and humans, and the technology enables scientists to precisely and easily change DNA sequences at exact locations. The full study was outlined in an October Nature Biotechnology article. (more…)
May 18, 2015 | Digital Pathology, Instruments & Equipment, Laboratory Instruments & Laboratory Equipment, Laboratory Management and Operations, Laboratory News, Laboratory Operations, Laboratory Pathology, Laboratory Testing
Micro-miniature intelligent radio devices are poised to revolutionize the connectivity of objects in ways that could open doors to new diagnostic devices to help pathologists detect disease
In the future, both in vitro diagnostics and in vivo diagnostics will utilize ever-smaller devices. The shrinking size of these analytical devices will give pathologists and clinical laboratory scientists new tools to detect disease earlier, while monitoring patient with chronic conditions in real-time in consultation with attending physicians.
Now comes news of a significant breakthrough that will allow researchers to shrink down the size of devices used for a wide range of applications, including medical laboratory testing. Engineers from Stanford University and the University of California, Berkeley, have created a prototype radio-on-a-chip the size of an ant.
Their invention could enable a vast assortment of gadgets to connect and communicate with each other, and with physicians, via the Internet. The new device has the potential for numerous applications for pathology and medical laboratories, and could be used in many types of diagnostic testing devices, including in vivo diagnostics. (more…)
May 15, 2015 | Digital Pathology, Instruments & Equipment, Laboratory Instruments & Laboratory Equipment, Laboratory Management and Operations, Laboratory News, Laboratory Operations, Laboratory Pathology
Prototype could provide glimpse of radically different future for patient monitoring and present new opportunities for pathologists and medical laboratory scientists
Are pathologists and medical laboratory scientists ready for a new diagnostic paradigm? Instead of specimens transported into a central medical laboratory, how about in vivo real-time monitoring of patients with chronic diseases, where pathologists are able to remotely spot changes in a patient’s condition as they happen and alert physicians to take timely action?
Researchers are combining several technologies to create sensor-based systems for in vivo real-time monitoring of body processes. In Basel, Switzerland, a team at ETH Zurich’s Department of Biosystems Science and Engineering created an implantable sensor for continuous monitoring of blood pH that is paired up with a gene feedback mechanism to produce the necessary amount of insulin. The dual function device has been described as a “molecular prosthesis.” The purpose of this device is to monitor patients with diabetes.
While ETH Zurich’s prototype needs more development before it will be ready for clinical uses, the university’s research shows pathologists and medical laboratory scientists how fast new capabilities are being developed that can eventually support a radically different approach to patient diagnosis and patient monitoring. Use of such real-time in vivo diagnostic devices could allow laboratory professionals to remotely monitor patients and trigger clinical interventions when the biomarkers being tracked indicate such a need.
Device Monitors Blood Acidity: Responds to Diabetic Acidosis by Producing Insulin
What is particularly intriguing about the device created by the Swiss university’s bioengineers is that it is capable of both diagnostic and therapeutic actions. Both modules of the device—the blood pH sensor and insulin production mechanism—are constructed from biological components, such as various genes and proteins. These are incorporated into cultivated renal cells. The researchers then embedded millions of these customized cells in capsules that can be used as implants in the body.
According to an ETH news release, the pH sensor transmits a signal to trigger the production of insulin if pH values fall below 7.35, a low pH value specific for type 1 diabetes. Once blood pH returns to the ideal range, the sensor turns itself off and the reprogrammed cells stop producing insulin.
In tests using mice with type 1 diabetes, the ETH device was able to successfully monitor the blood’s acidity and respond to diabetic acidosis by producing insulin. Mice with capsules implanted produced the amount of insulin appropriate to their individual acid measurements, enabling them to have hormone levels comparable to that of healthy mice. The implant also compensated for larger deviations in blood sugar. The system design and test results were published in an August 7, 2014, Molecular Cell article.
ETH Prototype Shows the Possibility of Creating Applications for Humans
Despite the promising results, Martin Fussenegger, Ph.D., Professor in ETH Zurich’s Department of Biosystems Science and Engineering, says the university will need an industrial partner in order to consider commercial development of the molecular device.
“Applications for humans are conceivable based on this prototype, but they are yet to be developed,” stated Fussenegger in the news release. “We wanted to create a prototype first to see whether molecular prostheses could even be used for such fine adjustments to metabolic processes.”
Martin Fussenegger, Ph.D., Professor in ETH Zurich’s Department of Biosystems Science and Engineering, says the initial results of studies in mice of ETH Zurich’s implantable molecular device for regulating blood pH levels through a closed loop pH sensing and insulin production mechanism shows promise. (Photo copyright ETH Zurich)
Until recently, most progress in diabetes care focused on improvements to continuous glucose monitors and insulin delivery systems, with implantable, long-lasting sensors for continuous monitoring on the horizon. ETH Zurich’s implantable molecular device would represent a major leap forward.
Diabetes in U.S. Continues to Increase
A 2014 report from the U.S. Centers for Disease Control and Prevention (CDC) shows that diabetes is on the rise, with 29.1 million people (9.3% of the U.S. population) living with diabetes. By comparison, in 2010 there were an estimated 26 million people in the U.S. with diabetes.
The CDC says that nearly 28% of people with diabetes are undiagnosed, which increases risk for heart disease, stroke, blindness, kidney failure, amputation of toes, feet or legs, and early death.
The report also estimates that the total cost in medical bills and lost work and wages due to diabetes and related complications adds up to $245 billion, up from $174 billion in 2010.
“These new numbers are alarming and underscore the need for an increased focus on reducing the burden of diabetes in our country,” said Ann Albright, Ph.D., R.D., Director of the CDC’s Division of Diabetes Translation, in a CDC news release. “Diabetes is costly in both human and economic terms. It’s urgent that we take swift action to effectively treat and prevent this serious disease.”
Ann Albright, Ph.D., R.D., Director of the Centers for Disease Control and Prevention’s Division of Diabetes Translation, stresses the importance of continued diabetes research. (Photo copyright CDC)
The need for new methods to control diabetes was underscored in a 2010 study published at PubMed Central (PMC) on the U.S. National Institutes of Health’s National Library of Medicine (NIH/NLM) website. It painted a “sobering picture of the future growth of diabetes.”
“Under an assumption of low incidence and relatively high diabetes mortality, total prevalence is projected to increase to 21% of the U.S. adult population by 2050,” the authors wrote. “On the other hand, if recent increases in diabetes incidence continue (middle incidence projections) and diabetes mortality ratios are relatively low, diabetes prevalence will increase to 33% by 2050.”
The study blames the rise in diabetes in the U.S. in part on demographic changes brought about by an aging population—older adults are more likely to develop diabetes—an increase in minority populations that report higher diabetes rates, and reduced mortality rates for those living with the disease.
In Vivo and In Vitro Diagnostics Continue to Merge
Dark Daily has reported on the evolution of implantable diagnostic tests for some time. As we noted in “In Vivo Pathology Testing Might Use Injectable Microbeads to Detect Excessive Glucose Levels” (Dark Daily, January 1, 2011), pathology researchers continue to find novel ways to integrate in vivo and in vitro diagnostic tests. This trend does not appear to be slowing.
Implantable diagnostic technology continues to develop, which should indicate to clinical laboratories the possibility that disease diagnosis and monitoring is shifting away from centralized laboratories and towards medical communities and patients’ homes. The added twist in the new in vivo device created by researchers at ETH Zurich is that, after the diagnostic component of the device has tracked a change in the biomarker, the device can then automatically produce the appropriate therapy, also in real time and in vivo.
—Andrea Downing Peck
Related Information:
Sensitive Acid Sensor Controls Insulin Production
A Molecular Implant for pH Sensitive Insulin Production
New CDC Diabetes Report
Diabetes Latest
In Vivo Pathology Testing Might Use Injectable Microbeads to Detect Excessive Glucose Levels
May 13, 2015 | Digital Pathology, Instruments & Equipment, Laboratory Instruments & Laboratory Equipment, Laboratory Management and Operations, Laboratory News, Laboratory Pathology
Wyss Institute develops prototype Ebola test in less than 12 hours with $20 in materials, perhaps paving the way for inexpensive paper-based diagnostic tests with a wide range of applications outside the medical laboratory
One goal of many synthetic biology researchers is to create in vitro diagnostic testing systems that produce results that are as accurate as those produced in today’s state-of-the-art clinical laboratories, yet are much cheaper to run because they incorporate low-cost materials, such as paper.
Recently, two teams of researchers worked to demonstrate how several synthetic biology methods, when combined with programmable paper-based diagnostic platform, could detect antibiotic-resistant bacteria and strain-specific Ebola virus. These findings were published in a peer-reviewed medical journal last fall.
Such cell-free circuits embedded in paper could be the breakthrough in synthetic biology that leads to pocketsize blotter tests that can detect such diseases as Ebola in the field. Should this line of research be applied to clinical settings, pathologists and medical laboratory scientists could soon be processing bandages that change colors in the presence of certain bacteria, or examining paper-based clothing infused with diagnostic laboratory tests that react to bio-markers specific to a chronic disease patient’s condition. (more…)
May 6, 2015 | Coding, Billing, and Collections, Compliance, Legal, and Malpractice, Digital Pathology, Instruments & Equipment, Laboratory Management and Operations, Laboratory News, Laboratory Operations, Laboratory Pathology, Laboratory Sales and Marketing, Managed Care Contracts & Payer Reimbursement, Management & Operations, News From Dark Daily
Primary themes were healthcare’s transition away from fee-for-service and how innovative medical laboratories are delivering more value with lab testing services
NEW ORLEANS, LA.—Two clear themes for clinical labs and pathology groups emerged from yesterday’s opening presentations at the 20th annual gathering of the Executive War College on Laboratory and Pathology Management.
Transitioning from Fee-For-Service to Value-based Reimbursement Programs
Theme one is that the pace of transformation within the U.S. healthcare system is accelerating. In his opening remarks, Executive War College Founder Robert L. Michel warned medical laboratory professionals that they must not allow their lab organizations to be unprepared or unresponsive to the changes now unfolding across the nation’s healthcare system.
In particular, Michel reminded the more than 850 lab executives and pathologists in the audience that fee-for-service payment for clinical laboratory tests and anatomic pathology services will not remain the dominant form of reimbursement for much longer. “This market trend is aptly described as ‘volume to value,’” noted Michel. “For decades, labs maximized revenue and operating profits by maximizing the volume of specimens that they tested. Those days are coming to an end. Healthcare will increasingly want lab testing services to be high value. These lab services will be paid as part of a bundle, or included in the different forms of global payments and budgeted payments that are made to integrated care delivery organizations, such as ACOs and patient-centered medical homes.” (more…)