HIMSS names SMC a ‘world leader’ in digital pathology and awards the South Korean Healthcare provider Stage 7 DIAM status
Anatomic pathologists and clinical laboratory managers in hospitals know that during surgery, time is of the essence. While the patient is still on the surgical table, biopsies must be sent to the lab to be frozen and sectioned before going to the surgical pathologist for reading. Thus, shortening time to answer for frozen sections is a significant benefit.
This effort in surgical pathology is part of a larger story of the digital transformation underway across all service lines at this hospital. For years, SMC has been on track to become one of the world’s “intelligent hospitals,” and it is succeeding. In February, SMC became the first healthcare provider to achieve Stage 7 in the HIMSS Digital Imaging Adoption Model (DIAM), which “assesses an organization’s capabilities in the delivery of medical imaging,” Healthcare IT News reported.
As pathologists and clinical laboratory leaders know, implementation of digital pathology is no easy feat. So, it’s noteworthy that SMC has brought together disparate technologies to reduce turnaround times, and that the medical center has caught the eye of leading health information technology (HIT) organizations.
“The digital pathology system established by the pathology department and SMC’s information strategy team could be one of the good examples of the fourth industrial revolution model applied to a hospital system,” anatomic pathologist Kee Taek Jang, MD (above), Professor of Pathology, Sungkyunkwan University School of Medicine, Samsung Medical Center told Healthcare IT News. Clinical laboratory leaders and surgical pathologists understand the value digital pathology can bring to faster turnaround times. (Photo copyright: Samsung Medical Center.)
Anatomic Pathologists Can Read Frozen Sections on Their Smartphones
Prior to implementation of its 5G digital pathology system, surgeons and their patients waited as much as 20 minutes for anatomic pathologists to traverse SMC’s medical campus to reach the healthcare provider’s cancer center diagnostic reading room, Healthcare IT News reported.
Now, SMC’s integrated digital pathology system—which combines slide scanners, analysis software, and desktop computers with a 5G network—has enabled a “rapid imaging search across the hospital,” Healthcare IT News noted. Surgical pathologists can analyze tissue samples faster and from remote locations on digital devices that are convenient to them at the time, a significant benefit to patient care.
“The system has been effective in reducing the turnaround time as pathologists can now attend to frozen test consultations on their smartphone or tablet device via 5G network anywhere in the hospital,” Jean-Hyoung Lee, SMC’s Manager of IT Infrastructure, told Healthcare IT News which noted these system results:
TAT decreased from 20 minutes to 10 minutes.
Transferring scans of large frozen tissues up to three gigabyte in size is now possible through the 5G network.
Additionally, through the 5G network, pathologists can efficiently access CT scans and MRI data on proton therapy cancer treatments. Prior to the change, the doctors had to download the image files in SMC’s Proton Therapy Center, according to a news release from KT Corporation, a South Korean telecommunications company that began working with SMC on building the 5G-connected digital pathology system in 2019.
DIAM is an approach for gauging an organization’s medical imaging delivery capabilities. To achieve Stage 7—External Image Exchange and Patient Engagement—healthcare providers must also have achieved all capabilities outlined in Stages 5 and 6.
In addition, the following must also have been adopted:
The majority of image-producing service areas are exchanging and/or sharing images and reports and/or clinical notes based on recognized standards with care organizations of all types, including local, regional, or national health information exchanges.
The application(s) used in image-producing service areas support multidisciplinary interactive collaboration.
Patients can make appointments, and access reports, images, and educational content specific to their individual situation online.
Patients are able to electronically upload, download, and share their images.
“This is the most comprehensive use of integrated digital pathology we have seen,” Andrew Pearce, HIMSS VP Analytics and Global Advisory Lead, told Healthcare IT News.
SMC’s Manager of IT Planning Seungho Lim told Healthcare IT News the medical center’s goal is to become “a global advanced intelligent hospital through digital health innovation.” The plan is to offer, he added, “super-gap digital services that prioritize non-contact communication and cutting-edge technology.”
For pathologists and clinical laboratory leaders, SMC’s commitment to 5G to move digital pathology data is compelling. And its recognition by HIMSS could inspire more healthcare organization to make changes in medical laboratory workflows. SMC, and perhaps other South Korean healthcare providers, will likely continue to draw attention for their healthcare IT achievements.
Understanding requirements of digital pathology workflow matters as regulatory and reimbursement elements align toward wider adoption beyond 2023. Upcoming Dark Daily webinar May 10 to cover infrastructure requirements
Nearly all pathology residents and fellows, as well as many histologists and other medical students, have been trained using digital images and, therefore, digital pathology tools. This resounds as a major and important development now working in tandem with recent coding decisions and regulatory recommendations that may combine to advance digital pathology to a significant tipping point.
As Dark Daily’s sister publication, The Dark Report, has described in great detail over the past several years, the trend toward digital pathology implementation started in the mid-2000s. Much has been learned through trial and error that may make the practical path forward clearer for those still on the sidelines.
Digital pathology infrastructure and information technology (IT) requirements are better known after years of research at academic centers throughout the United States—but only for those closest to the action. Two examples are University of Southern California (USC) on the West Coast and Memorial Sloan Kettering Cancer Center (MSKCC) on the East Coast.
During a free 60-minute educational webinar on May 10, W. Dean Wallace, MD, (far left) of University of Southern California (USC) and Orly Ardon, PhD, MBA, (immediate left) of Memorial Sloan Kettering Cancer Center (MSKCC) will explain digital pathology infrastructure, IT, and lessons learned through firsthand experiences. The webinar is sponsored by Hamamatsu, and continuing education credit is available for listening.(Photo copyrights: USC and MSKCC.)
Seven Advantages of Early Adoption of Whole Slide Imaging and Digital Pathology
Many pathologists know that academic centers throughout the U.S. have been the first to adopt and use digital pathology scanners and systems. Early work in what have become custom digital pathology ecosystems has enabled academic pathology groups to:
Learn how to implement, validate, and design workflows that include digital pathology systems and computational pathology.
Determine how physical environments need to change for slide scanners, achieving quality images, maximizing scanner utility, and expanding scanning capabilities in medium- and high-throughput laboratories.
Contract with pharmaceutical companies and drug developers to read digital images in support of drug research and clinical trials.
Understand how digital pathology applies for various use cases, including primary diagnosis, frozen section diagnosis, consultations, second opinions, and telepathology.
Successfully spread pathologist technical and professional support across multiple laboratory locations and remote customers.
Learn best practices for conducting tumor boards and peer reviews of pathology cases.
Validate and verify new hematoxylin and eosin (H&E) stains.
Hospital and Lab Leaders Have Questions About Digital Pathology Requirements
As a result of early adopter projects, digital pathology infrastructure and IT requirements are better understood and documented for a variety of use cases, according to W. Dean Wallace, MD, Professor of Pathology at the Keck School of Medicine of USC. Wallace specializes in pulmonary and renal pathology with a strong interest in informatics, as well as radiology and pathology correlation, and he warns of the danger of implementing an “incomplete digital pathology system.”
This webinar is for hospital and health system leaders, as well as independent pathology groups and reference lab executives, who want to know:
Key workflow aspects of the components needed in a digital pathology service.
Common limitations of commercial digital pathology products.
How to structure a digital pathology implementation team.
A goal-based approach to developing a business case for digital pathology implementation.
Wallace and Orly Ardon, PhD, MBA, Director of Digital Pathology Operations at MSKCC, will lead the call and take questions during the webinar’s live Q&A segment.
Questions About Digital Pathology Implementation
At MSKCC, teams have scanned and archived more than six million histology slides and are prospectively scanning all in-house H&E slides.
“There is a lot of interest out there for digital pathology implementation,” Ardon told Dark Daily, “not only the AI-machine learning opportunities that are enabled with digital slides, but how do we even start a basic digital pathology journey. Institutions and labs don’t realize how many factors they have to think about before they start scanning the first slide.”
“People have limited understanding of the complexities of the business case,” Wallace added. “Do you want to go with a full 100% deployment or a targeted deployment? Do you want to get digital pathology to support tumor boards? By introducing scanners into the tumor board workflow, you can actually cause more problems than you are solving if you are not careful.
“The other aspect of it is the actual technical deployments. You need to begin with careful analysis of functions or services to support,” Wallace said, adding the soft costs of digital pathology can take lab and pathology administrators by surprise.
Ardon and Wallace will present their insights and experiences during the webinar, which has been sponsored by Hamamatsu. Those interested can learn more and register at Dark Dailyhere. P.A.C.E. credit is available for this program through the American Society for Clinical Laboratory Science (ASCLS).
On the Horizon: Incentives and Further Alignment Toward Digital Pathology Adoption
Dark Daily’s new webinar is timely. Earlier this year, the Centers for Medicare and Medicaid Services (CMS) entered what has been called a “tryout” period to gather data about the use of new, digital-pathology-related Current Procedural Terminology (CPT) codes in clinical laboratories and anatomic pathology groups. (See coverage in The Dark Report.)
Some believe the efforts of CMS, clinical labs, and pathology groups will result in new reimbursable codes, reimbursement values, and other incentives for using digital pathology (starting sometime in 2024)—if analysis shows use of digital pathology is as widespread as numerous publications would seem to indicate.
The CPT coding development coincides with recent discussions within the federal Clinical Laboratory Improvement Advisory Committee (CLIAC) about sweeping recommendations to allow continued remote work once the COVID-19 Public Health Emergency ends on May 11 and recognize digital data as a vital component of diagnostic specimens. (See coverage in The Dark Report.)
CLIAC’s recommendations may translate into a running start for modernizing the Clinical Laboratory Improvement Amendments of 1988 (CLIA). CLIA as it is written currently is dated and needs to account for new and emerging technologies, such as digital pathology, medical laboratory industry sources have said for years. (See a recent Dark Report – Dark Daily webinar.)
These developments, as they further align with actions by the U.S. Food and Drug Administration (FDA), could unleash swells of interest in onboarding whole slide scanners and digital pathology tools. Remote workflows became a priority during the COVID-19 pandemic, and it appears they will continue for a period as the Public Health Emergency unwinds, according to the FDA.
Watch Digital Pathology Implementation Strategies
Most executives at hospitals and health systems, private pathology practices, and independent reference labs are on the sidelines watching how digital pathology in research and clinical practice is unfolding.
However, as the pathology field integrates data science and computational pathology, forward-looking hospital and lab leaders can expect greater momentum toward advanced technologies, such as digital pathology tools.
Register here to participate in the upcoming webinar, “Digital Pathology Implementation Strategies.”
—Liz Carey
This content was developed through independent research and interviews by The Dark Intelligence Group, with support from Hamamatsu Photonics K.K., a provider of whole slide imaging systems and related technology such as optical sensors, light sources, and complex instrument systems that use them. Hamamatsu did not participate in the article’s development. Learn more about Hamamatsu at https://nanozoomer.hamamatsu.com/us/en.html.
Viruses are between 27,000 to 48,500 years old and not dangerous, but researchers say thawing permafrost may one day release pathogens capable of infecting humans
Last fall, European researchers working with virologists and genetic scientists at the Aix-Marseille University in France reported having revived and characterized 13 previously unknown “zombie” viruses isolated from Siberian permafrost samples, including one that was almost 50,000 years old. This will be of particular interest to microbiologists and clinical laboratory managers since these organisms are new to science and may be precursors to infectious agents active in the world today.
The work of the European scientists demonstrates how advancements in genome sequencing and analysis of DNA data are becoming, faster, less expensive, and more precise. That’s good because the researchers warned that, should the permafrost continue to thaw, other previously dormant viruses could be released, posing potential risks for public health.
The pathogens isolated by the researchers are so-called “giant viruses” that infect Acanthamoeba, a commonly found genus of amoeba, and thus are not likely to pose an immediate health threat, the researchers wrote.
However, the scientists expressed concern. “We believe our results with Acanthamoeba-infecting viruses can be extrapolated to many other DNA viruses capable of infecting humans or animals. It is thus likely that ancient permafrost … will release these unknown viruses upon thawing,” they stated in their Viruses paper.
It’s unknown how long the viruses “could be infectious once exposed to outdoor conditions (UV light, oxygen, heat), and how likely they will be to encounter and infect a suitable host in the interval,” they added. However, “the risk is bound to increase in the context of global warming, in which permafrost thawing will keep accelerating, and more people will populate the Arctic in the wake of industrial ventures.”
“In nature we have a big natural freezer, which is the Siberian permafrost,” virologist Paulo Verardi, PhD (above), head of the Department of Pathobiology and Veterinary Science at the University of Connecticut, told The Washington Post. “And that can be a little bit concerning.” However, “if you do the risk assessment, this is very low. We have many more things to worry about right now.” Nevertheless, clinical laboratories may want to remain vigilant. (Photo copyright: University of Connecticut.)
Extremely Old, Very Large Viruses
The newly discovered viruses were found in seven different permafrost samples. Radiocarbon dating determined that they had been dormant for 27,000 to 48,500 years. But viruses contained in permafrost could be even older, the researchers wrote, as the time limit is “solely dictated by the validity range of radiocarbon dating.”
In their Viruses paper, the researchers noted that most of the 13 viruses are “at a preliminary stage of characterization,” and others have been isolated in the research laboratory “but not yet published, pending their complete genome assembly, annotation, or detailed analysis.”
“Every time we look, we will find a virus,” study co-author Jean-Michel Claverie, PhD, told The Washington Post. “It’s a done deal. We know that every time we’re going to look for viruses—infectious viruses in permafrost—we are going to find some.”
Claverie is a professor emeritus of genomics and bioinformatics in the School of Medicine at Aix-Marseille Université in Marseille, France. He leads a university laboratory known for its work in “paleovirology,” and in 2003, discovered the first known giant virus, dubbed Mimivirus. The research team included scientists from Germany and Russia.
According to CNN, unlike regular viruses that generally require an electron microscope to be viewed, giant viruses can be seen under a standard light (optical) microscope. Claverie’s laboratory previously isolated giant viruses from permafrost in 2014 and 2015.
Protecting Against Accidental Infection
To demonstrate the infectious potential of the viruses, the researchers inserted the microbes into cultured amoeba cells, which the researchers describes as “virus bait,” The Washington Post reported. One advantage of using Acanthamoeba cultures is to maintain “biological security,” the researchers wrote in their paper.
“We are using [the amoeba’s] billion years of evolutionary distance with human and other mammals as the best possible protection against an accidental infection of laboratory workers or the spread of a dreadful virus once infecting Pleistocene mammals to their contemporary relatives,” the paper noted. “The biohazard associated with reviving prehistorical amoeba-infecting viruses is thus totally negligible compared to the search for ‘paleoviruses’ directly from permafrost-preserved remains of mammoths, woolly rhinoceros, or prehistoric horses.”
The paper cites earlier research noting the presence of bacteria in ancient permafrost samples, “a significant proportion of which are thought to be alive.” These include relatives of contemporary pathogens such as:
“We can reasonably hope that an epidemic caused by a revived prehistoric pathogenic bacterium could be quickly controlled by the modern antibiotics at our disposal,” the researchers wrote, but “the situation would be much more disastrous in the case of plant, animal, or human diseases caused by the revival of an ancient unknown virus.”
However, according to The Washington Post, “Virologists who were not involved in the research said the specter of future pandemics being unleashed from the Siberian steppe ranks low on the list of current public health threats. Most new—or ancient—viruses are not dangerous, and the ones that survive the deep freeze for thousands of years tend not to be in the category of coronaviruses and other highly infectious viruses that lead to pandemics.”
Cornell University virologist Colin Parrish, PhD, President of the American Society for Virology, told The Washington Post that an ancient virus “seems like a low risk compared to the large numbers of viruses that are circulating among vertebrates around the world, and that have proven to be real threats in the past, and where similar events could happen in the future, as we still lack a framework for recognizing those ahead of time.”
Anthony Fauci, MD, former Director of the National Institute of Allergy and Infectious Diseases (NIAID), responded to an earlier study from Claverie’s lab by outlining all the unlikely events that would have to transpire for one of these viruses to cause a pandemic. “The permafrost virus must be able to infect humans, it must then [cause disease], and it must be able to spread efficiently from human to human,” he told The Washington Post in 2015. “This can happen, but it is very unlikely.”
Thus, clinical laboratories probably won’t see new diagnostic testing to identify ancient viruses anytime soon. But it’s always best to remain vigilant.
Though still in trials, early results show tests may be more accurate than traditional clinical laboratory tests for detecting prostate cancer
Within weeks of each other, different research teams in the US and UK published findings of their respective efforts to develop a better, more accurate clinical laboratory prostate cancer test. With cancer being a leading cause of death among men—second only to heart disease according to the Centers for Disease Control and Prevention (CDC)—new diagnostics to identify prostate cancer would be a boon to precision medicine treatments for the deadly disease and could save many lives.
Thus, these are two different pathways toward the goal of achieving earlier, more accurate diagnosis of prostate cancer, the holy grail of prostate cancer diagnosis.
“There is currently no single test for prostate cancer, but PSA blood tests are among the most used, alongside physical examinations, MRI scans, and biopsies,” said Dmitry Pshezhetskiy, PhD (above), Professorial Research Fellow at University of East Anglia and one of the authors of the UEA study. “However, PSA blood tests are not routinely used to screen for prostate cancer, as results can be unreliable. Only about a quarter of people who have a prostate biopsy due to an elevated PSA level are found to have prostate cancer. There has therefore been a drive to create a new blood test with greater accuracy.” With the completion of the US and UK studies, clinical laboratories may soon have a new diagnostic test for prostate cancer. (Photo copyright: University of East Anglia.)
East Anglia’s Research into a More Accurate Blood Test
Scientists at the University of East Anglia (UEA) worked with researchers from Imperial College in London, Imperial College NHS Trust, and Oxford BioDynamics to develop a new precision medicine blood test that can detect prostate cancer with greater accuracy than current methods.
The researchers evaluated their test in a pilot study involving 147 patients. They found their testing method had a 94% accuracy rate, which is higher than that of PSA testing alone. They discovered their test significantly improved the overall detection of prostate cancer in men who are at risk for the disease.
“When tested in the context of screening a population at risk, the PSE test yields a rapid and minimally invasive prostate cancer diagnosis with impressive performance,” Dmitry Pshezhetskiy, PhD, Professorial Research Fellow at UEA and one of the authors of the study told Science Daily. “This suggests a real benefit for both diagnostic and screening purposes.”
The UK scientists hope their test can eventually be used in everyday clinical practice as there is a need for a highly accurate method for prostate cancer screening that does not subject patients to unnecessary, costly, invasive procedures.
Cedars-Sinai’s Research into Nanotechnology Cancer Testing
Researchers from Cedars-Sinai Cancer took a different approach to diagnosing prostate cancer by developing a nanotechnology-based liquid biopsy test that detects the disease even in microscopic amounts.
Their test isolates and identifies extracellular vesicles (EVs) from blood samples. EVs are microscopic non-reproducing protein and genetic material shed by all cells. Cedars-Sinai’s EV Digital Scoring Assay accurately extracts EVs from blood and analyzes them faster than similar currently available tests.
“This research will revolutionize the liquid biopsy in prostate cancer,” said oncologist Edwin Posadas, MD, Medical Director of the Urologic Oncology Program and co-director of the Experimental Therapeutics Program in Cedars-Sinai Cancer in a press release. “The test is fast, minimally invasive and cost-effective, and opens up a new suite of tools that will help us optimize treatment and quality of life for prostate cancer patients.”
The researchers tested blood samples from 40 patients with prostate cancer. They found that their EV test could distinguish between cancer localized to the prostate and cancer that has spread to other parts of the body.
Microscopic cancer deposits, called micrometastases, are not always detectable, even with advanced imaging methods. When these deposits spread outside the prostate area, focused radiation cannot prevent further progression of the disease. Thus, the ability to identify cancer by locale within the body could lead to new precision medicine treatments for the illness.
“[The EV Digital Scoring Assay] would allow many patients to avoid the potential harms of radiation that isn’t targeting their disease, and instead receive systemic therapy that could slow disease progression,” Posadas explained.
Other Clinical Laboratory Tests for Prostate Cancer Under Development
According to the American Cancer Society, the number of prostate cancer cases is increasing. One out of eight men will be diagnosed with the illness during his lifetime. Thus, developers have been working on clinical laboratory tests to accurately detect the disease and save lives for some time.
In “University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test,” Dark Daily reported on a urine test also developed by scientists at the University of East Anglia that clinical laboratories can use to not only accurately diagnose prostate cancer but also determine whether it is an aggressive form of the disease.
And in “UPMC Researchers Develop Artificial Intelligence Algorithm That Detects Prostate Cancer with ‘Near Perfect Accuracy’ in Effort to Improve How Pathologists Diagnose Cancer ,” we outlined how researchers at the University of Pittsburgh Medical Center (UPMC) working with Ibex Medical Analytics in Israel had developed an artificial intelligence (AI) algorithm for digital pathology that can accurately diagnose prostate cancer. In the initial study, the algorithm—dubbed the Galen Prostate AI platform—accurately detected prostate cancer with 98% sensitivity and 97% specificity.
More research and clinical trials are needed before the new US and UK prostate cancer testing methods will be ready to be used in clinical settings. But it’s clear that ongoing research may soon produce new clinical laboratory tests and diagnostics for prostate cancer that will steer treatment options and allow for better patient outcomes.
The deal will enable Crosscope’s digital pathology platform to layer around Clarapath’s histology automation hardware, a combination that could improve quality and efficiencies in diagnostic services for future customers, according to a Clarapath press release.
Clarapath’s goal with its products is to automate certain manual processes in histology laboratories, while at the same time reducing variability in how specimens are processed and produced into glass slides. In an exclusive interview with Dark Daily, Eric Feinstein, CEO and President at Clarapath said he believes the resulting data about these activities can drive further changes.
“A histotechnologist turns a microtome wheel and makes decisions about a piece of tissue in real time,” noted Feinstein, who will speak at the Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management on April 25-26 in New Orleans. “All of that real-time data isn’t captured. Imagine if we could take all of that data from thousands of histotechnologists who are cutting every day and aggregate it. Then you could start drawing definitive conclusions about best practices.”
“Clarapath’s foundation is about creating consistency and standardizing steps in histology—and uncovering the data that you need in order to accomplish those goals as a whole system,” Eric Feinstein (above), CEO and President at Clarapath told Dark Daily. “A histology lab’s workflow—from when the tissue comes in to when the glass slide is produced—should all be connected.” Many processes in histology and anatomic pathology continue to be manual. Automated solutions can contribute to improved productivity and reducing variability in how individual specimens are processed. (Photo copyright: Clarapath.)
Details Behind Clarapath’s Deal to Acquire Crosscope
As part of its acquisition, Clarapath of Hawthorne, New York, has retained all of Crosscope’s employees, who are located in Mountain View, California, and Bombay, India. Financial terms of the deal were not disclosed.
Clarapath’s flagship histology automation product is SectionStar, a tissue sectioning and transfer system designed to automate inefficient and manual activities in slide processing. The device offers faster and more efficient sample processing while reducing human involvement. Clarapath expects SectionStar be on the market in 2023. The company is currently taking pre-orders.
Meanwhile, Crosscope developed Crosscope Dx, a turnkey digital pathology solution that provides workflow tools and slide management as well as AI and machine learning to assist pathologists with their medical decision-making and diagnoses.
Adoption of Digital Pathology and Automation Can Be Challenging
Digital pathology has experienced growing popularity in the post-COVID-19 pandemic world. This is not only because remote pathology case reviews have become increasingly acceptable to physicians but also because of the ongoing shortages in clinical laboratory staffing.
“A pain point today for clinicians and laboratories is labor. That’s across the board,” Feinstein said. “We can help solve that with SectionStar.”
Feinstein does not believe adoption of digital pathology and histology automation is proceeding slowly, but he does acknowledge barriers to healthcare organizations installing the technologies.
“There are lots of little things that—from a workflow perspective—people have outsized expectations about,” he explained. “Clinicians and administrators are not used to innovating in a product sense. They may be innovating on how they deliver care or treatment pathways, but they’re not used to developing an engineering product and going through alpha and beta stages. That makes adopting new technology challenging.”
Medical laboratory managers and pathologists interested in pursuing histology automation and digital pathology should first determine what processes are sub-optimal or would benefit from the standardization hardware and software can offer. Being able to articulate those gains can help build the case for a return on investment to decision-makers.
Another resource to consider: Feinstein will speak about innovations for remote histology laboratory workers at the upcoming Executive War College for Clinical Laboratory, Diagnostics, and Pathology Management on April 25-26 in New Orleans. His session is titled, “Re-engineering the Classic Histology Laboratory: Enabling the Remote Histotechnologist with New Tools That Improve Productivity, Automate Processes, and Protect Quality.”
Though smartphone apps are technically not clinical laboratory tools, anatomic pathologists and medical laboratory scientists (MLSs) may be interested to learn how health information technology (HIT), machine learning, and smartphone apps are being used to assess different aspects of individuals’ health, independent of trained healthcare professionals.
The issue that the Cedars Sinai researchers were investigating is the accuracy of patient self-reporting. Because poop can be more complicated than meets the eye, when asked to describe their bowel movements patients often find it difficult to be specific. Thus, use of a smartphone app that enables patients to accurately assess their stools in cases where watching the function of their digestive tract is relevant to their diagnoses and treatment would be a boon to precision medicine treatments of gastroenterology diseases.
“This app takes out the guesswork by using AI—not patient input—to process the images (of bowel movements) taken by the smartphone,” said gastroenterologist Mark Pimentel, MD (above), Executive Director of Cedars-Sinai’s Medically Associated Science and Technology (MAST) program and principal investigator of the study, in a news release. “The mobile app produced more accurate and complete descriptions of constipation, diarrhea, and normal stools than a patient could, and was comparable to specimen evaluations by well-trained gastroenterologists in the study.” (Photo copyright: Cedars-Sinai.)
Pros and Cons of Bristol Stool Scale
In their paper, the scientists discussed the Bristol Stool Scale (BSS), a traditional diagnostic tool for identifying stool forms into seven categories. The seven types of stool are:
Type 1: Separate hard lumps, like nuts (difficult to pass).
Type 2: Sausage-shaped, but lumpy.
Type 3: Like a sausage, but with cracks on its surface.
Type 4: Like a sausage or snake, smooth and soft (average stool).
Type 5: Soft blobs with clear cut edges.
Type 6: Fluffy pieces with ragged edges, a mushy stool (diarrhea).
Type 7: Watery, no solid pieces, entirely liquid (diarrhea).
But even with the BSS, things can get murky for patients. Inaccurate self-reporting of stool forms by people with IBS and diarrhea can make proper diagnoses difficult.
“The problem is that whenever you have a patient reporting an outcome measure, it becomes subjective rather than objective. This can impact the placebo effect,” gastroenterologist Mark Pimentel, MD, Executive Director of Cedars-Sinai’s Medically Associated Science and Technology (MAST) program and principal investigator of the study, told Healio.
Thus, according to the researchers, AI algorithms can help with diagnosis by systematically doing the assessments for the patients, News Medical reported.
30,000 Stool Images Train New App
To conduct their study, the Cedars-Sinai researchers tested an AI smartphone app developed by Dieta Health. According to Health IT Analytics, employing AI trained on 30,000 annotated stool images, the app characterizes digital images of bowel movements using five parameters:
BSS,
Consistency,
Edge fuzziness,
Fragmentation, and
Volume.
“The app used AI to train the software to detect the consistency of the stool in the toilet based on the five parameters of stool form, We then compared that with doctors who know what they are looking at,” Pimentel told Healio.
AI Assessments Comparable to Doctors, Better than Patients
According to Health IT Analytics, the researchers found that:
AI assessed the stool comparable to gastroenterologists’ assessments on BSS, consistency, fragmentation, and edge fuzziness scores.
AI and gastroenterologists had moderate-to-good agreement on volume.
AI outperformed study participant self-reports based on the BSS with 95% accuracy, compared to patients’ 89% accuracy.
Additionally, the AI outperformed humans in specificity and sensitivity as well:
Specificity (ability to correctly report a negative result) was 27% higher.
Sensitivity (ability to correctly report a positive result) was 23% higher.
“A novel smartphone application can determine BSS and other visual stool characteristics with high accuracy compared with the two expert gastroenterologists. Moreover, trained AI was superior to subject self-reporting of BSS. AI assessments could provide more objective outcome measures for stool characterization in gastroenterology,” the Cedars-Sinai researchers wrote in their paper.
“In addition to improving a physician’s ability to assess their patients’ digestive health, this app could be advantageous for clinical trials by reducing the variability of stool outcome measures,” said gastroenterologist Ali Rezaie, MD, study co-author and Medical Director of Cedars-Sinai’s GI Motility Program in the news release.
The researchers plan to seek FDA review of the mobile app.
Opportunity for Clinical Laboratories
Anatomic pathologists and clinical laboratory leaders may want to reach out to referring gastroenterologists to find out how they can help to better serve gastro patients. As the Cedars-Sinai study suggests, AI smartphone apps can perform BSS assessments as good as or better than humans and may be useful tools in the pursuit of precision medicine treatments for patient suffering from painful gastrointestinal disorders.