Already-existing clinical laboratory blood test may be new standard for detecting Alzheimer’s biomarkers
In Sweden, an independent study of an existing blood test for Alzheimer’s disease—called ALZpath—determined that this diagnostic assay appears to be “just as good as, if not surpass, lumbar punctures and expensive brain scans at detecting signs of Alzheimer’s in the brain,” according to a report published by The Guardian.
Alzheimer’s disease is one of the worst forms of dementia and it affects more than six million people annually according to the Alzheimer’s Association. Clinical laboratory testing to diagnose the illness traditionally involves painful, invasive spinal taps and brain scans. For that reason, researchers from the University of Gothenburg in Sweden wanted to evaluate the performance of the ALZpath test when compared to these other diagnostic procedures.
Motivated to seek a less costly, less painful, Alzheimer’s biomarker for clinical laboratory testing, neuroscientist Nicholas Ashton, PhD, Assistant Professor of Neurochemistry at the University of Gothenburg, led a team of scientists that looked at other common biomarkers used to identify changes in the brain of Alzheimer’s patients. That led them to tau protein-based blood tests and specifically to the ALZpath blood test for Alzheimer’s disease developed by ALZpath, Inc., of Carlsbad, Calif.
In their JAMA article, they wrote, “the pTau217 immunoassay showed similar accuracies to cerebrospinal fluid biomarkers in identifying abnormal amyloid β (Aβ) and tau pathologies.”
In an earlier article published in medRxiv, Ashton et al wrote, “Phosphorylated tau (pTau) is a specific blood biomarker for Alzheimer’s disease (AD) pathology, with pTau217 considered to have the most utility. However, availability of pTau217 tests for research and clinical use has been limited.”
Thus, the discovery of an existing pTau217 assay (ALZpath) that is accessible and affordable is a boon to Alzheimer’s patients and to the doctors who treat them.
“The ALZpath pTau217 assay showed high diagnostic accuracy in identifying elevated amyloid (AUC, 0.92-0.96; 95%CI 0.89-0.99) and tau (AUC, 0.93-0.97; 95%CI 0.84-0.99) in the brain across all cohorts. These accuracies were significantly higher than other plasma biomarker combinations and equivalent to CSF [cerebrospinal fluid] biomarkers,” an ALZpath press release noted.
“This is an instrumental finding in blood-based biomarkers for Alzheimer’s, paving the way for the clinical use of the ALZpath pTau217 assay,” stated Henrik Zetterberg, MD, PhD (above), Professor of Neurochemistry at the University of Gothenburg and co-author of the study. “This robust assay is already used in multiple labs around the globe.” Clinical laboratories may soon be receiving doctors’ orders for pTau217 blood tests for Alzheimer’s patients. (Photo copyright: University of Gothenburg.)
Study Details
Ashton’s team conducted a cohort study that “examined data from three single-center observational cohorts.” The cohorts included:
“Participants included individuals with and without cognitive impairment grouped by amyloid and tau (AT) status using PET or CSF biomarkers. Data were analyzed from February to June 2023,” the researchers wrote.
These trials from the US, Canada, and Spain featured 786 participants and featured “either a lumbar puncture or an amyloid PET scan to identify signs of amyloid and tau proteins—hallmarks of Alzheimer’s disease,” The Guardian reported, adding that results of the University of Gothenburg’s study showed that the ALZpath pTau217 blood test “was superior to brain atrophy assessments, in identifying signs of Alzheimer’s.”
“80% of individuals could be definitively diagnosed on a blood test without any other investigation,” Ashton told The Guardian.
Diagnosis Needed to Receive Alzheimer’s Disease Treatments
“If you’re going to receive [the new drugs], you need to prove that you have amyloid in the brain,” Ashton told The Guardian. “It’s just impossible to do spinal taps and brain scans on everyone that would need it worldwide. So, this is where the blood test [has] a huge potential.”
Even countries where such drugs were not yet available (like the UK) would benefit, Ashton said, because the test, “Could potentially say that this is not Alzheimer’s disease and it could be another type of dementia, which would help to direct the patient’s management and treatment routine.”
However, Ashton himself noted the limitations of the new findings—specifically that there is no success shown yet in Alzheimer’s drugs being taken by symptom-free individuals.
“If you do have amyloid in the brain at 50 years of age, the blood test will be positive,” he said. “But what we recommend, and what the guidelines recommend with these blood tests, is that these are to help clinicians—so someone must have had some objective concern that they have Alzheimer’s disease, or [that] their memory is declining,” he told The Guardian.
Experts on the Study Findings
“Blood tests could be used to screen everyone over 50-years old every few years, in much the same way as they are now screened for high cholesterol,” David Curtis, MD, PhD, Honorary Professor in the Genetics, Evolution and Environment department at University College London, told The Guardian.
“Results from these tests could be clear enough to not require further follow-up investigations for some people living with Alzheimer’s disease, which could speed up the diagnosis pathway significantly in future,” Richard Oakley, PhD, Associate Director of Research and Innovation at the Alzheimer’s Society, UK, told The Guardian.
Though Oakley found the findings promising, he pointed out what should come next. “We still need to see more research across different communities to understand how effective these blood tests are across everyone who lives with Alzheimer’s disease,” he said.
“Expanding access to this highly accurate Alzheimer’s disease biomarker is crucial for wider evaluation and implementation of AD blood tests,” the researchers wrote in JAMA Neurology.
“ALZpath makers are in discussions with labs in the UK to launch it for clinical use this year, and one of the co-authors, Henrik Zetterberg, MD, PhD, Professor of Neurochemistry at the University of Gothenburg, is making the assay available for research use as part of the ‘biomarker factory’ at UCL,” The Guardian reported.
In the US, to be prescribed any of the available Alzheimer’s medications, a doctor must diagnose that the patient has amyloid in the brain. A pTau217 diagnostic blood test could be used to make such a diagnosis. Currently, however, the test is only available “for research studies through select partner labs,” Time reported.
“But later this month, doctors in the US will be able to order the test for use with patients. (Some laboratory-developed tests performed by certain certified labs don’t require clearance from the US Food and Drug Administration.),” Time added.
It may be that the University of Gothenburg study will encourage Alzheimer’s doctors in the UK and around the world to consider ordering pTau217 diagnostic blood tests from clinical laboratories, rather than prescribing spinal taps and brains scans for their Alzheimer’s patients.
If validated, study findings may result in new biomarkers for clinical laboratory cholesterol tests and for diagnosing dementia
Researchers continue to find new associations between biomarkers commonly tested by clinical laboratories and certain health conditions and diseases. One recent example comes from research conducted by the University of California San Francisco. The UCSF study connected cholesterol biomarkers generally used for managing cardiovascular disease with an increased risk for dementia as well.
The researchers found that both high and low levels of high-density lipoprotein (HDL)—often referred to as “good” cholesterol—was associated with dementia in older adults, according to a news release from the American Academy of Neurology (AAN).
UCSF’s large, longitudinal study incorporated data from 184,367 people in the Kaiser Permanente Northern California health plan. How the findings may alter cholesterol biomarker use in future diagnostics has not been determined.
“The elevation in dementia risk with both high and low levels of HDL cholesterol was unexpected, but these increases are small, and their clinical significance is uncertain,” said epidemiologist Maria Glymour, ScD (above), study author and Professor of Epidemiology and Biostatistics at UCSF School of Medicine, in a news release. This is another example of how researchers are associating common biomarkers tested regularly by clinical laboratories with additional health conditions and disease states. (Photo copyright: University of California San Francisco.)
HDL Levels Link to Dementia Risk
The UCSF researchers used cholesterol measurements and health behavior questions as they tracked Kaiser Permanente Northern California health plan members who were at least 55 years old between 2002 and 2007, and who did not have dementia at the time of the study’s launch.
The researchers then followed up with the study participants through December 2020 to find out if they had developed dementia, Medical News Today reported.
“Previous studies on this topic have been inconclusive, and this study is especially informative because of the large number of participants and long follow-up,” said epidemiologist Maria Glymour, ScD, study author and Professor of Epidemiology and Biostatistics at UCSF School of Medicine, in the AAN news release. “This information allowed us to study the links with dementia across the range of cholesterol levels and achieve precise estimates even for people with cholesterol levels that are quite high or quite low.”
According to HealthDay, UCSF’s study findings included the following:
More than 25,000 people developed dementia over about nine years. They were divided into five groups.
53.7 milligrams per deciliter (mg/dL) was the average HDL cholesterol level, amid an optimal range of above 40 mg/dL for men and above 50 mg/dL for women.
A 15% rate of dementia was found in participants with HDL of 65 mg/dL or above.
A 7% rate of dementia was found in participants with HDL of 11 mg/dL to 41 mg/dL.
“We found a U-shaped relationship between HDL and dementia risk, such that people with either lower or higher HDL had a slightly elevated risk of dementia,” Erin Ferguson, PhD student of Epidemiology at UCSF, the study’s lead study author, told Medical News Today.
What about LDL?
The UCSF researchers found no correlation between low-density lipoprotein (LDL)—often referred to as “bad” cholesterol”—and increased risk for dementia. But the risk did increase slightly when use of statin lipid-lowering medications were included in the analysis.
“Higher LDL was not associated with dementia risk overall, but statin use qualitatively modified the association. Higher LDL was associated with a slightly greater risk of Alzheimer’s disease-related dementia for statin users,” the researchers wrote in Neurology.
“We found no association between LDL cholesterol and dementia risk in the overall study cohort. Our results add to evidence that HDL cholesterol has similarly complex associations with dementia as with heart disease and cancer,” Glymour noted in the AAN news release.
Australian Study also Links High HDL to Dementia
A separate study from Monash University in Melbourne, Victoria, Australia, found that “abnormally high levels” of HDL was also associated with increased risk for dementia, according to a Monash news release.
The Monash study—which was part of the ASPREE (ASPpirin in Reducing Events in the Elderly) trial of people taking daily aspirin—involved 16,703 Australians and 2,411 Americans during the years 2010 to 2014. The researchers found:
850 participants had developed dementia over about six years.
A 27% increased risk of dementia among people with HDL above 80 mg/dL and a 42% higher dementia risk for people 75 years and older with high HDL levels.
These findings, Newsweek pointed out, do not necessarily mean that high levels of HDL cause dementia.
“There might be additional factors that affect both these findings, such as a genetic link that we are currently unaware of,” Andrew Doig, PhD, Professor, Division of Neuroscience at University of Manchester, told Newsweek. Doig was not involved in the in the Monash University research.
Follow-up research could explore the possibility of diagnosing dementia earlier using blood tests and new biomarkers, Newsweek noted.
Cholesterol Lab Test Results of Value to Clinical Labs
If further studies validate new biomarkers for testing and diagnosis, a medical laboratory’s longitudinal record of cholesterol test results over many years may be useful in identifying people with an increased risk for dementia.
Clinical pathologists and laboratory managers will want to stay tuned as additional study insights and findings are validated and published. Existing laboratory testing reference ranges may need to be revised as well.
As well, the findings of this UCSF research demonstrate that, in this age of information, there will be plenty of opportunities for clinical lab scientists and pathologists to take their labs’ patient data and combine it with other sets of data. Digital tools like artificial intelligence (AI) and machine learning would then be used to assess that large pool of data and produce clinically actionable insights. In turn, that positions labs to add more value and be paid for that value.
Insights learned from Canada’s experience may benefit clinical laboratories and anatomic pathology groups in the US as well
Canada continues to face a severe shortage of skilled healthcare professionals, especially among medical laboratory technologists (MLTs) and radiology technicians (RTs). According to the Canadian Society for Medical Laboratory Science (CSMLS), “In 2010, the Canadian Institute for Health Information (CIHI) identified that approximately half of all MLTs would be eligible to retire in 10 years, with the greatest impact felt in Canada’s rural and remote communities.” Today, “This staffing concern is currently affecting the professional community across all provinces and territories resulting in the decrease of workers, dramatically impacting organizations and their employees.”
One thing true of government-run healthcare programs is that they consistently underinvest in building new facilities, upgrading older facilities, and training/retaining enough physicians, nurses, and clinical laboratory/radiology workers. This is seen in the UK, Canada, New Zealand, and Australia, where varies combinations of facility, physician, and other healthcare professional shortages generate regular headlines about patient wait times—particularly for elective procedures—that may be six months to a year or more.
For example, officials at Pasqua Hospital in Regina, which serves patients in southern Saskatchewan, Canada, say diagnostics services may need to be shut down by the end of January as a result of “extended, chronic staffing shortages.”
“We’re barely struggling to keep up with urgent cases,” Christy Labreche, a nuclear medicine technologist told the Regina-Leader Post, which noted that people requesting non-urgent treatment may need to make appointments six to 12 weeks out.
Pasqua Hospital leaders have asked province officials to take “immediate action,” but they feel their concerns are “falling on deaf ears,” the Leader Post reported.
“For over a decade, we have been sounding the alarm on behalf of our members that provide a vital service in the continuum of care,” said nuclear medicine technologist Bashir Jalloh (above) in a CUPE statement. Jalloh is President of CUPE 5430, Saskatchewan’s largest healthcare union which represents medical technologists in a variety of specialties. “Now, as waitlists grow, we are at risk of more disruptions of services and communities on bypass for critical care at a time when wait lists are as long as ever.” Clinical laboratory leaders in the US can gain valuable insights from the struggle with shortages taking place in Canada. (Photo copyright: Regina-Leader Post.)
Chrobak noted the following reasons for the deficit of MLTs in Canada:
An aging workforce: Many current lab scientists are over age 50, signaling a “potential shortage of medical laboratory technologists when seasoned professionals retire.”
Lack of awareness and representation: Other healthcare fields may benefit by being in the public spotlight, while “opportunities and rewards” of a medical lab technology career may not be apparent to job seekers.
Insufficient funding for educational programs: The need for laboratory professionals may supersede “scarce healthcare dollars that fund education programs.”
Barriers to registration: International applicants may be challenged in “recognition of existing field-of-practice competencies.”
Solutions: Improve Recruitment, Retention
To address the MLT shortages across Canada, CAMLPR aims to step up the registration of people interested in the medical laboratory profession through a project in partnership with the Canadian government called the Flexible Pathways to Registration for Medical Laboratory Technologists. The goal is to develop competency standards for entering the profession, ease the registration process, and increase the supply of qualified health professionals in Canada, according to a news release.
This is not the first time Dark Daily has covered Canada’s lab worker shortages.
In “Clinical Laboratories Suffer During the ‘Great Resignation’,” we reported how the so-called “Great Resignation” caused by the COVID-19 pandemic has had a severe impact on clinical laboratory staffs, creating shortages of pathologists as well as of medical technologists, medical laboratory technicians, and other lab scientists who are vital to clinical laboratories in both Canada and the US.
And in “Lab Staffing Shortages Reaching Dire Levels,” Dark Daily’s sister publication, The Dark Report, noted that CAP Today characterized the current lab staffing shortage as going “from simmer to rolling boil” and that demand for medical technologists and other certified laboratory scientists far exceeds the available supply. Consequently, many labs use overtime and temp workers to handle daily testing, a strategy that has led to staff burnout and a high turnover rate.
Shortages in other areas of Canadian healthcare are on the rise as well, which we covered in “Number of Unfilled Medical Residencies Increases in Alberta and Other Areas of Canada.” We reported that, according to the Angus Reid Institute, approximately half of all Canadians cannot find a doctor or get a timely appointment with their current doctor. And that, just like in many parts of America, certain provinces are experiencing severe medical staffing shortages that includes clinical laboratories and pathology groups.
Global Insights May Offer Ideas
Dark Daily’s coverage of healthcare industry challenges in Canada, the US, and other countries is aimed at helping clinical laboratory managers and pathologists understand challenges faced by government-run healthcare systems, where there is constant pressure on the government to provide adequate funding. Capital is needed to modernize and expand hospitals and clinics. At the same time, there is need to expand training opportunities to solve the shortage of clinical laboratory scientists, medical laboratory and imaging technologists, doctors, nurses, and other medical professionals.
The insights gained by studying these healthcare systems may be of value to US-based hospitals and medical laboratories that face their own worker recruitment and retention issues.
Norwegian researchers reviewed large clinical trials of six common cancer screenings, including clinical laboratory tests, but some experts question the findings
Cancer screenings are a critical tool for diagnosis and treatment. But how much do they actually extend the lives of patients? According to researchers at the University of Oslo in Norway, not by much. They recently conducted a review and meta-analysis of 18 long-term clinical trials, five of the six most commonly used types of cancer screening—including two clinical laboratory tests—and found that with few exceptions, the screenings did not significantly extend lifespans.
The 18 long-term clinical trials included in the study were randomized trials that collectively included a total of 2.1 million participants. Median follow-up periods of 10 to 15 years were used to gauge estimated lifetime gain and mortality.
“The findings of this meta-analysis suggest that current evidence does not substantiate the claim that common cancer screening tests save lives by extending lifetime, except possibly for colorectal cancer screening with sigmoidoscopy,” the researchers wrote in their published paper.
The researchers noted, however, that their analysis does not suggest all screenings should be abandoned. They also acknowledged that some lives are saved by screenings.
“Without screening, these patients may have died of cancer because it would have been detected at a later, incurable stage,” the scientists wrote, MedPage Today reported. “Thus, these patients experience a gain in lifetime.”
Still, some independent experts questioned the validity of the findings.
Gastroenterologist Michael Bretthauer, MD, PhD (above), a professor at the University of Oslo in Norway led the research into cancer screenings. In their JAMA Internal Medicine paper, he and his team wrote, “The findings of this meta-analysis suggest that colorectal cancer screening with sigmoidoscopy may extend life by approximately three months; lifetime gain for other screening tests appears to be unlikely or uncertain.” How their findings might affect clinical laboratory and anatomic pathology screening for cancer remains to be seen. (Photo copyright: University of Oslo.)
Pros and Cons of Cancer Screening
The clinical trials, according to MedPage Today and Oncology Nursing News covered the following tests:
Mammography screening for breast cancer (two trials).
As reported in these trials, “colorectal cancer screening with sigmoidoscopy prolonged lifetime by 110 days, while fecal testing and mammography screening did not prolong life,” the researchers wrote. “An extension of 37 days was noted for prostate cancer screening with prostate-specific antigen testing and 107 days with lung cancer screening using computed tomography, but estimates are uncertain.”
The American Cancer Society (ACS) recommends certain types of screening tests to detect cancers and pre-cancers before they can spread, thus improving the chances for survival.
The ACS advises screenings for breast cancer, colorectal cancer, and cervical cancer regardless of whether the individual is considered high risk. Lung cancer screenings are advised for people with a history of smoking. Men who are 45 to 50 or older should discuss the pros and cons of prostate cancer screening with their healthcare providers, the ACS states.
A CNN report about the University of Oslo study noted that the benefits and drawbacks of cancer screening have long been well known to doctors.
“Some positive screening results are false positives, which can lead to unnecessary anxiety as well as additional screening that can be expensive,” CNN reported. “Tests can also give a false negative and thus a false sense of security. Sometimes too, treatment can be unnecessary, resulting in a net harm rather than a net benefit, studies show.”
In their JAMA paper, the University of Oslo researchers wrote, “The critical question is whether the benefits for the few are sufficiently large to warrant the associated harms for many. It is entirely possible that multicancer detection blood tests do save lives and warrant the attendant costs and harms. But we will never know unless we ask,” CNN reported.
Hidden Impact on Cancer Mortality
ACS Chief Scientific Officer William Dahut, MD, told CNN that screenings may have an impact on cancer mortality in ways that might not be apparent from randomized trials. He noted that there’s been a decline in deaths from cervical cancer and prostate cancer since doctors began advising routine testing.
“Cancer screening was never really designed to increase longevity,” Dahut said. “Screenings are really designed to decrease premature deaths from cancer.” For example, “if a person’s life expectancy at birth was 80, a cancer screening may prevent their premature death at 65, but it wouldn’t necessarily mean they’d live to be 90 instead of the predicted 80,” CNN reported.
Dahut told CNN that fully assessing the impact of cancer screenings on life expectancy would require a clinical trial larger than those in the new study, and one that followed patients “for a very long time.”
“From its title, one would have expected this paper to be based on analysis of individual lifetime data. However, it is not,” he wrote in a compilation of expert commentary from the UK’s Science Media Center. “The paper’s conclusions are based on arithmetic manipulation of relative rates of all-cause mortality in some of the screening trials. It is therefore difficult to give credence to the claim that screening largely does not extend expected lifetime.”
He also questioned the inclusion of one particular trial in the University of Oslo study—the Canadian National Breast Screening Study—“as there is now public domain evidence of subversion of the randomization in this trial,” he added.
Another expert, Leigh Jackson, PhD, of the University of Exeter in the UK, described the University of Oslo study as “methodologically sound with some limitations which the authors clearly state.”
But he observed that “the focus on 2.1 million individuals is slightly misleading. The study considered many different screening tests and 2.1 million was indeed the total number of included patients, however, no calculation included that many people.”
Jackson also characterized the length of follow-up as a limitation. “This may have limited the amount of data included and also not considering longer follow-up may tend to underestimate the effects of screening,” he said.
This published study—along with the range of credible criticisms offered by other scientists—demonstrates how analysis of huge volumes of data is making it possible to tease out useful new insights. Clinical laboratory managers and pathologists can expect to see other examples of researchers assembling large quantities of data across different areas of medicine. This huge pools of data will be analyzed to determine the effectiveness of many medical procedures that have been performed for years with a belief that they are helpful.
Biobattery might one day power clinical laboratory testing devices designed to function in vivo to measure and wirelessly report certain biomarkers
Clinical laboratories may one day regularly process biomarker data sent by ingested medical devices from inside the human body, such as the colon and intestines. But powering such devices remains a challenge for developers. Now, researchers at Binghamton University in New York have developed a biobattery that derives its power based on pH reactions when it comes in contact with acids inside the gut.
The battery uses “bacteria to create low levels of electricity that can power sensors and Wi-Fi connections as part of the Internet of Things,” according to a Binghamton University news release.
The biobattery uses microbial fuel cells with spore-forming bacteria for power and it remains inactive until it reaches the small intestine.
Ingestible devices, such as wireless micro cameras, are being utilized more frequently to investigate a myriad of activities that occur in vivo. But traditional batteries that power ingestible diagnostic gadgets can be potentially harmful and are less reliable.
In addition, the small intestine in humans is typically between 10 and 18 feet in length and it folds several times to fit the abdomen. Thus, the inside area can be very difficult to reach for diagnostic purposes.
“There are some regions in the small intestine that are not reachable, and that is why ingestible cameras have been developed to solve this issue,” said Seokheun “Sean” Choi, PhD (above), Professor of Electrical and Computer Engineering at Binghamton University, in a news release. “They can do many things, such as imaging and physical sensing, even drug delivery. The problem is power. So far, the electronics are using primary batteries that have a finite energy budget and cannot function for the long term.” As these technologies develop, clinical laboratories may play a role in collecting biomarker data from these devices interpretation by physicians. (Photo copyright: Binghamton University/Jonathan Cohen.)
How Binghamton Researchers Developed Their Biobattery
The dime-sized fuel cell assembly is then sealed with a piece of Kapton tape, which can withstand temperatures from -500 to 750 degrees Fahrenheit. When the tape is removed, moisture mixes with a chemical germinant that causes the bacteria to begin manufacturing spores.
The biobattery generates around 100 microwatts per square centimeter of power density, but it can take up to an hour to germinate completely. After one hour, the energy generated from the device can power an LED light, a small clock, or a digital hygrometer, as well as a micro camera for in vivo use.
“We wanted to make these bio-batteries for portable, storable, and on-demand power generation capabilities,” Choi said in the news release.
“The problem is, how can we provide the long-term storage of bacteria until used? And if that is possible, then how would you provide on-demand battery activation for rapid and easy power generation? And how would you improve the power?” Choi added.
Heating the fuel cell decreased the time it took to reach full power to 20 minutes, and increasing the humidity resulted in higher electrical output.
Potential for Long-term Power Storage
In addition, after a week of being stored at room temperature, the activated battery had only lost 2% of its power. The researchers also believe that the device could function properly in an inactivate state for up to 100 years, provided there is enough moisture to activate the bacteria after the Kapton tape is removed.
“The overall objective is to develop a microbial fuel cell that can be stored for a relatively long period without degradation of bio-catalytic activity, and also can be rapidly activated by absorbing moisture from the air,” said Choi in the news release.
More research and studies are needed to confirm the biobattery performs properly and is feasible for general use. This experimentation would require both animal and human testing, along with biocompatibility studies.
“I think this is a good start,” Choi added. “Hopefully, we can make a commercial product using these ideas.”
If the biobattery can power an ingestible medical device for a reasonable period of time, then this invention may be able to power a clinical laboratory testing device that could function in vivo to measure and wirelessly report certain biomarkers inside the body.
Collected data could give healthcare providers and clinical laboratories a practical view of individuals’ oral microbiota and lead to new diagnostic assays
When people hear about microbiome research, they usually think of the study of gut bacteria which Dark Daily has covered extensively. However, this type of research is now expanding to include more microbiomes within the human body, including the oral microbiome—the microbiota living in the human mouth.
One example is coming from Genefitletics, a biotech company based in New Delhi, India. It recently launched ORAHYG, the first and only (they claim) at-home oral microbiome functional activity test available in Asia. The company is targeting the direct-to-consumer (DTC) testing market.
According to the Genefitletics website, the ORAHYG test can decode the root causes of:
“Using oral microbial gene expression sequencing technology and its [machine learning] model, [Genefitletics] recently debuted its oral microbiome gene expression solution, which bridges the gap between dentistry and systemic inflammation,” ETHealthworld reported.
“The molecular insights from this test would give an unprecedented view of functions of the oral microbiome, their interaction with gut microbiome and impact on metabolic, cardiovascular, cognitive, skin, and autoimmune health,” BioSpectrum noted.
“Microbes, the planet Earth’s original inhabitants, have coevolved with humanity, carry out vital biological tasks inside the body, and fundamentally alter how we think about nutrition, medicine, cleanliness, and the environment,” Sushant Kumar (above), founder and CEO of Genefitletics, told the Economic Times. “This has sparked additional research over the past few years into the impact of the trillions of microorganisms that inhabit the human body on our health and diverted tons of funding into the microbiome field.” Clinical laboratories may eventually see an interest and demand for testing of the oral microbiome. (Photo copyright: ETHealthworld.)
Imbalanced Oral Microbiome Can Trigger Disease
The term microbiome refers to the tiny microorganisms that reside on and inside our bodies. A high colonization of these microorganisms—including bacteria, fungi, yeast, viruses, and protozoa—live in our mouths.
“Mouth is the second largest and second most diverse colonized site for microbiome with 770 species comprising 100 billion microbes residing there,” said Sushant Kumar, founder and CEO of Genefitletics, BioSpectrum reported. “Each place inside the mouth right from tongue, throat, saliva, and upper surface of mouth have a distinctive and unique microbiome ecosystem. An imbalanced oral microbiome is said to trigger onset and progression of type 2 diabetes, arthritis, heart diseases, and even dementia.”
The direct-to-consumer ORAHYG test uses a saliva sample taken either by a healthcare professional or an individual at home. That sample is then sequenced through Genefitletics’ gene sequencing platform and the resulting biological data set added to an informatics algorithm.
Genefitletics’ machine-learning platform next converts that information into a pre-symptomatic molecular signature that can predict whether an individual will develop a certain disease. Genefitletics then provides that person with therapeutic and nutritional solutions that can suppress the molecules that are causing the disease.
“The current industrial healthcare system is really a symptom care [system] and adopts a pharmaceutical approach to just make the symptoms more bearable,” Kumar told the Economic Times. “The system cannot decode the root cause to determine what makes people develop diseases.”
Helping People Better Understand their Health
Founded in 2019, Genefitletics was created to pioneer breakthrough discoveries in microbial science to promote better health and increase longevity in humans. The company hopes to unravel the potential of the oral microbiome to help people fend off illness and gain insight into their health.
“Microorganisms … perform critical biological functions inside the body and transform our approach towards nutrition, medicine, hygiene and environment,” Kumar told CNBC. “It is important to understand that an individual does not develop a chronic disease overnight.
“It starts with chronic inflammation which triggers pro-inflammatory molecular indications. Unfortunately, these molecular signatures are completely invisible and cannot be measured using traditional clinical grade tests or diagnostic investigations,” he added. “These molecular signatures occur due to alteration in gene expression of gut, oral, or vaginal microbiome and/or human genome. We have developed algorithms that help us in understanding these alterations way before the clinical symptoms kick in.”
Genefitletics plans to utilize individuals’ collected oral microbiome data to determine their specific nutritional shortcomings, and to develop personalized supplements to help people avoid disease.
The company also produces DTC kits that analyze gut and vaginal microbiomes as well as a test that is used to evaluate an infant’s microbiome.
“The startup wants to develop comparable models to forecast conditions like autism, PCOS [polycystic ovarian syndrome], IBD [Inflammatory bowel disease], Parkinson’s, chronic renal [kidney] disease, anxiety, depression, and obesity,” the Economic Times reported.
Time will tell whether the oral microbiome tests offered by this company prove to be clinically useful. Certainly Genefitletics hopes its ORAHYG test can eventually provide healthcare providers—including clinical laboratory professionals—with a useful view of the oral microbiome. The collected data might also help individuals become aware of pre-symptomatic conditions that make it possible for them to seek confirmation of the disease and early treatment by medical professionals.