News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

University of Colorado Boulder Scientists Demonstrate Acoustic-based Diagnostic System

Small handheld device uses sound waves to detect certain clinical laboratory biomarkers in blood samples

University of Colorado Boulder researchers have developed a novel technology that uses sound waves to test for biomarkers in blood samples. In addition to being very easy to use, the handheld device is portable, highly sensitive, and delivers results in minutes. Though not ready for clinical use, this is yet another example of how researchers are developing faster diagnostic tests that can be performed in near-patient settings, and which do not have to be done in core laboratories, shortening time to answer.

The small instrument—referred to as an “acoustic pipette”—delivers sound waves to tiny particles within the device called “functional negative acoustic contrast particles” (fNACPs). These particles are cell-sized balls that can be customized with different coatings to identify specific biomarkers—such as viruses or proteins—in tiny blood samples, according to a news release.

To operate the device, the custom fNACPs are mixed with a drop of blood and then placed inside the acoustic pipette. The mixture is then blasted with sound waves, which forces particles carrying certain biomarkers to one side of the chamber where they are trapped while the rest of the blood is expelled. The captured biomarkers are then labeled with fluorescent tags and examined with lasers to determine how much of a specific biomarker is present. 

The researchers published their findings in the journal Science Advances titled, “Acoustic Pipette and Biofunctional Elastomeric Microparticle System for Rapid Picomolar-Level Biomolecule Detection in Whole Blood.”

“We’re basically using sound waves to manipulate particles to rapidly isolate them from a really small volume of fluid,” said Cooper Thome (above), PhD candidate in Chemical and Biological Engineering at UC Boulder and first author of the study in a news release. “It’s a whole new way of measuring blood biomarkers,” he added. Should further studies validate this approach, clinical laboratories may be able to use this technology to perform diagnostic tests with smaller volumes of patient samples. (Photo copyright: University of Colorado Boulder.)

Blood Testing Quickly and in Multiple Settings

To test their invention, the UC Boulder researchers examined antibodies against a protein called ovalbumin, which is found in egg whites and often used in the development of various vaccines. The scientists discovered that their device could detect the antibodies even in low amounts. 

Current rapid tests known as lateral-flow assays can detect specific biomarkers in blood or urine samples but cannot determine how much of the biomarker is present. Enzyme-linked immunotherapy assays (ELISA), the leading clinical laboratory blood test, requires expensive equipment and can take hours to days for results to be received. 

With UC Boulder’s new handheld device, tiny blood samples collected from a single finger prick could ensure accurate test results are available quickly at the point of care as well as outside of traditional healthcare settings. This would greatly benefit people in developing nations and underserved communities and may help ease test anxiety for individuals who are apprehensive about traditional blood tests. 

“We’ve developed a technology that is very user friendly, can be deployed in various settings, and provides valuable diagnostic information in a short time frame,” said Wyatt Shields IV, PhD, Assistant Professor, Department of Chemical and Biological Engineering, UC Boulder, and senior author of the research in the news release.

“In our paper, we demonstrate that this pipette and particle system can offer the same sensitivity and specificity as a gold-standard clinical test can but within an instrument which radically simplifies workflows,” he added. “It gives us the potential to perform blood diagnostics right at the patient’s bedside.”

The graphic above, taken from UC Boulder’s published paper, illustrates how “fNACPs capture target biomarkers from whole blood samples. fNACPs are purified from blood components by acoustic trapping and captured biomarkers are labeled with a fluorescent antibody within the acoustic pipette. fNACP fluorescence is then measured to determine biomarker presence and concentration.” (Graphic/caption copyright: University of Colorado Boulder.)

Not Like Theranos

The authors of the UC Boulder study are cognizant of some skepticism surrounding the field of biosensing, especially after the downfall of Theranos. The scientists insist their technology is different and based on systematic experiments and peer-reviewed research.

“While what they (Theranos) claimed to do isn’t possible right now, a lot of researchers are hoping something similar will be possible one day,” said Thome in the news release. “This work could be a step toward that goal—but one that is backed by science that anybody can access.”

The device is still in its initial proof-of-concept stage, but the UC Boulder scientists have applied for patents for the apparatus and are searching for ways to scale its use and expand its capabilities.

“We think this has a lot of potential to address some of the longstanding challenges that have come from having to take a blood sample from a patient, haul it off to a lab, and wait to get results back,” Shields noted.

More research, studies, and regulatory reviews will be needed before this technology becomes available for regular, widespread use. But UC Boulder’s new blood testing device is another example of a research team using novel technology to test for known biomarkers in ways that could improve standard clinical laboratory testing. 

—JP Schlingman

Related Information:

Acoustic Pipette and Biofunctional Elastomeric Microparticle System for Rapid Picomolar-level Biomolecule Detection in Whole Blood

New Device Could Deliver Bedside Blood Test Results in an Hour

Handheld Diagnostic Performs 1-hour Blood Tests from a Finger Prick

New Handheld Device Could Deliver Bedside Blood Test Results in Under an Hour

University College London Researchers Develop Carbon Beads That Slow the Progress of Liver Disease and Improve Gut Microbiome

As this therapeutic approach gains regulatory approval, clinical laboratory tests to determine condition of patient’s gut microbiota and monitor therapy will be needed

Some developments in the clinical laboratory industry are less about diagnostic tests and more about novel approaches to therapy. Such is the case with a new carbon bead technology developed by researchers from University College London (UCL) and the Royal Free Hospital intended to remove harmful bacteria toxins from the gut before they leak to the liver. The macroporous beads, which come in small pouches, are delivered orally and could be utilized in the future to treat a number of diseases.

Why is this relevant? Once a new treatment is accepted for clinical use, demand increases for a clinical laboratory test that confirms the therapy will likely work and to monitor its progress.

In collaboration with Yaqrit, a UK-based life sciences company that develops treatments for chronic liver disease, the UCL and Royal Free Hospital scientists engineered the carbon beads—known as CARBALIVE—to help restore gut health. They measured the technology’s impact on liver, kidney, and brain function in both rats and mice.

“The influence of the gut microbiome on health is only just beginning to be fully appreciated,” said Rajiv Jalan, PhD, Professor of Hepatology at UCL in a press release. “When the balance of the microbiome is upset, ‘bad’ bacteria can proliferate and out-compete the ‘good’ bacteria that keeps the gut healthy.

“One of the ways [the ‘bad’ bacteria] do this is by excreting endotoxin, toxic metabolites, and cytokines that transform the gut environment to make it more favorable to them and hostile to good bacteria,” he continued. “These substances, particularly endotoxin, can trigger gut inflammation and increase the leakiness of the gut wall, resulting in damage to other organs such as the liver, kidneys, and brain.”

The researchers published their findings in Gut, a journal of the British Society of Gastroenterology, titled, “Clinical, Experimental and Pathophysiological Effects of Yaq-001: A Non-absorbable, Gut-restricted Adsorbent in Models and Patients with Cirrhosis.”

“I have high hopes that the positive impact of these carbon beads in animal models will be seen in humans, which is exciting not just for the treatment of liver disease but potentially any health condition that is caused or exacerbated by a gut microbiome that doesn’t work as it should,” said Rajiv Jalan, PhD (above), Professor of Hepatology, University College London, in a press release. “This might include conditions such as irritable bowel syndrome (IBS), for example, which is on the rise in many countries.” Though not a clinical laboratory diagnostic test, new therapies like CARBALIVE could be a boon to physicians treating patients with IBS and other gastrointestinal conditions.

Developing the Carbon Beads

The team discovered CARBALIVE is effective in the prevention of liver scarring and injury in animals with cirrhosis when ingested daily for several weeks. They also found a reduced mortality rate in test animals with acute-on-chronic-liver-failure (ACLF).

After achieving success with CARBALIVE in animals, the researchers tested the technology on 28 cirrhosis patients. The carbon beads proved to be safe for humans and had inconsequential side effects.

“In cirrhosis, a condition characterized by scarring of the liver, it is known that inflammation caused by endotoxins can exacerbate liver damage,” Jalan explained. “Part of the standard treatment for cirrhosis is antibiotics aimed at controlling bad bacteria, but this comes with the risk of antibiotic resistance and is only used in late-stage disease.”

The beads, which are smaller than a grain of salt, contain an exclusive physical structure that absorbs large and small molecules in the gut. They are intended to be taken with water at bedtime as harmful bacteria is more likely to circulate through the body at night which could result in damage. The carbon beads do not kill bacteria, which decreases the risk of antibiotic resistance. They eventually pass through the body as waste.

“They work by absorbing the endotoxins and other metabolites produced by ‘bad’ bacteria in the gut, creating a better environment for the good bacteria to flourish and helping to restore microbiome health,” said Michal Kowalski, M.Sc.Eng, Director and VP of Operations at Yaqrit, in the UCL news release.

“This prevents these toxins from leaching into other areas of the body and causing damage, as they do in cirrhosis,” he added. “The results in animal models are very positive, with reduction in gut permeability, liver injury, as well as brain and kidney dysfunction.”

Additional Research

The researchers plan to perform further clinical trials in humans to determine if the carbon beads are effective at slowing the progression of liver disease. If the benefits that were observed in lab animals prove to be compelling in humans, the technology may become an invaluable tool for the treatment of liver disease and other diseases associated with poor microbiome health in the future.

According to the American Liver Foundation, 4.5 million adults in the US have been diagnosed with liver disease. However, it is estimated that 80 to 100 million adults have some form of fatty liver disease and are unaware of it. Liver disease was the 12th leading cause of death in the US in 2020 with 51,642 adults perishing from the disease that year.

According to BMC Public Health, globally there were 2.05 million new cases of liver cirrhosis diagnosed in 2019. In that year, 1.47 million people around the world died from the disease.

More research and clinical studies are needed before this novel technology can be used clinically. When and if that happens, the demand for clinical laboratory tests that measure microbiome deficiencies and monitor patient progress during therapy will likely be high.

—JP Schlingman

Related Information:

Carbon Beads Help Restore Healthy Gut Microbiome and Reduce Liver Disease Progression

Clinical, Experimental and Pathophysiological Effects of Yaq-001: A Non-absorbable, Gut-restricted Adsorbent in Models and Patients with Cirrhosis

Tiny Beads of Carbon Could Save Lives

UCL Study Reveals Carbon Beads Could Help Reduce Progression of Liver Disease

How Many People Have Liver Disease?

Global Epidemiology of Cirrhosis—Aetiology, Trends and Predictions

Global Burden of Liver Cirrhosis and Other Chronic Liver Diseases Caused by Specific Etiologies from 1990 to 2019

Acute-on-Chronic Liver Failure: Definition, Prognosis and Management

Multiple Medical Teams Use Apple Vision Pro XR Headset During Surgical Procedures, Signaling Emergence of Extended Reality Applications in Healthcare

Technology like Apple’s VR/AR headsets may prove useful to clinical laboratories in accessioning and in pathology labs during biopsy grossing

In what has been billed as a first, medical teams in the US and UK used Apple’s Extended Reality (XR) Vision Pro headset system to assist in surgical procedures. The surgeons themselves did not wear the $3,500 headset. Instead, surgical nurses used the device for touch-free access to a software application that assisted them in setting up, organizing, and performing the operations. For pathologists and clinical laboratories, in the histology laboratory, such an arrangement involving XR headsets could be used when a biopsy is at the grossing station as well.

The headset software the team used during surgery was developed by eXpanded eXistence, Inc. (eXeX), a Florida-based company whose primary product is an iOS (Apple mobile operating system) application that provides similar functions for mobile devices. eXeX adapted the iOS app to work on Apple’s Extended Reality headset.

Extended Reality is an umbrella term for augmented reality (AR) and virtual reality (VR). Apple refers to the technology as “spatial” computing.

Within the clinical laboratory, XR headsets could be used in the accessioning process as the accessioner works through the steps to confirm all required information accompanies the test requisition and that the patient’s specimen is processed/aliquoted appropriately.

“The eXeX platform, enhanced by artificial intelligence, is designed not as a medical device but as an organizational and logistics tool. It aims to streamline the management of tens of thousands of items, including equipment, tools, technologies, consumables, implants, and surgical products,” said neurosurgeon Robert Masson, MD, eXeX’s founder and CEO, in a February news release.

Masson first deployed the software in his own surgical practice. Then in March, eXeX announced that a surgical team at Cromwell Hospital in London used the system in two microsurgical spine procedures, according to a March new release.

That news garnered media coverage in the UK as well as in US-based publications that follow Apple.

Another early user, eXeX announced, was G. Russell Huffman, MD, MPH, of Rothman Orthopaedic Institute. Huffman’s team used the software to perform a reverse total shoulder arthroplasty procedure at the AdventHealth Surgery Center Innovation Tower in Orlando, according to an April news release.

“We are in a new era of surgery, and for the first time, our surgical teams have the brilliance of visual holographic guidance and maps, improving visuospatial and temporal orientation for each surgical team and for each surgery in all specialties,” said neurosurgeon Robert Masson, MD (above), eXeX’s founder and CEO, in a press release. Clinical laboratories may one day use XR headsets in the histology lab at the grossing station. (Photo copyright: Masson Spine Institute.)

Surgical Process Not Glamorous, But Important

Despite being on a cutting-edge XR platform, the eXeX software addresses “the least glamorous part” of the surgical process, Masson told Gizmodo.

“People assume that surgical healthcare has got to be sophisticated and modern,” he said. “The reality is the way we organize it is probably the most archaic of all the major industries on the planet. It’s all memorization and guesswork with scribbles on pieces of paper.”

The advantage of an XR headset is that it allows use of the eXeX software in a sterile environment, he added. “The ability to interact with digital screens and holograms and lists and maps and products unlocks all kinds of possibilities. Suddenly, you’ve got an interactive digital tool that you can use without violating the sanctity of sterility.”

Does he foresee a future when the surgeons themselves use XR headsets in the operating room? Not necessarily, Masson told Gizmodo.

“There’s always a tendency to say, ‘look at this amazing tech, let’s put a screw in with it,’” he said. “Well, we’re already putting screws in without the headset, so it doesn’t really solve a problem. People tend to think of floating spines, floating heights, you know, an overlay that tells you where to put a catheter in the liver. Honestly, it’s all unnecessary because we already do that pretty well. What we don’t do really well is stay organized.”

Other XR Apps for Healthcare

In a news release, Apple showcased other healthcare apps for its Vision Pro platform.

Epic Systems, an electronic health record (EHR) system developer, has an app called Epic Spatial Computing Concept that allows clinicians “to easily complete charting, review labs, communicate using secure chat, and complete in-basket workflows through intuitive gestures, like simply tapping their fingers to select, flicking their wrist to scroll, or using a virtual keyboard or dictation to type,” Apple stated in the news release.

Stryker, manufacturer of Mako surgical robotic arms for joint-replacement procedures, has an Apple iOS app called myMako that “allows surgeons to visualize and review patients’ Mako surgical plans at any time in a brilliant, immersive visual experience,” Apple said.

Boston Children’s Hospital developed an Apple iOS app called CyranoHealth designed to train nurses and other healthcare professionals in how to use new medical technologies, such as infusion pumps.

Cinematic Reality, from Siemens Healthineers, is an Apple iOS app that “allows surgeons, medical students, and patients to view immersive, interactive holograms of the human body captured through medical scans in their real-world environment,” Apple said.

New Era in Technology

For the past 20 years, manufacturing companies have installed systems at workstations with audio and video that show each step in a work process and with written checklists on the computer screen. This allows workers to check off each required step as proof that each required work element was performed.

This is similar to professional pilots who use checklists at every step in a flight process. One pilot will read the checklist items, the other will perform the step and confirm it was complete.

These procedures are generally completed on computer displays, but with the advent of XR headset technology, these types of procedures are evolving toward mobility.

To prepare for the emergence of XR-based healthcare apps, the US Food and Drug Administration (FDA) has organized a research team to devise best practices for testing these headset devices, CNBC reported.

It will be some time before XR headset technology finds its way into histology laboratories, clinical laboratories, and pathology practices, but since the rate of technology adoption accelerates exponentially, it might not take very long.

—Stephen Beale

Related Information:

eXeX and Neurosurgeon Dr. Robert Masson Achieve World First Using Apple Vision Pro

eXeX and Cromwell Hospital Pioneer the First Use of Apple Vision Pro in UK Surgery

eXeX and AdventHealth Surgery Center Innovation Tower Pioneer Use of Apple Vision Pro in Joint Replacement Surgery

Vision Pro Used in Surgery “To Eliminate Human Error”

This Startup Wants to Use the Apple Vision Pro for the Most Boring Part of Surgery

Doctors Are Using the Apple Vision Pro During Surgery

Apple’s Vision Pro Was Used in Surgery to Help Perform Spinal Operations

Apple Vision Pro Unlocks New Opportunities for Health App Developers

CDC, FDA Warn Providers about Critical Shortage of Becton Dickinson Blood Culture Media Bottles

Shortage could disrupt the ability of clinical laboratories in hospitals and health systems to run certain tests for bloodstream infections

US clinical laboratories may soon experience a “disruption of availability” of BACTEC blood culture media bottles distributed by Becton Dickinson (BD). That’s according to the federal Centers for Disease Control and Prevention (CDC) which issued a Health Alert Network (HAN) Health Advisory to all clinical laboratory professionals, healthcare providers and facility administrators, and other stakeholders warning of the potential shortfall of critical testing supplies.

“This shortage has the potential to disrupt patient care by leading to delays in diagnosis, misdiagnosis, or other challenges in the clinical management of patients with certain infectious diseases,” the CDC stated in the health advisory.

The CDC advises healthcare providers and health departments that use the bottles to “immediately begin to assess their situations and develop plans and options to mitigate the potential impact of the shortage on patient care.”

The advisory notes that the bottles are a key component in continuous-monitoring blood culture systems used to diagnose bloodstream infections and related conditions, such as endocarditis, sepsis, and catheter-related infections. About half of all US laboratories use the BD blood culture system, which is compatible only with the BACTEC bottles, the CDC advisory states.

Infectious disease specialist Krutika Kuppalli, MD (above), Chair of the Infectious Diseases Society of America (IDSA) and a Medical Officer for COVID-19 Health Operations at the World Health Organization, outlined the potential impact of the shortage on healthcare providers and clinical laboratories. “Without the ability to identify pathogens or [their susceptibility to specific antibiotics], patients may remain on broad antibiotics, increasing the risk of antibiotic resistance and Clostridium difficile-associated diarrhea,” she told STAT. “Shortages may also discourage ordering blood cultures, leading to missed infections that need treatment.” (Photo copyright: Loyola University Health System.)

FDA Advises Conservation of Existing BACTEC Supplies

The CDC advisory followed a July 10 notice from the US Food and Drug Administration (FDA) that also warned healthcare providers of “interruptions in the supply” of the bottles. The supply disruption “is expected to impact patient diagnosis, follow up patient management, and antimicrobial stewardship efforts,” the FDA’s letter states. “The FDA recommends laboratories and healthcare providers consider conservation strategies to prioritize the use of blood culture media bottles, preserving the supply for patients at highest risk.”

Hospitals have been warned that the bottle shortage could last until September, STAT reported.

BD issued a press release in which BD Worldwide Diagnostic Solutions President Nikos Pavlidis cast blame for the shortage on an unnamed supplier.

“We understand the critical role that blood culture testing plays in diagnosing and treating infections and are taking all available measures to address this important issue, including providing the supplier our manufacturing expertise, using air shipments, modifying BD manufacturing schedules for rapid production, and collaborating with the US Food and Drug Administration to review all potential options to mitigate delays in supply,” Pavlidis said. “As an additional stopgap measure, our former supplier of glass vials will restart production to help fill the intermittent gap in supply.”

Steps Clinical Laboratories Can Take

The CDC and FDA both suggested steps that clinical laboratories and other providers can take to conserve their supplies of the bottles.

  • Laboratories should strive to prevent contamination of blood cultures, which “can negatively affect patient care and may require the collection of more blood cultures to help determine whether contamination has occurred,” the CDC advised.
  • In addition, providers should “ensure that the appropriate volume is collected when collecting blood for culture,” the advisory states. “Underfilling bottles decreases the sensitivity to detect bacteremia/fungemia and may require additional blood cultures to be drawn to diagnose an infection.”
  • Laboratories should also explore alternative options, such as “sending samples out to a laboratory not affected by the shortage.”
  • The FDA advised providers to collect blood cultures “when medically necessary” in compliance with clinical guidelines, giving priority to patients exhibiting signs of a bloodstream infection.

In an email to STAT, Andrew T. Pavia, MD, Professor of Internal Medicine and Pediatrics at the University of Utah, offered examples of situations where blood culture tests are unnecessary according to clinical guidelines.

“There are conditions like uncomplicated community acquired pneumonia or skin infections where blood cultures are often obtained but add very little,” he told STAT. “It will be critical though that blood cultures are obtained from patients with sepsis, those likely to have bloodstream infections, and very vulnerable patients.”

Hospitals Already Addressing Shortage

STAT reported that some hospitals have already taken measures to reduce the number of tests they run. And some are looking into whether they can safely use bottles past their expiration dates.

Sarah Turbett, MD, Associate Director of Clinical Microbiology Laboratories at Massachusetts General Hospital in Boston, told STAT that her team tested bottles “that were about 100 days past their expiration date to see if they were still able to detect pathogens with the same efficacy as bottles that had not yet expired. They saw no difference in the time to bacterial growth—needed to detect the cause of an infection—in the expired bottles when compared to bottles that had not expired.”

Turbett pointed to a letter in the Journal of Clinical Microbiology and Infection in which European researchers found that bottles from a different brand “were stable for between four and seven months after their expiration dates,” STAT reported.

During a Zoom call hosted by the CDC and the IDSA, hospital representatives asked if the FDA would permit use of expired bottles. However, “a representative of the agency was not able to provide an immediate answer,” STAT reported.

With sepsis being the leading cause of death in hospitals, these specimen bottles for blood culture testing are essential in diagnosing patients with relevant symptoms. This is a new example of how the supply chain for clinical laboratory instruments, tests, and consumables—which was a problem during the SARS-CoV-2 pandemic—continues to be problematic in unexpected ways.

Taking a wider view of supply chain issues that can be disruptive to normal operations of clinical laboratories and anatomic pathology groups, the market concentration of in vitro diagnostics (IVD) manufacturers means fewer vendors offering the same types of products. Consequently, if a lab’s prime vendor has a supply chain issue, there are few options available to swiftly purchase comparable products.

A separate but related issue in the supply chain involves “just in time” (JIT) inventory management—made famous by Taiichi Ohno of Toyota back in the 1980s. This management approach was designed to deliver components and products to the user hourly, daily, and weekly, as appropriate. The goal was to eliminate the cost of carrying large amounts of inventory. This concept evolved into what today is called the “Lean Manufacturing” method.

However, as was demonstrated during the SARS-CoV-2 pandemic, manufacturers and medical laboratories that had adopted JIT found themselves with inadequate numbers of components and finished products.

In the case of the current shortage of BD blood culture media bottles, this is a real-world example of how market concentration limited the number of vendors offering comparable products. At the same time, if this particular manufacturer was operating with the JIT inventory management approach, it found itself with minimal inventories of these media bottles to ship to lab clients while it addressed the manufacturing problems that caused this shortage.

—Stephen Beale

Related Information:

Disruptions in Availability of Becton Dickinson (BD) BACTEC Blood Culture Bottles Blood Culture Bottles

Disruptions in Availability of BD BACTEC Blood Culture Media Bottles – Letter to Health Care Providers

BD Statement on Supplier Issue Impacting BD BACTEC Blood Culture Vials

Hospitals, Labs, and Health Departments Try to Cope with Blood Culture Bottle Shortage

CDC Warns of Shortage of Bottles Needed for Crucial Blood Tests

Shortage of Blood Culture Vials Could Impact Patient Care, CDC and FDA Warn

Researchers in China Develop AI-powered Tool That Can Diagnose Three Cancers Using a Drop of Dried Blood

Use of artificial intelligence in clinical laboratory testing could improve the diagnosis of cancer worldwide

In a proof of concept study, scientists at Shanghai Jiao Tong University in China have developed a clinical laboratory test that utilizes artificial intelligence (AI) to diagnose three types of cancer from a single drop of dried blood. The paper-based test was able to identify patients with colorectal, gastric, and pancreatic cancers and distinguish between patients with and without cancer.

The team’s goal was to develop a way to diagnose cancer while the disease is still in the earlier stages, especially in rural areas.

“Over a billion people across the world experience a high rate of missed disease diagnosis, an issue that highlights the need for diagnostic tools showing increased accuracy and affordability. In addition, such tools could be used in ecologically fragile and energy-limited regions, pointing to the need for developing solutions that can maximize health gains under limited resources for enhanced sustainability,” the researchers wrote in an article published in the journal Nature Sustainability titled, “A Sustainable Approach to Universal Metabolic Cancer Diagnosis.”

The researchers determined that by using less than 0.05 millimeters of dried blood, their test could accurately and quickly identify if a patient had cancer between 82% to 100% of the time.

According to Chaoyuan Kuang, MD, PhD (above), an oncologist at Montefiore Health System and assistant professor at the Albert Einstein College of Medicine, unlike liquid blood, dried serum can be “collected, stored, and transported at much lower cost and with much simpler equipment,” Live Science reported. “This could help democratize the availability of cancer early detection testing across the world,” he added. A paper-based clinical laboratory test that can detect and distinguish one cancer type from another would be a boon to cancer diagnosis worldwide. (Photo copyright: Albert Einstein College of Medicine.)

Improving Cancer Screening in Rural Areas

An earlier study conducted in China in 2022 examined results from 1,570 cancer survivors from both urban and rural areas of China. That study showed that 84.1% of the patients were diagnosed with cancer only after developing symptoms and that urban patients were more likely to be diagnosed in the early stages of cancer. In addition, rural patients also had less screening and treatment options available to them.

The researchers in this latest Chinese study tested their AI model on blood donors with and without cancer and compared the results to traditional liquid-blood biopsy tests.

“Based on modeling they performed, they reported the new tool could reduce the estimated proportion of undiagnosed cases of pancreatic, gastric, and colorectal cancers by about 20% to 50% if it was used for population-level cancer screening in rural China,” Live Science reported. 

The scientists used dried serum spots (DSS) and machine learning to perform the research. According to their Nature Sustainability paper, DSS can be challenging in cancer research because sensitive biomarkers in the samples are often degraded or have inadequate amount of blood for proper analysis. To circumvent these issues, the researchers used nanoparticle-enhanced laser desorption/ionization mass spectrometry (NPELDI MS) to increase reliability and sensitivity. Inorganic nanoparticles were applied to the samples to strengthen selectivity and refine metabolic compounds from the samples.

However, the study authors noted that “the adaptation of NPELDI MS to dried spot analysis has not been validated,” Interesting Engineering reported.

A ‘Great Start’

The machine learning algorithm the Chinese scientists created demonstrates that DSS samples can be used to preserve important biological markers and could be beneficial in the diagnosis of cancer. 

Their research indicated an overall reduction rate of undiagnosed cancers in the range of 20.35% to 55.10%. The researchers estimated the implementation of their AI tool could reduce the proportion of specific undiagnosed cancer cases in rural China by:

  • 84.30% to 29.20% for colorectal cancer,
  • 77.57% to 57.22% for gastric cancer, and
  • 34.56% to 9.30% for pancreatic cancer.

It’s a “great start,” Chaoyuan Kuang, MD, PhD, an oncologist at Montefiore Health System and assistant professor at the Albert Einstein College of Medicine told Live Science. “This cancer test won’t enter use for a long time,” he said. Nevertheless, the potential of the tool is “immense,” he added, but that “we are still years away from being able to offer this test to patients. 

“With further development, it could theoretically be used for the early detection of other types of cancer or for other diseases, or to monitor the progression of disease in patients who have already been diagnosed,” he noted.

Further research and clinical trials are needed before this AI tool can be used in a clinical diagnostic setting. This study is another example of researchers looking for cancer biomarkers in specimen types that are not tissue and further supports the hope that machine learning may one day detect cancer in earlier stages, increase survival rates, and save healthcare costs.

One factor motivating this type of research in China is the fact that the nation has more than 36,000 hospitals and approximately 20,000 anatomic pathologists. Of this total, only a minority of these pathologists have been trained to the standards of North America and Northern Europe.

Like other nations, China’s demand for subspecialist pathology services outstrips its supply of such pathologists. This is the reason why researchers in that country want to develop diagnostic assays for cancer and other diseases that are faster, cheaper, and comparable to a human pathologist in accuracy.

—JP Schlingman

Related Information:

Detecting Cancer in Minutes Possible with Just a Drop of Dried Blood and New Test, Study Hints

AI-powered Tool Detects Cancer in Minutes with One Drop of Blood

Dried Blood Spot Testing

A Sustainable Approach to Universal Metabolic Cancer Diagnosis

New Sustainable Diagnostic Approach Offers Precision Cancer Testing with Minimal Environmental Impact

The Urban-Rural Disparities and Associated Factors of Health Care Utilization Among Cancer Patients in China

University Hospitals Birmingham Claims Its New AI Model Detects Certain Skin Cancers with Nearly 100% Accuracy

UK Study Claims AI Reading of CT Scans Almost Twice as Accurate at Grading Some Cancers as Clinical Laboratory Testing of Sarcoma Biopsies

UK’s National Health Service Tests AI Tool That Can Spot Cancer in Mammograms Missed by Doctors

University of Cincinnati Pathologist Develops Speedier Tissue Processing for Small Biopsies

Syringe-based technique is disposable and enables clinical laboratories to process small biopsies in about two hours instead of overnight and with significantly less waste

Histotechnologists and clinical laboratory managers know that the standard method of processing tissue biopsies takes a lot of time and chemical resources and isn’t always efficient. But what if there was a way to process biopsy tissue without the need for large processors that require a large batch of tissue to be economical?

That is what cytopathologist Paul Lee, MD, PhD, Assistant Professor of Clinical Pathology, University of Cincinnati (UC) College of Medicine, asked himself when he set out to design a rapid technique for processing small biopsies.

Lee was inspired to find a way to change the process while completing his residency at the University of Massachusetts, UC News reported.

“I noticed a specific issue with the procedure for fixing and examining tissue samples to look for signs of cancer and other diseases,” Lee told UC News. “And I had this idea.”

His goal was to reduce time to answer for a patient waiting to learn if he/she has cancer.

To achieve this feat, Lee developed a new technique that, according to UC News, “employs a disposable syringe and cuvette to do individual tissue tests, using small paraffin blocks and a combined embedding-fixing process for quick, accurate reads of small biopsies.”

Lee says his technique brings the potential of “immediate reads” closer to reality.

“If that process can take just two hours, not overnight, it becomes an inpatient procedure,” Lee told UC News. “Patients don’t have to go home … and return for a surgery consult, then for surgery itself.

“All that can be arranged in a day or two,” he added. “Patient care won’t be compromised or lost to follow-up.”

Paul Lee, MD, PhD (above), Assistant Professor of Clinical Pathology at University of Cincinnati College of Medicine, compares the development of his new small-biopsy tissue processing technique for histology laboratories and clinical laboratories to the philosophy behind the invention of the Keurig single-serving beverage machine. “Let’s say you’re making a cup of coffee. If you made a whole carafe and only needed one cup, that’d be wasteful—of both time and resources. Think of this as Keurig for specimen processing.” (Photo copyright: University of Cincinnati.)

Simplifying, Accelerating Rapid Tissue Processing

Lee describes the traditional method “coupling large tissue processors with traditional embedding techniques” as “slow and wasteful.” This, he told UC News, is still how tissue processing is done.

“It [uses] huge amounts of solvent, massive paraffin blocks,” he continued, “and [leaves] doctors waiting up to seven hours for results.”

The standard procedure uses “an enormous processor, gallons of solvent, and 300-500 dehydrated specimens embedded in blocks and then cut into slices for slides,” he added.

In addition to the “waste or expense,” the process “prevents physicians from making same-day diagnoses unless they’re willing to destroy precious tissue,” Lee noted.

Lee told UC News that his technique “preserves tissue [and] doesn’t compromise the sample, so we can do ancillary tests to revalidate results … and with the disposable cuvette there’s no chance of cross-contamination. Plus, it can be easily incorporated into existing infrastructure. [It] doesn’t have to upset processes or workflow.”

Lee’s method can also save resources and reduce wait times. “I get requests [from other researchers] all the time for various samples and I have to put a lot of them off for human pathology tests,” Lee said. “They can be their own processors and not wait for results from another lab. It’s quicker for them too and uses fewer resources.”

Other Advantages of Lee’s Method 

Lee’s research team has successfully tested a prototype and they are currently awaiting a patent.

According to UC’s Office of Innovation, advantages of Lee’s new technique for small-biopsy tissue processing include:

  • Rapid, convenient processing.
  • Disposable specimen cuvette (no cross contamination).
  • Antigenicity preservation.
  • Less solvent usage (associated with less cost for solvent disposal).
  • Can be easily incorporated into existing infrastructure.
  • Very small footprint.

“Turn-around times for ‘rapid processing’ using current techniques typically range from four to seven hours, often preventing physicians from making same day diagnosis without destroying precious tissue,” the Office of Innovation noted in a statement. “This often results in delayed diagnosis, additional use of both patient and healthcare resources, and potentially poorer patient outcomes.

“Dr. Paul Lee has developed a novel tissue fixation and embedding system that combines the tissue fixation and embedding process creating a rapid processing block for biological specimens,” UC’s Office of Innovation continued. “The invention dramatically shortens processing and embedding time to approximately two hours while preserving the antigenicity and morphology of the specimen and thus allows for rapid reads of small biopsies in a timeframe that was not previously achievable.”

Lee’s work could streamline tissue processing in histology laboratories and increase efficiency without sacrificing accuracy. Anatomic pathologists and clinical laboratories would be wise to monitor this revolutionary new technology for further developments.

—Ashley Croce

Related Information:

UC Pathologist Designs Rapid Technique For Small Biopsies

Syringe Based Rapid Processor for Small Biopsies

;