News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

MIT’s New Nanoparticle-based Technology Detects Cancer by Using a Multimodal Combination of Urine Tests and Medical Imaging

Use of such precision diagnostics offer ‘early detection, localization, and the opportunity to monitor response to therapy,’ say the MIT scientists

Oncologists and medical laboratory scientists know that most clinical laboratory tests currently used to diagnose cancer are either based on medical imaging technologies—such as CT scans and mammography—or on molecular diagnostics that detect cancer molecules in the body’s urine or blood.

Now, in a study being conducted at the Massachusetts Institute of Technology (MIT), researchers have developed diagnostic nanoparticles that can not only detect cancer cells in bodily fluids but also image the cancer’s location. This is the latest example of how scientists are combining technologies in new ways in their efforts to develop more sensitive diagnostic tests that clinical laboratories and other providers can use to detect cancer and other health conditions.

The MIT researchers published their study in the peer-reviewed scientific journal Nature, titled, “Microenvironment-triggered Multimodal Precision Diagnostics.”

Precision diagnostics such as molecular, imaging, and analytics technologies are key tools in the pursuit of precision medicine.

“Therapeutic outcomes in oncology may be aided by precision diagnostics that offer early detection, localization, and the opportunity to monitor response to therapy,” the authors wrote, adding, “Through tailored target specificities, this modular platform has the capacity to be engineered as a pan-cancer test that may guide treatment decisions for numerous tumor type.”

Development of Multimodal Diagnostics

The MIT scientists are developing a “multimodal” diagnostic that uses molecular screening combined with imaging techniques to locate where a cancer began in the body and any metastases that are present.

“In principle, this diagnostic could be used to detect cancer anywhere in the body, including tumors that have metastasized from their original locations,” an MIT new release noted.

“This is a really broad sensor intended to respond to both primary tumors and their metastases,” said biological engineer Sangeeta Bhatia, MD, PhD (above), in the news release. Bhatia is the John and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science at MIT and senior author of the study.

“It can trigger a urinary signal and also allow us to visualize where the tumors are,” she added. Bhatia previously worked on the development of cancer diagnostics that can produce synthetic biomarkers which are detectable in urine samples.

Sangeeta Bhatia, MD, PhD

“The vision is that you could use this in a screening paradigm—alone or in conjunction with other tests—and we could collectively reach patients that do not have access to costly screening infrastructure today,” said Sangeeta Bhatia, MD, PhD (above), in the MIT news release. “Every year you could get a urine test as part of a general check-up. You would do an imaging study only if the urine test turns positive to then find out where the signal is coming from. We have a lot more work to do on the science to get there, but that’s where we would like to go in the long run.” (Photo copyright: NBC News.)  

Precision Diagnostic Assists Assessment of Response to Cancer Therapy

For their research, the scientists added a radioactive tracer known as copper-64 to the nanoparticles. This enabled the particles to be used for positron emission tomography (PET) imaging. The particles were coated with a peptide that induced them to accumulate at tumor sites and insert themselves into cell membranes, producing a strong imaging signal for tumor detection.

The researchers tested their diagnostic nanoparticles in mouse models of metastatic colon cancer where tumor cells had traversed to the liver or the lungs. After treating the cancer cells with a chemotherapy regimen, the team successfully used both urine and imaging to determine how the tumors were responding to the treatment.

Bhatia is hopeful that this type of diagnostic could be utilized in assessing how patients are responding to treatment therapies and the monitoring of tumor recurrence or metastasis, especially for colon cancer.

What is unique about the approach used by Bhatia’s team is that one application of the copper-64 tracer can be used in vivo, in combination with imaging technology. The other application of the copper-64 tracer is in vitro in a urine specimen that can be tested by clinical laboratories.

“Those patients could be monitored with the urinary version of the test every six months, for instance. If the urine test is positive, they could follow up with a radioactive version of the same agent for an imaging study that could indicate where the disease had spread,” Bhatia said in the news release. “We also believe the regulatory path may be accelerated with both modes of testing leveraging a single formulation.”

Multimodal nanosensors graphic

The graphic above, taken from the MIT news release, shows how “multimodal nanosensors (1) are engineered to target and respond to hallmarks in the tumor microenvironment. The nanosensors provide both a noninvasive urinary monitoring tool (2) and an on-demand medical imaging agent (3) to localize tumor metastasis and assess response to therapy,” the news release states. (Photo and caption copyright: Massachusetts Institute of Technology.)

Precision Medicine Cancer Screening Using Nano Technologies

Bhatia hopes that the nanoparticle technology may be used as a screening tool in the future to detect any type of cancer.

Her previous research with nanoparticle technology determined that a simple urine test could diagnose bacterial pneumonia and indicate if antibiotics could successfully treat that illness, the news release noted.

Nanoparticle-based technology might be adapted in the future to be part of a screening assay that determines if cancer cells are present in a patient. In such a scenario, clinical laboratories would be performing tests on urine samples while imaging techniques are simultaneously being used to diagnose and monitor cancers.

Surgical pathologists may also want to monitor the progress of this research, as it has the potential to be an effective tool for monitoring cancer patients following surgery, chemotherapy, or radiation therapy.

—JP Schlingman

Related Information

Microenvironment-triggered Multimodal Precision Diagnostics

A Noninvasive Test to Detect Cancer Cells and Pinpoint their Location

With These Nanoparticles, a Simple Urine Test Could Diagnose Bacterial Pneumonia

Researchers Create Nanoparticle That Targets Cancer to Optimize MRI Scanning; New Technology Has Potential to Reduce Number of Tissue Biopsies and Pathology Testing

Researchers in Germany Sequence Genome of Bubonic Plague Bacteria Taken from Remains of Man who Lived More than 5,000 Years Ago

Advancements in genetic sequencing continue to enable microbiologists and genetic scientists to explore the origins and mutations of deadly diseases

Microbiologists and researchers can now study the gene sequence of 5,000-year-old bubonic plague bacteria. The scientific team that achieved this feat of gene sequencing believes this is the oldest case of the ancient strain of the plague found to date.

Scientists working at the Institute of Clinical Molecular Biology (IKMB) at the Kiel University and the Centre for Baltic and Scandinavian Archaeology (ZBSA) in Germany, and at the Institute of Latvian History (LVI) at the University of Latvia, recently found remnants of Yersinia Pestis, the infectious bacterium that causes the bubonic plague, in the jawbone of a man who lived more than 5,000 years ago.

For microbiologists, this demonstrates how advances in gene sequencing technologies are allowing scientists to go further back in time to look at how the genomes of bacteria and viruses have evolved and mutated. This helps science understand the process of genetic mutation, as well as learning which mutations survived because they could more easily infect humans.

The scientists published their findings in the peer-reviewed journal Cell Reports, titled, “A 5,000-Year-Old Hunter-Gatherer Already Plagued by Yersinia Pestis

Missing Gene has ‘Dramatic Influence on Virulence’ of Plague

To conduct their study, the researchers sequenced the genomes of samples from the teeth and bones of four hunter-gatherers and tested the remains for bacterial and viral pathogens. They found evidence of Yersinia pestis (Y. pestis) in the dental remains of a 20- to 30-year-old male dubbed RV 2039.

The jaw bones used for the research were discovered in the late 1800s in the Rinnukalns, a stone age settlement unearthed in present-day Republic of Latvia in the late 19th century.

Missing Genetic Element in Ancient Bacterium

The scientists were surprised to find evidence of Y. pestis in the remains and noted that the analysis of the microbe lacked a crucial genetic element observed in later strains of the bacteria. Missing was the gene that allows biting fleas to act as vectors to spread the plague to humans.

“What’s so surprising is that we see already in this early strain more or less the complete genetic set of Y. pestis, and only a few genes are lacking,” said biochemist and archeologist Ben Krause-Kyora, Professor and head of the Ancient DNA (aDNA) Laboratory at the University of Kiel in Germany, and one of the authors of the study, in a press release.

“But even a small shift in genetic settings can have a dramatic influence on virulence,” he added.

This absent gene also is responsible for creating the pus-filled buboes associated with the Black Death (bubonic plague) that occurred in the 1300s. The Black Death killed 75 million to 200 million people worldwide, mostly in Eurasia and North Africa. It is to date the most fatal pandemic recorded in human history.

Professor Ben Krause-Kyora and colleagues

“Different pathogens and the human genome have always evolved together,” said Professor Ben Krause-Kyora (above left with and Steve Zäuner at center and Dr. Silvia Codreanu-Windauer at right), in the press release. “We know Y. pestis most likely killed half of the European population in a short time frame, so it should have a big impact on the human genome. But even before that, we see major turnover in our immune genes at the end of the Neolithic Age, and it could be that we were seeing a significant change in the pathogen landscape at that time as well,” he added. (Photo copyright: Mittelbayerische.)

A Less Lethal Bubonic Plague?

Although RV 2039 most likely perished from the bubonic plague, the researchers believe his strain of the infection was more mild, less contagious, and not as lethal as the later genetic mutations of the bacteria that caused the Black Death pandemic. The researchers concluded that the man most likely contracted the disease through a bite from an infected rodent or other animal, the press release notes.

“Isolated cases of transmission from animals to people could explain the different social environments where these ancient diseased humans are discovered,” Krause-Kyora said in the press release. “We see it in societies that are herders in the steppe, hunter-gatherers who are fishing, and in farmer communities—totally different social settings but always spontaneous occurrence of Y. pestis cases.”

From Animal Bite to Flea Infection in 7,000 Years’ Worth of Mutations

The Y. pestis bacteria that infected RV 2039, the researchers surmised, most likely split from its predecessor, Yersinia pseudotuberculosis, which first appeared on Earth about 7,000 years ago. It most likely took Y. pestis over a thousand years to acquire all the mutations necessary for flea-based transmission of the bacteria to humans, the researchers noted.

“What’s most astonishing is that we can push back the appearance of Y. pestis 2,000 years farther than previously published studies suggested,” Krause-Kyora said. “It seems that we are really close to the origin of the bacteria.”

It is unknown how many cases still occur worldwide due to unreliable diagnoses and poor reporting in developing countries. However, data from the World Health Organization (WHO) states that there were 3,248 cases of plague reported worldwide between 2010 and 2015, including 584 deaths. Currently, the three most endemic countries for plague are the Democratic Republic of the Congo, Madagascar, and Peru.

The researchers’ findings illustrate how advances in gene sequencing technologies are helping microbiologists, virologists, and genetic scientists understand the affect mutations have on diseases that have plagued humans since the beginning of humanity itself.

Will this lead to new genomic diagnostics? Perhaps. The research is worth watching.

—JP Schlingman

Related Information

What a 5,000-year-old Plague Victim Reveals about the Black Death’s Origins

A 5,000-year-old Hunter-gatherer Already Plagued by Yersinia Pestis

This 5,000-year-old Man had the Earliest Known Strain of Plague

Five Things You Might Not Know about the Plague (Not Including the Fact That it Still Exists)

Plague: Frequently Asked Questions

Plague: Key Facts

On-demand Video Service Hulu Gets Underway on TV Miniseries Documenting Rise and Fall of Former Theranos CEO Elizabeth Holmes

Six-episode show is based on popular ABC Radio podcast “The Dropout,” which focused on the three-year investigation that brought down clinical laboratory test developer Theranos

While former Theranos CEO Elizabeth Holmes awaits the start of her August 31 criminal fraud trial in a federal court in Northern California, one streaming video service is lining up a star-studded cast to tell the story of the Silicon Valley executive’s fall from grace and the demise of her clinical laboratory blood-testing company.

This six-part series is being produced by Hulu, an on-demand video streaming service offering live and on-demand content. Back in 2019, it announced that it would produce the “The Dropout,” a limited series chronicling Holmes’ rise and fall from Founder and CEO of $9 billion tech company Theranos to criminal defendant.

Hulu says the series will launch this fall, so pathologists and medical laboratory managers have time to set their recorders to capture what may be a compelling story of hubris that took investors and the news media on a wild ride. The Theranos publicity machine was so effective that many hospital CEOs went to their clinical laboratory administrators and told them to delay equipment purchases because Theranos would be able to do the same medical laboratory tests at just pennies on the existing lab-cost dollar.

Holmes’ carefully-crafted public image as Theranos’ CEO drew comparisons to the late Apple CEO Steve Jobs, Business Insider noted. This has made her a popular topic not only among clinical laboratory scientists but also Hollywood moviemakers.

“The Dropout” took its inspiration from the ABC Audio podcast of the same name, hosted by ABC Chief Business, Technology and Economics correspondent Rebecca Jarvis. The ABC Audio podcast’s description provides a glimpse into the direction the miniseries will take.

“Money. Romance. Tragedy. Deception. The story of Elizabeth Holmes and Theranos is an unbelievable tale of ambition and fame gone terribly wrong. How did the world’s youngest self-made female billionaire lose it all in the blink of an eye? How did the woman once heralded as ‘the next Steve Jobs’ find herself facing criminal charges—to which she pleaded not guilty—and up to 20 years in jail? How did her technology, meant to revolutionize healthcare, potentially put millions of patients at risk? And how did so many smart people get it so wrong along the way?” the ABC Audio website states.

The Hulu series originally was to star “Saturday Night Live” cast member Kate McKinnon as Holmes but was recast with Amanda Seyfried in the starring role. According to Variety, the series will include a notable lineup of guest stars including:

Naveen Andrews will play former Theranos President and COO Ramesh Balwani, whose own criminal fraud trial is expected to begin early next year.

A release date for the limited series has not yet been announced, Town and Country reported.

Elizabeth Holmes

Elizabeth Holmes (above), former CEO of now defunct company Theranos, faces 11 counts of fraud for alleged false claims that the clinical laboratory testing company had created a revolutionary finger-prick technology capable of performing a wide range of clinical laboratory tests. Among the charges are two counts of conspiracy to commit wire fraud and nine counts of wire fraud, for which Holmes could serve up to 20 years in jail if found guilty of all charges, according to court documents. She has pleaded not guilty. (Photo copyright: The Wall Street Journal.)

The ‘Real World’ Wall Street Journal Investigation of Theranos and Holmes

Dark Daily has reported extensively on the Holmes/Theranos saga, including the recent development that Holmes’ repeatedly-delayed trial would be pushed back from mid-July to August 31 because Holmes is due to give birth in July.

Theranos’ alleged deceptions first were brought to light in a series of 2015 investigative reports in The Wall Street Journal (WSJ). Then-WSJ investigative reporter John Carreyrou alleged Theranos had not disclosed publicly that the vast majority of its tests were not being done with proprietary technology, but instead with traditional machines purchased from Siemens AG and other companies.

Carreyrou’s reporting became the basis for his bestselling book, “Bad Blood: Secrets and Lies in a Silicon Valley Startup,” which led to “The Inventor: Out for Blood in Silicon Valley,” a 2019 HBO documentary film.

And for those looking for even more drama centered around the Theranos saga, a feature film starring Jennifer Lawrence as Elizabeth Holmes, titled, “Bad Blood,” remains “in development” according to People magazine. Though the project was announced in 2016, filming has yet to begin.

Meanwhile, clinical laboratory scientists will soon get to watch the next “real world” chapter in the Holmes’ saga play out in federal court later this summer. They will also have multiple opportunities in the coming years to be “entertained” by the Theranos scandal on big and small screens.

—Andrea Downing Peck

Related Information

‘The Dropout’: William H. Macy, Laurie Metcalf, Elizabeth Marvel, Utkarsh Ambudkar, Kate Burton Among 10 Cast in Hulu Limited Series

Here Are All the Ways Theranos CEO Elizabeth Holmes Has Imitated Steve Jobs Over the Years

Elizabeth Holmes Hulu Series ‘The Dropout’ Adds 10 Guest Stars, including William H. Macy, Laurie Metcalf, Stephen Fry

U.S. v. Elizabeth Holmes, et al.

Hot Startup Theranos Has Struggled with Its Blood Test Technology

Amanda Seyfried to Play Elizabeth Holmes in Hulu Series ‘The Dropout,’ Taking Over from Kate McKinnon

Former Theranos CEO Elizabeth Holmes Is Pregnant, Causing a Further Delay in Her Trial Date

US Department of Veterans Affairs’ Million Veterans Program Receives Its 125,000th Whole Human Genome Sequence from Personalis Inc.

As many clinical laboratory scientists know, gene sequencing technology continues to become faster, more accurate, and less expensive per whole human genome sequenced

In February, Dark Daily reported that Personalis, Inc. (NASDAQ:PSNL) had delivered its 100,000th whole human genome sequence to the US Department of Veterans Affairs Million Veterans Program (VA MVP). Now, the Menlo Park, Calif.-based cancer genomics company has topped that achievement by delivering its 125,000 whole human genome sequence!

“This represents another important landmark for both the program and for Personalis,” said John West, Chief Executive Officer, Personalis, in a news release. “We congratulate the VA MVP for reaching this important milestone.

“We strongly believe that the research projects being performed today will enable precision medicine in healthcare systems in the future across a wide range of disease areas,” he added. This is a positive development for clinical laboratories, as personalized medicine services require a lab to sequence and interpret the patient’s DNA.

Personalis was contracted with the US federal government to perform genetic research in 2012 and has delivered 50,000 genomes to the VA MVP during the past twelve months.

The Personalis and VA MVP researchers seek to gain a better understanding of how genetic variants affect health. Before the COVID-19 pandemic hit the US, the VA was enrolling veterans in the Million Veterans Program at 63 VA medical centers across the country. There are currently about 830,000 veterans enrolled in the venture and the VA is expecting two million veterans to eventually sign up for the sequencing project.

“As a global leader in genomic sequencing and comprehensive analytics services, Personalis is uniquely suited to lead these population-scale efforts and we are currently in the process of expanding our business operations internationally,” West added.

According to the press release, “the VA MVP provides researchers with a rich resource of genetic, health, lifestyle, and military-exposure data collected from questionnaires, medical records, and genetic analyses. By combining this information into a single database, the VA MVP promises to advance knowledge about the complex links between genes and health.”

NIH All of Us Research Program Supports Precision Medicine Goals Another genetic research project being conducted by the US National Institutes of Health (NIH) is the All of Us Research Program. Using donated personal health information from thousands of participants, the NIH researchers seek to “learn how our biology, lifestyle, and environment affect health,” according to the program’s website.

Josh Denny, MD

“We’re changing the paradigm for research,” said Josh Denny, MD (above), Chief Executive Officer of the All of Us Research Program, in an NIH news release. “Participants are our most important partners in this effort, and we know many of them are eager to get their genetic results and learn about the science they’re making possible. We’re working to provide that valuable information in a responsible way,” he added. Clinical laboratories may soon see new precision medicine biomarkers derived from this type of research. (Photo copyright: Vanderbilt University.)

The All of Us Research Program intends to have at least one million US participants take part in the research. The researchers hope to help scientists discover new knowledge regarding how biological, environmental, and behavioral factors influence health, and to learn to tailor healthcare to patients’ specific medical needs, a key component of precision medicine.

Participants in the project share personal information via a variety of methods, including surveys, electronic health records, and biological samples.

A Better Sampling of Under-Represented Communities

Since opening enrollment in 2018, more than 270,000 people have contributed blood, urine, and saliva samples to the All of Us Research Program. More than 80% of the participants come from communities that are traditionally under-represented in biomedical research.

“We need programs like All of Us to build diverse datasets so that research findings ultimately benefit everyone,” said Brad Ozenberger, PhD, Genomics Program Director, All of Us, in the NIH news release. “Too many groups have been left out of research in the past, so much of what we know about genomics is based mainly on people of European ancestry. And often, genomic data are explored without critical context like environment, economics, and other social determinants of health. We’re trying to help change that, enabling the entire research community to help fill in these knowledge gaps.”

The All of Us Research Project’s analysis of the collected data includes both whole-genome sequencing (WGS) and genotyping and is taking a phased approach in returning genetic data to participants.

Participants initially receive data about their genetic ancestry and traits. That is followed later by health-related results, such as how their genetic variants may increase the risk of certain diseases and how their DNA may affect their reaction to drug therapies.

Genetic researchers hope programs like these will lead to improved in vitro diagnostics and drug therapies. Genetic sequencing also may lead to new diagnostic and therapeutic biomarkers for clinical laboratories.

—JP Schlingman

Related Information

Personalis Announces Delivery of the 125,000th Genome to the US Department of Veterans Affairs Million Veteran Program

NIH’s All of Us Research Program Returns First Genetic Results to Participants

VA’s ‘Million Veterans Program’ Research Study Receives Its 100,000th Human Genome Sequence

Swedish Researchers Develop Urine Test That Can Identify Asthma Types and Their Severity, Potentially Leading to Improved Precision Medicine Diagnostics

The study ‘shows that measurement using a urine test provides improved accuracy relative to other measurement methods, for example certain kinds of blood tests,’ a KI news release states

Researchers at the Karolinska Institute (KI) in Sweden have developed a non-invasive urine-based test that can identify what type of asthma a patient has and its severity. If developed into a clinical laboratory diagnostic, such a test also could give clinicians a better idea of what treatment is more likely to be effective—a core goal of precision medicine.

Another benefit of this methodology is that it is a non-invasive test. Should further studies conclude that this urine-based test produces accurate results acceptable for clinical settings, medical laboratories would certainly be interested in offering this assay, particularly for use in pediatric patients who are uncomfortable with the venipunctures needed to collect blood specimens. Also, given the incidence of asthma in the United States, there is the potential for a urine-based asthma test to generate a substantial number of test requests.

The objective of the study, according to the Karolinska Institute researchers, was “To test if urinary eicosanoid metabolites can direct asthma phenotyping.” The team used mass spectrometry to measured certain lipid biomarkers (prostaglandins and leukotrienes), which are known to play a key role in the inflammation that occurs during asthma attacks.

According to a KI news release, “The study is based on data from the U-BIOPRED study (Unbiased BIOmarkers in PREDiction of respiratory disease outcomes), which was designed to investigate severe asthma. The study included 400 participants with severe asthma, which often requires treatment with corticosteroid tablets, nearly 100 individuals with milder forms of asthma, and 100 healthy control participants.”

The Karolinska Institute researchers published their study in the American Journal of Respiratory and Critical Care Medicine.

Johan Kolmert, PhD

“We discovered particularly high levels of the metabolites of the mast cell mediator prostaglandin D2 and the eosinophil product leukotriene C4 in asthma patients with what is referred to as Type 2 inflammation. Using our methodology, we were able to measure these metabolites with high accuracy and link their levels to the severity and type of asthma,” said Johan Kolmert, PhD (above), a post-doctoral researcher at the Institute of Environmental Medicine, Karolina Institute, and first author of the study, in the KI news release. If perfected, such accuracy could lead to effective precision medicine clinical laboratory tests. (Photo copyright: Karolinska Institute.)

More Accurate Testing Could Lead to Biomarker-guided Precision Medicine

In the US alone, 25,131,132 people currently suffer from asthma, about five million of which are children under the age of 18, according to 2019 CDC statistics. The World Health Organization (WHO) reports that worldwide, “Asthma affected an estimated 262 million people in 2019 and caused 461,000 deaths.”

People with mild asthma may have good success using steroid inhalers. However, for those with moderate to severe asthma where inhalers are not effective, oral corticosteroids may also be necessary. But corticosteroids have been associated with high blood pressure and diabetes, among other negative side effects.

“To replace corticosteroid tablets, in recent times several biological medicines have been introduced to treat patients with Type 2 inflammation characterized by increased activation of mast cells and eosinophils,” said Sven-Erik Dahlén, Professor at the Institute of Environmental Medicine, Karolinska Institute, in the news release.

Currently, there are no simple tests that show what type of asthma a patient has. Instead, clinicians rely on lung function tests, patient interviews, allergy tests, and blood tests.

Other Non-invasive Urine-based Diagnostic Tests

In “University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test,” Dark Daily recently reported on a different urine-based prostate cancer test developed in the UK that University of East Anglia (UEA) Norwich Medical School researchers say can “determine the aggressiveness of the disease” and potentially “reduce the number of unnecessary prostate cancer biopsies by 32%.”

Earlier this year, researchers at Brigham and Women’s Hospital and Exosome Diagnostics in Massachusetts investigated a non-invasive, urine-based test for transplant rejection. According to a news release, “Patients can spend up to six years waiting for a kidney transplant. Even when they do receive a transplant, up to 20% of patients will experience rejection.”

“If rejection is not treated, it can lead to scarring and complete kidney failure. Because of these problems, recipients can face life-long challenges,” said Jamil Azzi, MD, Director of the Kidney Transplantation Fellowship Program at Brigham and Women’s Hospital, and Associate Professor of Medicine at Harvard School of Medicine. “Our goal is to develop better tools to monitor patients without performing unnecessary biopsies. We try to detect rejection early, so we can treat it before scarring develops,” he said.

Detecting Bladder Cancer with Urine Testing

Another condition where urine tests are being investigated is bladder cancer. An article in Trends in Urology and Men’s Health states, “Several point-of-care urine tests have been developed to help identify patients who may be at higher risk of bladder cancer.” Those tests could have the potential for use in primary care, which could mean fewer people would need invasive, painful, and risk-carrying cystoscopies.

“New tests to help identify hematuria patients who are at a higher risk of cancer would help to improve the diagnostic pathway, reduce the number diagnosed by emergency presentation, lessen the burden on urology services, and spare those who do not have cancer an invasive and costly examination, such as cystoscopy,” the article’s authors wrote.

These urine-based tests are still under investigation by various research teams and more research is needed before clinical trials can be conducted and the tests can be submitted for regulatory approval. Though still in the early stages of development, urine-based diagnostic testing represents far less invasive, and therefore safer, ways to identify and treat various diseases.

Studies into how the elements in urine might be used as biomarkers for clinical laboratory tests may lead to improved non-invasive precision medicine diagnostics that could save many lives.

—Dava Stewart

Related Information

Urinary Leukotriene E4 and Prostaglandin D2 Metabolites Increase in Adult and Childhood Severe Asthma Characterized by Type 2 Inflammation. A Clinical Observational Study

Lipid Biomarkers in Urine Can Determine the Type of Asthma:

The U-BIOPRED Severe Asthma Study: Immunopathological Characterization

Novel Urine Test Developed to Diagnose Human Kidney Transplant Rejection

A Urine Test for Bladder Cancer: Available Soon in Primary Care?

University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test

Penn Medicine Researchers Develop Fast, Accurate, Inexpensive COVID-19 Diagnostic Test Based on Electrochemical Technology

The rapid diagnostic test costs less than $5 per unit and can be adapted for other diseases, the developers say, which opens a slew of possibilities for clinical laboratories

Just as the SARS-CoV-2 coronavirus spurred deployment of new vaccine technology based on messenger RNA (mRNA), the COVID-19 pandemic also could prove to be a watershed for in vitro diagnostics (IVD) innovation in ways that benefit clinical laboratories.

In one notable example, researchers at the Perelman School of Medicine University of Pennsylvania (Penn Medicine) in Philadelphia have developed a biosensor that uses electrochemical impedance spectroscopy (EIS) to detect the presence of the COVID-19 coronavirus in biological samples.

A Penn Medicine news release noted that “The RAPID technology … transforms the binding event between the SARS-CoV-2 viral spike protein and its receptor in the human body, the protein ACE2 (which provides the entry point for the coronavirus to hook into and infect human cells), into an electrical signal that clinicians and technicians can detect. That signal allows the test to discriminate between infected and healthy human samples. The signal can be read through a desktop instrument or a smartphone.”

Though still in its early stages, the technique potentially offers dramatically lower costs and faster results than traditional RT-PCR (reverse transcription polymerase chain reaction) molecular tests. Moreover, the RAPID technology might be useful for identifying other types of biomarkers and could be the basis for diagnostic tests that help reduce the cost-per-test in medical laboratory testing while providing comparable sensitivity and specificity to existing methodologies.

Clinical trials began on January 5, 2021, and the Penn Medicine researchers say the IVD test technology can be applied to other infectious diseases, which, if proven accurate, would be a boon to clinical laboratory testing.

The Penn Medicine researchers published their study on May 9 in the journal Matter, titled, “Low-Cost Biosensor for Rapid Detection of SARS-CoV-2 at the Point of Care.”

Diagnostic Test Results in Four Minutes for Less than $5/Test

According to the news release, the RAPID 1.0 (Real-time Accurate Portable Impedimetric Detection prototype 1.0) biosensor test costs less than $5 and can deliver results in four minutes. The researchers reported overall accuracy of 87.1% on (139) nasal swab samples and 90% on (50) saliva samples.

The technology uses electrodes that can be mass-produced at low cost on commercially-available screen printers, the researchers said. Results can be read on electronic devices connected to a PC or smartphone.

RAPID 1.0 COVID-19 diagnostic test

RAPID 1.0 (above) is a low-cost COVID-19 diagnostic test developed at the César de la Fuente clinical laboratory at the Perelman School of Medicine University of Pennsylvania in Philadelphia. At less than $5/test, plus the ability to be adapted to other diseases, clinical laboratories performing disease screenings in rural or remote locations may have a new tool in the fight against infections.  (Photo copyright: University of Pennsylvania.)

Does Penn Medicine’s RAPID 1.0 Test Replace Traditional RT-PCR Testing?

In their published study, the Penn Medicine researchers cited the need for “fast, reliable, inexpensive, and scalable point-of-care diagnostics.”

RT-PCR tests, they said, “are limited by their requirement of a large laboratory space, high reagent costs, multistep sample preparation, and the potential for cross-contamination. Moreover, results usually take hours to days to become available.”

Researchers who have studied the SARS-CoV-2 coronavirus know that it uses a spike-like protein to bind to angiotensin-converting enzyme 2 (ACE2) receptors on the surfaces of human cells.

As described in Penn Medicine’s published study, the biosensor contains ACE2 and other biochemical agents anchored to an electrode. When the SARS-CoV-2 coronavirus attaches to the ACE2, the biosensor transforms the chemical reaction into an electrical signal that can be measured on a device known as a potentiostat.

The researchers tested their RAPID 1.0 technology with two commercially available potentiostat models:

The researchers initially developed the electrode as a printed circuit board, which is relatively expensive. To reduce costs, they constructed a version that uses filter paper as the main component. The researchers noted that one screen printer in a lab can produce 35,000 electrodes per day, including time needed to incorporate the chemical elements. “However, it must be noted that these steps can be fully automated into a production line for industrial purposes, drastically reducing time requirements,” they wrote.

The test can be performed at room temperature, they added, and total cost per unit is $4.67. Much of that—$4.50—is for functionalizing the ACE2 recognition agent. The cost for the bare electrode is just seven cents.

“The overall cost of RAPID may be further reduced through recombinant production of ACE2 and ACE2 variants,” the researchers said, adding that the RAPID 1.0 test can detect the SARS-CoV-2 coronavirus at low concentrations correlating to the earliest stages of the COVID-19 disease.

Cesar de la Fuente, PhD

The Penn Medicine research team was led by César de la Fuente, PhD (above), an Assistant Professor in Psychiatry, Microbiology, Chemical and Biomolecular Engineering and Bioengineering at the Perelman School of Medicine. “Prior to the pandemic, our lab was working on diagnostics for bacterial infections,” he said in the Penn Medicine news release. “But then, COVID-19 hit. We felt a responsibility to use our expertise to help—and the diagnostic space was ripe for improvements.” (Photo copyright: University of Pennsylvania.)

Testing Penn Medicine’s RAPID 1.0 Test

The researchers evaluated the technology in blinded tests with clinical samples from the Hospital of the University of Pennsylvania. The evaluation included 139 nasal swab samples, of which 109 were determined to be COVID-19 positive by RT-PCR tests and clinical assessments. Among these, the RAPID test successfully detected the SARS-CoV-2 coronavirus in 91 samples, for a sensitivity rate of 83.5%. One sample was from a patient diagnosed with the highly contagious SARS-CoV-2 Alpha variant B.1.1.7, which the test correctly identified as positive.

Among the 30 samples determined to be COVID negative, the RAPID test scored a specificity rate of 100%, meaning no false positives. Overall accuracy, including sensitivity and specificity, was 87.1%.

The researchers also analyzed 50 saliva samples: 13 COVID-positive and 37 COVID-negative. The test correctly identified all 13 positive samples but produced five false-positives among the 37 negative samples, for a specificity rate of 86.5%. The researchers speculated that this could be due to interactions between ACE2 and other biomolecules in the saliva but suggested that performance “will improve when using fresh saliva samples at the point-of-care.”

Are There Other Applications for the RAPID Test?

The Penn Medicine news release said the RAPID technology can be adapted to detect other viruses, including those that cause Influenza and sexually-transmitted diseases.

Robert Michel, Editor-in-Chief of Dark Daily and its sister publication The Dark Report, said the test points to one silver lining in the COVID-19 pandemic. “Researchers around the world intensified their work to find ways to identify the SARS-CoV-2 virus that are faster, cheaper, and more accurate than the diagnostic technologies that existed at the time of the outbreak. In this regard, the COVID-19 pandemic may have accelerated the development and refinement of useful diagnostic technologies that will disrupt long-established methods of testing.”

Marcelo Der Torossian Torres, PhD, postdoctoral researcher at Penn Medicine and lead author of the study, said in the news release, “Quick and reliable tests like RAPID allow for high-frequency testing, which can help identify asymptomatic individuals who, once they learn they are infected, will stay home and decrease spread. 

“We envision this type of test being able to be used at high-populated locations such as schools, airports, stadiums, companies—or even in one’s own home,” he added.

Clinical laboratory managers may want to stay current on the development and possible commercialization of the RAPID 1.0 (Real-time Accurate Portable Impedimetric Detection prototype 1.0) biosensor test by the research team at Penn Medicine.

—Stephen Beale

Related Information

Low-Cost Biosensor for Rapid Detection of SARS-CoV-2 at the Point of Care

Rapid COVID-19 Diagnostic Test Delivers Results within Four Minutes with 90% Accuracy

UPenn Medical School Develops Low Cost COVID-19 Test Called RAPID

UPenn Working on Rapid COVID Test That Delivers Results Within Minutes

Rapid COVID-19 Test Developed at Penn Could Give On-the-Spot Results Quickly

One Step Closer to An At-Home, Rapid COVID-19 Test

;