Clinical laboratory managers may want to follow the debate that surfaced shortly after publication of the study in a peer-reviewed journal, when editors of the journal issued concerns over the researchers’ claims
Virologists and medical laboratory scientists continue to investigate ways the SARS-CoV-2 coronavirus can be defeated using the body’s own defenses in conjunction with medical treatments and a possible vaccine. Now, researchers at the Boston University School of Medicine have discovered that higher levels of vitamin D in the blood may improve chances of recovering from a COVID-19 infection.
“This study provides direct evidence that Vitamin D sufficiency can reduce the complications, including the cytokine storm (release of too many proteins into the blood too quickly) and ultimately death from COVID-19,” Michael F. Holick, PhD, MD, Professor of Medicine, Physiology and Biophysics at Boston University School of Medicine and one of the authors of the study, told SciTechDaily.
Holick is well-known in the scientific community for his many published studies on Vitamin D. In 2018, Kaiser Health News and The New York Times published a retrospective on Holick and his advocacy on behalf of Vitamin D, titled, “The Man Who Sold America On Vitamin D—and Profited in the Process.” In that story, Holick acknowledged working as a consultant for several organizations, including Quest Diagnostics in a relationship that dates back to 1979. KHN and NYT noted that Quest Diagnostics performs Vitamin D tests.
The Boston University researchers published their study in PLOS ONE, a peer-reviewed open-access scientific journal published by the Public Library of Science (PLOS). The paper’s apparent conclusions, however, invoked an “expression of concern” from the journal’s editors, which, along with direct responses from the Boston University researchers, can be read on PLOS ONE.
Can Vitamin D Save Lives?
To perform their research, the Boston University researchers examined the Vitamin D levels of 235 patients who had been admitted to a hospital with a SARS-CoV-2 infection. The patients were then tracked for clinical outcomes, including:
Blood samples were also analyzed for the number of lymphocytes and inflammatory markers. The researchers compared the collected data between patients who were sufficient to those who were deficient in Vitamin D levels.
They determined that patients over the age of 40 who were Vitamin D sufficient were 51.5% less likely to die from a COVID-19 infection than those who were deficient in the vitamin.
How Vitamin D Works and Why It’s So Important
In a fact sheet, the National Institutes of Health (NIH) recommend that adults between the ages of 19 and 70 take 15 micrograms (mcg) or 600 International Units (IU) of Vitamin D per day. Adults over the age of 70 should increase that amount to 20 mcg or 800 IUs per day.
According NBC News, Americans spent $936 million on supplements in 2017, which was nine times more than the previous decade. That article also stated that medical laboratory testing for Vitamin D levels have exponentially increased over the years. More than 10 million tests for Vitamin D levels were ordered for Medicare patients in 2016 at a cost of $365 million, which represents an increase of 547% since 2007. Currently, approximately one in four adults over the age of 60 in the US take Vitamin D supplements.
The NIH fact sheet notes that Vitamin D is a nutrient found in cells throughout the body and is needed for good health and to maintain strong bones. Individuals who are deficient in Vitamin D may develop soft, thin, brittle bones, as well as rickets in children and osteomalacia in adults. Vitamin D also helps the immune system fight off invading bacteria and viruses, helps nerves carry messages between the brain and other body parts, and helps muscles move. It can also play a role in warding off osteoporosis in older adults.
Very few foods naturally contain Vitamin D. The best dietary sources for the vitamin are fatty fish such as salmon, tuna, and mackerel, and foods fortified with Vitamin D, such as milks, some breakfast cereals, and yogurt. Being outside on sunny days is another way to obtain Vitamin D, as the body makes the vitamin when skin is directly exposed to the sun.
The Boston University study outlines the advantages of having sufficient Vitamin D levels, as well as how the vitamin may help ward off and possibly lessen the effects of infections like COVID-19, though those conclusions have been called into question.
Nevertheless, individuals who are deficient in the vitamin may want to take a supplement or get plenty of sunshine, just to be on the safe side. And clinical laboratory managers will want to keep in mind that over the years “the steady increase in physician and patient demand for Vitamin D tests has kept most clinical and pathology laboratories scrambling to maintain turnaround times and quality,” which Dark Daily reported in “Why Vitamin D Continues to Be the World’s Fastest-Growing Clinical Laboratory Test.”
CEOs of NorDx Laboratories, Sonora Quest Laboratories, and HealthPartners/Park Nicollet Laboratories expect demand for SARS-CoV-2 tests to only increase in coming months
The short answer is that large volumes of COVID-19 testing will be needed for the remaining weeks of 2020 and substantial COVID-19 testing will occur throughout 2021 and even into 2022. This has major implications for all clinical laboratories in the United States as they plan budgets for 2021 and attempt to manage their supply chain in coming weeks. The additional challenge in coming months is the surge in respiratory virus testing that is typical of an average influenza season.
Stan Schofield (above center), President of NorDx, a regional laboratory corporation that supports an integrated delivery system at MaineHealth in Portland, Maine.
Rick L. Panning (above right), MBA, MLS(ASCP)CM, retired as of Oct. 2 from the position of Senior Administrative Director of Laboratory Services for HealthPartners and Park Nicollet in Minneapolis-St. Paul, Minnesota.
Each panelist was asked how his parent health system and clinical laboratory was preparing to respond to the COVID-19 pandemic through the end of 2020 and into 2021.
First to answer was Panning, whose laboratory serves the Minneapolis-Saint Paul market.
A distinguishing feature of healthcare in the Twin Cities is that it is at the forefront of operational and clinical integration. Competition among health networks is intense and consumer-focused services are essential if a hospital or physician office is to retain its patients and expand market share.
Panning first explained how the pandemic is intensifying in Minnesota. “Our state has been on a two-week path of rising COVID-19 case numbers,” he said. “That rise is mirrored by increased hospitalizations for COVID-19 and ICU bed utilization is going up dramatically. The number of hospitalized COVID-19 patients has doubled during this time and Minnesota is surrounded by states that are even in worse shape than us.”
These trends are matched by the outpatient/outreach experience. “We are also seeing more patients use virtual visits to our clinics, compared to recent months,” noted Panning. “About 35% of clinical visits are virtual because people do not want to physically go into a clinic or doctor’s office.
“Given these recent developments, we’ve had to expand our network of specimen collection sites because of social distancing requirements,” explained Panning. “Each patient collection requires more space, along with more time to clean and sterilize that space before it can be used for the next patient. Our lab and our parent health system are focused on what we call crisis standards of care.
“For all these reasons, our planning points to an ongoing demand for COVID-19 testing,” he added. “Influenza season is arriving, and the pandemic is accelerating. Given that evidence, and the guidance from state and federal officials, we expect our clinical laboratory will be providing significant numbers of COVID-19 tests for the balance of this year and probably far into 2021.”
COVID-19 Vaccine Could Increase Antibody and Rapid Molecular Testing
Arizona is seeing comparable increases in new daily COVID-19 cases. “There’s been a strong uptick that coincides with the governor’s decision to loosen restrictions that allowed bars and exercise clubs to open,” stated Dexter. “We’ve gone from a 3.8% positivity rate up to 7% as of last night. By the end of this week, we could be a 10% positivity rate.”
Looking at the balance of 2020 and into 2021, Dexter said, “Our lab is in the midst of budget planning. We are budgeting to support an increase in COVID-19 PCR testing in both November and December. Arizona state officials believe that COVID-19 cases will peak at the end of January and we’ll start seeing the downside in February of 2021.”
The possible availability of a SARS-CoV-2 vaccine is another factor in planning at Dexter’s clinical laboratory. “If such a vaccine becomes available, we think there will be a significant increase in antibody testing, probably starting in second quarter and continuing for the balance of 2021. There will also be a need for rapid COVID-19 molecular tests. Today, such tests are simply unavailable. Because of supply chain difficulties, we predict that they won’t be available in sufficient quantities until probably late 2021.”
COVID-19 Testing Supply Shortages Predicted as Demand Increases
At NorDx Laboratories in Portland, Maine, the expectation is that the COVID-19 pandemic will continue even into 2022. “Our team believes that people will be wearing masks for 18 more months and that COVID-19 testing with influenza is going to be the big demand this winter,” observed Schofield. “The demand for both COVID-19 and influenza testing will press all of us up against the wall because there are not enough reagents, plastics, and plates to handle the demand that we see building even now.
“Our hospitals are already preparing for a second surge of COVID-19 cases,” he said.
COVID-19 patients will be concentrated in only three or four hospitals. The other hospitals will handle routine work. Administration does not want to have COVID-19 patients spread out over 12 or 14 hospitals, as happened last March and April.
“Administration of the health system and our clinical laboratory think that the COVID-19 test volume and demand for these tests will be tough on our lab for another 12 months. This will be particularly true for COVID-19 molecular tests.”
As described above, the CEOs of these three major clinical laboratories believe that the demand for COVID-19 testing will continue well into 2021, and possibly also into 2022. A recording of the full session was captured by the virtual Executive War College and, as a public service to the medical laboratory and pathology profession, access to this recording will be provided to any lab professional who contacts info@darkreport.com and provides their email address, name, title, and organization.
Robert L. Michel, Panelist—Publisher, Editor-in-Chief, The Dark Report and Dark Daily, Spicewood, Texas.
Given the importance of sound strategic planning for all clinical laboratories and pathology groups during their fall budget process, the virtual Executive War College is opening this session to all professionals in laboratory medicine, in vitro diagnostics, and lab informatics.
Though gene sequencing is touted as a key component of precision medicine, the medical value of direct-to-consumer testing has yet to show up in improved health outcomes, nor have clinical laboratories benefitted
In a recent example that the market for genetic genealogy testing may have peaked and the days of spectacular growth in the number of direct-to-consumer (DTC) genetic test orders and revenue is over, private-equity firm Blackstone—in a $4.7 billion deal—announced it will acquire a majority stake in Ancestry, which also does some clinical laboratory genetic testing as well.
Blackstone (NYSE:BX) acquired Ancestry of Lehi, Utah, one of the two largest genealogy testing companies (the other being 23andMe of Sunnyvale, Calif.), from a group of equity holders led by investment firms Silver Lake, GIC, Spectrum Equity, and Permira, noted a press release. GIC will retain a “significant minority stake” in Ancestry.
“We are very excited to partner with Ancestry and its management team. We believe Ancestry has significant runway for further growth as people of all ages and backgrounds become increasingly interested in learning more about their family histories and themselves,” David Kestnbaum, a Senior Managing Director at Blackstone, said in the press release. “We look forward to investing behind further data, functionality, and product development across Ancestry’s market leading platform to continue to provide a differentiated service.”
Is Genetic Testing for Genealogy Still a Growth Industry?
Ancestry is the global leader in digital family history services, operating in more than 30 countries with more than three million paying subscribers across its Ancestry online properties and more than $1 billion in annual revenue.
However, some experts say the road ahead may not be smooth for Ancestry or its major competitor, 23andMe.
“The business landscape fell off a cliff last year,” Laura Hercher, Director of Human Genetics Research at Sarah Lawrence College in New York, told STAT. “Fads pass,” she added.
Hercher points out that Ancestry has “this enormous database, which inherently has a lot of value hidden in it—potential energy. But they have not figured out how to get that information out in the way 23andMe has.”
23andMe’s pivot into medical research gained steam in 2018 when pharmaceutical giant GlaxoSmithKline (NYSE:GSK) purchased a $300 million stake in the company with the aim of using 23andMe’s resources to develop new medicines. That collaboration began bearing fruit earlier this year when GlaxoSmithKline started human trials of the first medicine (a cancer drug) to emerge from the partnership, STAT reported.
The public’s declining interest in at-home genealogy, however, has caused both companies to reduce staffing. 23andMe began the year by laying off about 100 employees—an estimated 14% of its workers—and Ancestry followed suit in February, letting go a similar number of employees, representing roughly 6% of its workforce.
According to MIT Technology Review, direct-to-consumer genetic genealogy testing reached its zenith in 2018 when consumers purchased as many DNA tests in one year as they had in all previous years combined, propelling total sales from Ancestry, 21andMe, and other DTC gene testing companies to roughly $26 million.
In 2019, CNBC reported that, market-wide, roughly 30 million tests had been sold across the globe. However, in recent years, sales have fallen short of expectations as the number of people willing to pay $99 to learn about their ancestry has dwindled. “I suspect those that are curious about this information are thinning out and there’s less people to go around to grow,” Greg Yap (above), Partner at Menlo Ventures, told CNBC. “I think there’s a broader issue, which is that the ultimate medical value is still really unproven,” Yap added. “There’s lots of research being done, but value for mass market consumer isn’t there yet, so it keeps a ceiling on the size of that market.” (Photo copyright: VentureBeat.)
Privacy Still a Concern
Ancestry has begun to insert itself into the genetic testing healthcare arena. In a press release, the company announced the launch of AncestryHealth, a $179 DNA testing kit that uses next generation sequencing (aka, high-throughput or massive parallel sequencing), aimed at providing adult consumers information on their inherited health risks.
However, as MedCity News points out, the sale to Blackstone has increased privacy concerns around the direct-to-consumer DNA testing market. Ancestry’s consumer privacy and data protections remain unchanged under the new ownership, but Alan Butler, Interim Executive Director at Electronic Privacy Information Center (EPIC), told MedCity News, “This is one example of a very troubling trend. It’s something regulatory agencies are not up to date to deal with. It’s one of the reasons we need comprehensive privacy law in the US.”
As genealogy companies such as 23andMe and Ancestry shift their focus from providing genetic histories to improving consumers’ health through genetic testing, clinical laboratories should be mindful of the logical next step, which is predicted to be genetic tests where the consumer collects the sample at home and the test is used to aid in diagnosing and treating patients.
Financial losses for hospitals and health systems due to cancelled procedures and coronavirus expenses will lead to changes in healthcare delivery, operations, and clinical laboratory test ordering
COVID-19 is reshaping how people work, shop, and go to school. Is healthcare the next target of the coronavirus-induced transformation? According to two experts, the COVID-19 pandemic is pushing hospitals and health systems toward a “fundamental and likely sustained transformation,” which means clinical laboratories must be prepared to adapt to new provider needs and customer demands.
Burik and Fisher called attention to the staggering $50 billion-per-month loss for hospitals and health systems that was first revealed in an American Hospital Association (AHA) report published in May. The AHA report estimated a $200 billion loss from March 1, 2020, to June 30, 2020, due to increased COVID-19 expenses and cancelled elective and non-elective surgeries.
Adding to the financial carnage is the expectation that patient volumes will be slow to return. In “Hospitals Forecast Declining Revenues and Elective Procedure Volumes, Telehealth Adoption Struggles Due to COVID-19,” Burik said, “Healthcare has largely been insulated from previous economic disruptions, with capital spending more acutely affected than operations. But this time may be different since the COVID-19 crisis started with a one-time significant impact on operations that is not fully covered by federal funding.
“Providers face a long-term decrease in commercial payment, coupled with a need to boost caregiver and consumer-facing digital engagement, all during the highest unemployment rate the US has seen since the Great Depression,” he continued. “For organizations in certain locations, it may seem like business as usual. For many others, these issues and greater competition will demand more significant, material change.”
A Guidehouse analysis of a Healthcare Financial Management Association (HFMA) survey, suggests one-in-three provider executives expect to end 2020 with revenues at 15% below pre-pandemic levels, while one-in-five of them anticipate a 30% or greater drop in revenues. Government aid, Guidehouse noted, is likely to cover COVID-19-related costs for only 11% of survey respondents.
“The figures illustrate how the virus has hurled American medicine into unparalleled volatility. No one knows how long patients will continue to avoid getting elective care or how state restrictions and climbing unemployment will affect their decision making once they have the option,” Burik and Fisher wrote. “All of which leaves one thing for certain: Healthcare’s delivery, operations, and competitive dynamics are poised to undergo a fundamental and likely sustained transformation.”
As a result, the two experts predict these pandemic-related changes to emerge:
Payer-Provider Complexity on the Rise; Patients Will Struggle. As the pandemic has shown, elective services are key revenues for hospitals and health systems. But the pandemic also will leave insured patients struggling with high deductibles, while the number of newly uninsured will grow. Furthermore, upholding of the hospital price transparency ruling will add an unwelcomed spotlight on healthcare pricing and provider margins.
Best-in-Class Technology Will Be a Necessity, Not a Luxury. COVID-19 has been a boon for telehealth and digital health usage, creating what is likely to be a permanent expansion of virtual healthcare delivery. But only one-third of executives surveyed say their organizations currently have the infrastructure to support such a shift, which means investments in speech recognition software, patient information pop-up screens, and other infrastructure to smooth workflows will be needed.
The Tech Giants Are Coming. Both major retailers and technology stalwarts, such as Amazon, Walmart, and Walgreens, are entering the healthcare space. In January, Dark Daily reported on Amazon’s roll out of Amazon Care, a 24/7 virtual clinic, for its Seattle-based employees. Amazon (NASDAQ:AMZN) is adding to a healthcare portfolio that includes online pharmacy PillPack and joint-venture Haven Healthcare. Meanwhile, Walmart is offering $25 teeth cleaning and $30 checkups at its new Health Centers. Dark Daily covered this in an e-briefing in May, which also covered a new partnership between Walgreens and VillageMD to open up to 700 primary care clinics in 30 US cities in the next five years.
Work Location Changes Mean Construction Cost Reductions. According to Guidehouse’s analysis of the HFMA COVID-19 survey, one-in-five executives expect some jobs to remain virtual post-pandemic, leading to permanent changes in the amount of real estate needed for healthcare delivery. The need for a smaller real estate footprint could reduce capital expenditures and costs for hospitals and healthcare systems in the long term.
Consolidation is Coming. COVID-19-induced financial pressures will quickly reveal winners and losers and force further consolidation in the healthcare industry. “Resilient” healthcare systems are likely to be those with a 6% to 8% operating margins, providing the financial cushion necessary to innovate and reimagine healthcare post-pandemic.
Policy Will Get More Thoughtful and Data-Driven. COVID-19 reopening plans will force policymakers to craft thoughtful, data-driven approaches that will necessitate engagement with health system leaders. Such collaborations will be important not only during this current crisis, but also will provide a blueprint for policy coordination during any future pandemic.
As Burik and Fisher point out, hospitals and healthcare systems emerged from previous economic downturns mostly unscathed. However, the COVID-19 pandemic has proven the exception, leaving providers and health systems facing long-term decreases in commercial payments, while facing increased spending to bolster caregiver- and consumer-facing engagement.
“While situations may differ by market, it’s clear that the pre-pandemic status quo won’t work for most hospitals or health systems,” they wrote.
The message for clinical laboratory managers and surgical pathologists is clear. Patients may be permanently changing their decision-making process when considering elective surgery and selecting a provider, which will alter provider test ordering and lab revenues. Independent clinical laboratories, as well as medical labs operated by hospitals and health systems, must be prepared for the financial stresses that are likely coming.
A former officer of a Cigna contractor claims the insurer hatched a scheme to submit invalid diagnostic codes and filed the now-unsealed qui tam action in 2017
In a case that could provide a cautionary tale for clinical laboratories, a federal whistleblower lawsuit alleges that Cigna, through its HealthSpring subsidiary, “received billions in overpayments from the federal government” in a scheme involving the insurer’s Medicare Advantage plans. The Qui tam (whistleblower) lawsuit was filed by Robert A. Cutler, a former officer of Cigna contractor Texas Health Management LLC (THM), under the federal False Claims Act.
Cutler alleged that “Cigna-HealthSpring has knowingly defrauded the United States through an intentional and systematic pattern and practice of submitting to CMS invalid diagnosis codes derived from in-home health assessments.” He claimed this took place “from at least 2012 until at least 2017,” and likely thereafter.
Cigna has denied the allegations. “We are proud of our industry-leading Medicare Advantage program and the manner in which we conduct our business,” the insurer stated in an email to HealthPayerIntelligence. “We will vigorously defend Cigna against all unjustified allegations,” Cigna stated.
As the lawsuit explains, Medicare Advantage (MA) plans are administered by private insurers under Medicare Part C. “Rather than pay providers directly based on the medical services provided, Medicare Part C pays MA Organizations a monthly capitated rate for each covered beneficiary, and tasks the MA Plan with paying providers for services rendered to plan members,” the lawsuit states. “MA insurers are generally paid more for providing benefits to beneficiaries with higher-risk scores—generally older and sicker people—and less for beneficiaries with lower-risk scores, who tend to be younger and healthier.”
The lawsuit notes that CMS relies on information—specifically ICD codes—from the insurers to calculate the risk scores.
Cigna’s 360 Program as Described in Lawsuit
Cutler alleged that Cigna defrauded CMS through its “360 Program,” in which primary care providers (PCPs) were encouraged to perform enhanced annual wellness visits that included routine physical exams. He claimed that “Cigna-HealthSpring designed the program so that, in practice, the 360 assessment was a mere data-gathering exercise used to improperly record lucrative diagnoses to fraudulently raise risk scores and increase payments from CMS.”
Cigna-HealthSpring, he alleged in the court documents, offered PCPs financial bonuses to perform the 360 program exams, especially on patients deemed most likely to yield high-risk scores. However, many clinicians declined, so the insurer recruited third-party contract providers, including THM, to send nurse practitioners (NPs) or registered nurses (RNs) to the homes of MA plan members.
For each visit, the NPs and RNs were given health reports listing the beneficiary’s previous diagnoses. “Cigna-HealthSpring intended the document to serve as a ‘cheat-sheet’ list of conditions and diagnoses it expected 360 contractors to capture during the in-home visit,” Cutler alleges. “The list of diagnoses did not indicate the date they were reported or any other information concerning their status.”
During each visit, which typically lasted 30-60 minutes, “NPs and RNs relied primarily on the patient’s self-assessment, i.e., subjectively reported information, as well as current medications to the extent available and, during certain time periods and for certain plan members, limited [clinical] laboratory findings,” Cutler alleged.
NPs were expected to record 20 or more diagnoses per visit, he wrote, including diagnoses based on “weak links” involving medications. “For example, Cigna-HealthSpring encouraged contractors to record atrial fibrillation, deep vein thrombosis, and pulmonary embolus based on the presence of certain classes of anti-coagulation medications on members’ medication lists or in their homes,” he stated.
He also alleged that “Cigna-HealthSpring, in purposeful violation of CMS rules, designed its 360 form to force NPs to capture diagnoses that were uncertain, probable, or merely suspected.”
These diagnoses were subsequently submitted as risk-adjustment data to CMS, he alleged, adding up to “hundreds of thousands of false claims from its six contractors during the relevant period. Although the exact amount will be proven at trial, the United States has paid billions of dollars in improper, inflated payments to Defendants under the MA Plan as a result of this scheme.”
The Federal False Claims Act “allows a private citizen to step into the shoes of and pursue a claim on behalf of the government,” explained the Boyers Law Group of Coral Gables, Fla., in an article for HG.org, which states, the lawsuit “may proceed with or without the assistance of the government.”
If the government chooses to intervene, the whistleblower, known formally as the “relator,” can receive 15% to 25% of the proceeds recovered in the action, the law firm explained in another article for HG.org, adding that, in most cases, the government does not intervene, which increases the potential award to 30%.
In the Cigna case, the US Attorney’s office notified the court on Feb. 25, 2020, that the government had decided not to intervene “at this time.”
Significance for Clinical Laboratories
Regardless of how this case proceeds, medical laboratory managers should remember that they are subject to legal action if internal whistleblowers identify policies or procedures that violate federal fraud and abuse laws. And because it involves coding, it is also a reminder of the importance of documenting diagnoses and clinical laboratory test orders as protection against fraud allegations.
Another benefit of carefully documenting each lab test order is that labs can make the information available when auditors from government or private payers show up and want documentation on the medical necessity of each lab test claim.
Pathologists and clinical laboratory scientists know that influenza vaccines typically produce short-lived protection and researchers have new clues as to why this is true
With so much interest in development of a COVID-19 vaccine, findings by researchers at Atlanta’s Emory Vaccine Center into why the vaccine for influenza (Flu) is so short-lived offer a new window on how the body’s immune system responds to invading viruses and what happens to the immunity over time.
Because the autumn influenza season is just weeks away, these insights into the body’s immune response to influenza will be of interest to clinical laboratories that provide testing for influenza, as well as SARS-CoV-2, the coronavirus that causes COVID-19.
Clinical laboratory managers recognize that an influenza vaccine is an annual imperative for people—especially the elderly and those with existing comorbidities—and medical laboratory tests are typically used to diagnose the illness and identify which strains of viruses are present. The flu vaccine is even more important amid the COVID-19 pandemic, infectious disease authorities say.
The scientists at the Emory Vaccine Center published their findings in the journal Science.
Not so with influenza vaccines. The immunity they impart generally only lasts for a single flu season and are “lost within one year,” the Emory study notes.
As Genetic Engineering and Biotechnology News (GEN) explains, the influenza genome has eight RNA segments which can change as the virus enters a cell. This antigenic shift creates new influenza strains that require updated vaccines, GEN noted.
However, the Emory researchers stated that “The fact that a small number did persist over one year raises prospects that the longevity of flu vaccines can be improved and provides key information for the development of universal vaccines against influenza.”
Bone Marrow Has Major Role in Producing New Flu Antibodies
The Emory study focused on the influenza vaccine’s role in how it affects the immune system and what needs to change to create a longer-lasting influenza vaccine. “Our results suggest that most bone marrow plasma cells (BMPC) generated by influenza vaccination in adults are short-lived. Designing strategies to enhance their persistence will be key,” the Emory researchers wrote in Science.
The scientists analyzed bone marrow from 53 healthy volunteers (age 20 to 45). An Emory news release states that bone marrow is the “home base for immune cells producing antibodies.”
Besides the bone marrow, the researchers also examined blood samples from the volunteers, all of which was collected between 2009 and 2018:
before influenza vaccination,
one month after influenza vaccination, and
one year post vaccination.
Through DNA sequencing the samples, the Emory researchers found the number of flu-specific cells increased from 0.8% to 1.9% after one month. They concluded that an annual vaccine does increase antibody-producing cells for influenza in bone marrow.
However, in follow-up visits one year after vaccination, they found that the number of cells present in the volunteers had fallen back to the starting point.
“Specific cells produced by the vaccine … produced unique antibodies that can be identified using sequencing techniques,” Carl Davis, PhD, postdoctoral fellow in the Rafi Ahmed Laboratory at Emory and first author of the paper, said in the news release, adding, “We could see that these new antibodies expanded in the bone marrow one month after vaccination and then contracted after one year.”
He continued, “On the other hand, antibodies against influenza that were in the bone marrow before the vaccine was given stayed at a constant level over one year.”
Vaccine Adjuvants Help Boost Immunity
A vaccine additive called an adjuvant could be the answer to extending the power of influenza vaccines, the Emory scientists noted.
“Just getting to the bone marrow is not enough. A plasma cell has to find a niche within the bone marrow and establish itself there and undergo gene expression and metabolism changes that promote longevity,” Rafi Ahmed, PhD, Director of the Emory Vaccine Center, said in the news release.
“It’s totally crazy (that the most commonly used influenza vaccines don’t include an adjuvant), Ahmed told Science. “I’m hoping that things will change in the influenza vaccine world, and 10 years from now, you will not be getting any nonadjuvanted vaccines.”
Are Adjuvants the Answer for COVID-19 Vaccines?
According to USA Today, about 20-million “essential” workers will likely be the first to receive the new COVID-19 vaccine and participate in check-in text messages with the Centers for Disease Control and Prevention (CDC) by the end of 2020.
In its COVID-19 vaccine testing, Novavax, a late-state biotechnology company, suggests that “an adjuvant is critical to its vaccine working well,” National Public Radio (NPR) reported in “The Special Sauce That Makes Some Vaccines Work.” However, vaccine developers may be reluctant to share their adjuvant research.
“Adjuvants end up being very proprietary. It’s kind of the secret sauce on how to make your protein vaccine work,” Barney Graham, MD, PhD, Deputy Director, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, told NPR.
Still, a study published in Immunopharmacology revealed potential adjuvants for the COVID-19 vaccine based on vaccine studies of other coronaviruses. While there are many adjuvants available, not all have safety track records that can be leveraged to gain clearance from regulatory bodies, the researchers pointed out. But some do.
“CpG 1018, MF59, and AS03 are already approved for human vaccine and their inclusion may expedite the vaccine development process. Further, Protollin has shown promising results in pre-clinical studies,” the authors wrote.
Clinical laboratories that provide influenza testing will want to follow these types of research studies. Findings on immunity will affect development of vaccines that medical labs provide—including for COVID-19.