News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Amazon Care Pilot Program Offers Virtual Primary Care to Seattle Employees; Features Both Telehealth and In-home Care Services That Include Clinical Laboratory Testing

Experts say Amazon could be planning a roll-out of healthcare services to its Prime members and others

Clinical laboratory leaders will want to note that the Telehealth and home healthcare industries have expanded with the launch of Amazon Care, a virtual medical clinic and home care services program from global retailer Amazon.com, Inc. (NASDAQ:AMZN).

Amazon is piloting Amazon Care as a benefit for its 53,000 Seattle-area employees and their families, according to published reports. Could this indicate the world’s largest online retailer is moving into the primary care space? If so, clinical laboratory leaders will want to follow this development closely, because the program will need clinical laboratory support.

Amazon has successfully disrupted multiple industries in its corporate life and some experts speculate Amazon may be using its own employees to design a new medical delivery model for national roll-out.

The S&P report goes on to state, “In as little as five years, the Seattle-based e-commerce company could interlink its system of capabilities and assets to launch various healthcare products, insurance plans, virtual care services, and digital health monitoring to a broader population. The rollout would be part of a larger plan by Amazon to deliver convenient, cost-effective access to care and medications across the U.S., likely tied to Amazon’s Prime membership program, according to experts.”

Modern Healthcare reported that Amazon Care services include telemedicine and home visits to employees enrolled in an Amazon health insurance plan.

Experts contacted by S&P Global Market Intelligence suggest Amazon:

  • Plans a “suite of customized health plans and services for businesses and consumers;”
  • May offer health services to its five million seller business and more than 100 million Amazon Prime members; and
  • Sees healthcare as a growing market and wants greater involvement in it.

How Amazon Care Works

Amazon Care offers online, virtual care through a downloadable mobile device application (app) as well as in-person home care for certain medical needs, such as:

  • Colds, allergies, infections, and minor injury;
  • Preventative consults, vaccines, and lab tests;
  • Sexual health services; and
  • General health inquiries.

Becker’s Hospital Review reported that once a participant downloads the Amazon Care app to a smartphone or tablet and signs up for the program, he or she can:

  • Communicate with healthcare providers via text or video;
  • Plan personal visits if needed;
  • Set payment methods in their user profile; and
  • Receive a “potential diagnosis” and treatment plan.
The graphic above is taken from the S&P Global Market Intelligence report, which states, “Amazon is one of several tech firms vying for a share of the healthcare market where national spending is expected to reach $6.0 trillion by 2027, up from $3.6 trillion in 2018, according to the Centers for Medicare and Medicaid Services.” (Graphic copyright: S&P Global Market Intelligence.)

“The service eliminates travel and wait time, connecting employees and their family members to a physician or nurse practitioner through live chat or voice,” an Amazon spokesperson told CNBC, “with the option for in-person follow-up services from a registered nurse ranging from immunizations to instant strep throat detection.”

The “mobile health nurse” may also collect clinical laboratory specimens, the Verge reported.

Amazon has partnered with Oasis Medical Group, a family primary care practice in Seattle, to provide healthcare services for Amazon Care patients.

Paving the Way to Amazon Care

The Healthcare Financial Management Association (HFMA) compares Amazon’s piloting of Amazon Care to similar healthcare projects that studied population health by first involving employee health plans.

HFMA’s analysis noted that Amazon Care is similar to Haven, a patient advocate organization based in Boston and New York that was created in 2018 by Amazon, JPMorgan Chase, and Berkshire Hathaway to lower healthcare costs and improve outcomes for participating companies.

Tech Crunch reported that in 2018 Amazon also purchased PillPack for nearly $1 billion and integrated its prescription delivery services into Amazon Care. 

More recently, Amazon acquired Health Navigator and plans to bring those offerings to Amazon Care as well, CNBC reported. Founded in 2014, Health Navigator provides caregivers with symptom-checking tools that enable remote diagnoses.

Should Telemedicine Firms Be Nervous?

Dark Daily recently reported on Doctor on Demand’s launch of its own virtual healthcare telehealth platform called Synapse. The e-briefing also covered Doctor on Demand’s partnership with Humana (NYSE:HUM) to provide virtual primary care services to the insurer’s health plan members, including online doctor visits at no charge and standard medical laboratory tests for a $5 copayment.

So, should telemedicine firms be concerned about Amazon competing in their marketplace? Business Insider predicts Amazon will need time to beef up its medical resources to serve people online and in-person through Amazon Care.

But that’s the point of Amazon’s pilot, isn’t it? What comes from it will be interesting to watch.

“Meanwhile, telemedicine firms can ink strategic partnerships and strengthen their existing payer relationships to safeguard against Amazon’s surge into the space,” Business Insider advised.    

It remains to be seen how medical laboratory testing and reports would fit into an expanded Amazon Care health network. Or, how clinical laboratories will get “in-network” with Amazon Care, as it grows to serve customers beyond Amazon’s employees.

As Dark Daily recently advised, medical laboratory leaders will want to ensure their lab’s inclusion in virtual care networks, which someday may include Amazon Care.

—Donna Marie Pocius

Related Information:

Amazon Pilots Virtual Health Clinic for Employees

Amazon Could Roll Expanded Healthcare Plans, Services into Prime: Experts

National Health Expenditures Data

Amazon Launches Amazon Care, A Virtual Medical Clinic for Employees

Amazon is Now Offering Virtual Care to its Employees

Six Glimpses into the Amazon Care App, Employees’ ‘First Stop for Healthcare’

Analysis: Implications for Providers as Amazon Offers its Employees Access to a Virtual Clinic  

Amazon Acquires Health Navigator for Amazon Care, its Pilot Employee Healthcare Program

Amazon Acquires Digital Health Start-up Health Navigator

Amazon Piloting a Virtual Care Platform as the Company’s Next Big Step into Healthcare

As Primary Care Providers and Health Insurers Embrace Telehealth, How Will Clinical Laboratories Provide Medical Lab Testing Services?

Hospitals Worldwide Are Deploying Artificial Intelligence and Predictive Analytics Systems for Early Detection of Sepsis in a Trend That Could Help Clinical Laboratories, Microbiologists

Though medical laboratory testing is key to confirming sepsis, predictive analytics systems can identify early indications and alert caregivers, potentially saving lives

Medical laboratory testing has long been the key element in hospitals’ fight to reduce deaths caused by sepsis, a complication caused by the human body’s response to infection which can injure organs and turn fatal. But clinical laboratory testing takes time, particularly if infectious agents must be cultured in the microbiology lab. And sepsis acts so quickly, by the time the condition is diagnosed it is often too late to prevent the patient’s death.

To speed detection and diagnosis, several large healthcare providers are adding predictive analytics, artificial intelligence (AI) and machine learning technologies to their efforts to reduce sepsis-related mortality.

One example is HCA Healthcare (NYSE:HCA), the for-profit corporation with 185 hospitals, 119 freestanding surgery centers, and approximately 2,000 sites of care in 21 US states and in the United Kingdom.

HCA employs an electronic information and alert system called SPOT (Sepsis Prediction and Optimization of Therapy), which is embedded in each hospital patient’s electronic health record (EHR).

SPOT receives clinical data in real time directly from monitoring equipment at the patient’s bedside and uses predictive analytics to examine the data, including medical laboratory test results. If the data indicate that sepsis is present, SPOT alerts physicians and other caregivers.

With SPOT, HCA’s physicians have been detecting sepsis in its earliest stages and saving lives. This lends support to the growing belief that AI and machine learning can improve speed to diagnosis and diagnostic accuracy, which Dark Daily has covered in multiple e-briefings.

SPOT displays its data on screens that are monitored 24/7 (shown above). The clinical data include the patient’s vital signs as well as medical laboratory test results and nursing reports. HCA says the system has been used on about 2.5 million patients and has helped save up to 8,000 lives, Business Wire reported. (Photo copyright: HCA.)

Code Sepsis

HCA began developing the software in 2016. It was initially deployed in 2018 at TriStar Centennial Medical Center, HCA’s flagship hospital in Nashville,The Tennessean reported. It is now installed in most of the hospitals owned or operated by HCA.

Michael Nottidge, MD, is ICC Division Medical Director for Critical Care at HCA Healthcare Physician Services Group, and a critical care physician at TriStar Centennial. Nottidge told The Tennessean that unlike a heart attack or stroke, “sepsis begins quietly, then builds into a dangerous crescendo.”

Since its implementation, “[SPOT] has alerted clinicians to a septic patient nearly every day, often hours sooner than they would have been detected otherwise,” Nottidge told The Tennessean.

HCA’s SPOT system uses machine learning to ingest “millions of data points on which patients do and do not develop sepsis,” according to an HCA blog post. “Those computers monitor clinical data every second of a patient’s hospitalization. When a pattern of data consistent with sepsis risk occurs, it will signal with an alert to trained technicians who call a ‘code sepsis.’”

More Accurate than Clinicians

The federal Centers for Disease Control and Prevention (CDC) estimates that more than 250,000 Americans die from sepsis each year. The Sepsis Alliance describes the life-threatening complication as the “leading cause of death in US hospitals.”

Like most health systems, HCA has been battling sepsis for many years using guidelines and educational tools provided by the Surviving Sepsis Campaign (SSC), a joint initiative of the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM), Modern Healthcare reported.

Early detection and treatment are key to reducing sepsis mortalities. However, a study in the journal Clinical Medicine reported that, despite recent advances in identifying at-risk patients, “there is still no molecular signature able to diagnose sepsis.”

And according to a study published in Critical Care Medicine, the survival rate is about 80% when treatment is administered in the first hour, but each hour of delay in treatment decreases the average survival rate by 7.6%.

In an interview with Becker’s Hospital Review, HCA’s Chief Medical Officer and President of Clinical Services, Jonathan Perlin, MD, PhD, touted SPOT’s reliability, having “very few false positives. In fact, it is more than 50% more accurate at excluding patients who don’t have sepsis than even the best clinician.”

Perlin also told The Tennessean that SPOT can detect sepsis “about eight to 10 hours before clinicians ever could.”

“It’s no coincidence that we call the technology ‘SPOT’—a common name for a child’s dog—because it really does act as our sepsis sniffer,” said Jonathan Perlin, MD, PhD (above), in the HCA blog post. “The whole point is for it to sniff smoke and put the ‘fire’ out before it becomes catastrophic. With SPOT, we’re identifying at least one-third more cases of sepsis that would not previously have come to caregivers’ attention until it was too late.” [Photo copyright: Nashville Business Journal.)

Other Healthcare Providers Using AI-Enabled Early-Warning Tools

In November 2018, the emergency department at Duke University Hospital in Durham, N.C., began a pilot program to test an AI-enabled system dubbed Sepsis Watch, reported Health Data Management. The software, developed by the Duke Institute for Health Innovation, “was trained via deep learning to identify cases based on dozens of variables, including vital signs, medical laboratory test results, and medical histories,” reported IEEE Spectrum. “In operation, it pulls information from patients’ medical records every five minutes to evaluate their conditions, offering intensive real-time analysis that human doctors can’t provide.”

Earlier this year, Sentara Norfolk General Hospital in Norfolk, Va., installed an AI-enabled sepsis-alert system developed by Jvion, a maker of predictive analytics software. “The new AI tool grabs about 4,500 pieces of data about a patient that live in the electronic record—body temperature, heart rate, blood tests, past medical history, gender, where they live and so on—and runs it all through an algorithm that assesses risk for developing sepsis,” reported The Virginian Pilot.

Geisinger Health System, which operates 13 hospitals in Pennsylvania and New Jersey, is working on its own system to identify sepsis risk. It announced in a September news release that it had teamed with IBM to develop a predictive model using a decade’s worth of data from thousands of Geisinger patients.

“The model helped researchers identify clinical biomarkers associated with higher rates of mortality from sepsis by predicting death or survival of patients in the test data,” Geisinger stated in the news release. “The project revealed descriptive and clinical features such as age, prior cancer diagnosis, decreased blood pressure, number of hospital transfers, and time spent on vasopressor medicines, and even the type of pathogen, all key factors linked to sepsis deaths.”

So, can artificial intelligence and predictive analytics added to medical laboratory test results help prevent sepsis-related deaths in all hospitals? Perhaps so. Systems like SPOT, Sepsis Watch, and others certainly are logging impressive results.

It may not be long before similar technologies are aiding pathologists, microbiologists, and clinical laboratories achieve improved diagnostic and test accuracy as well.

—Stephen Beale

Related Information:

HCA Healthcare Using Algorithm Driven Technology to Detect Sepsis Early and Help Save 8,000 Lives

Surviving Sepsis: Young Mother and Caregivers Raise Awareness of ‘Silent Killer’

HCA Healthcare Technology Saved Nurse’s Life by Spotting Deadly Sepsis Signs

HCA Uses Predictive Analytics to Spot Sepsis Early

Duration of Hypotension before Initiation of Effective Antimicrobial Therapy Is the Critical Determinant of Survival in Human Septic Shock

SPOT: How HCA is “Sniffing Out” Sepsis Early

HCA Hospitals to Expand Computer Algorithm That Detects Sepsis and Saves Lives

Diagnosis and Management of Sepsis

Meet SPOT: HCA Healthcare’s ‘Smoke Detector’ for Sepsis

SPOT On: New Decision Support Tool Reduces Sepsis Mortality by 22.9%

HCA Healthcare Says Analytics System Can Detect Sepsis Quickly

HCA Develops Artificial Intelligence Tool for Early Sepsis Detection

To Catch A Killer: Electronic Sepsis Alert Tools Reaching A Fever Pitch?

Detecting Sepsis Without Alert Fatigue

Researchers Create Non-stick Coating That Repels External Molecules, Even Viruses and Bacteria; Clinical Laboratories May Soon Find It Easier to Keep Surfaces Free from Bacterial Contamination

Hospital-acquired infections could finally be prevented and no longer threaten the health of patients and hospital workers

In what may be the most significant development in healthcare’s fight against hospital-acquired infections (HAIs), researchers at McMaster University in Hamilton, Ontario, Canada, have developed an ultra-repellent coating that prevents anything—including viruses and bacteria—from adhering to surfaces covered in the material. This fascinating discovery may have great value for both microbiologists and hospital infection control teams, as well as the clinical laboratory and food service industries. 

The self-cleaning material has been proven to repel even the deadliest forms of antibiotic resistant (ABR) superbugs and viruses. This ultimate non-stick coating is a chemically treated form of transparent plastic wrap which can be adhered to surfaces prone to gathering germs, such as door handles, railings, and intravenous therapy (IV) stands.

“We developed the wrap to address the major threat that is posed by multi-drug resistant bacteria,” Leyla Soleymani, PhD, Associate Professor at McMaster University and one of the leaders of the study, told CNN. “Given the limited treatment options for these bugs, it is key to reduce their spread from one person to another.”

The researchers tested their revolutionary coating using two potentially deadly forms of antibiotic-resistant bacteria: Methicillin-resistant staphylococcus aureus (MRSA) and Pseudomonas.

In their study, published in ACS Nano, a journal of the American Chemical Society, titled, “Flexible Hierarchical Wraps Repel Drug-Resistant Gram-Negative and Positive Bacteria,” the researchers stated their material was effective at repelling MRSA 87% of the time and at repelling Pseudomonas 84% of the time. The wrapped surfaces also remained free of Escherichia coli (E. coli) after being exposed to the bacteria.

Bacteria-Resistant Wrap Could Greatly Diminish Threat of Hospital-Acquired Infections

This is a significant breakthrough. Dark Daily has covered the growing danger of hospital-acquired infections in numerous e-briefings, including “Could Proximity of Toilets to Sinks in Medical Intensive Care Units Contribute to Hospital-Acquired Infections?” That report covered research by the Medical College of Wisconsin (MCW) which found that sinks located near toilets in patient rooms were four times more likely to have Klebsiella pneumoniae carbapenemase (KPC)-producing organisms in their drains than sinks that were located farther away from toilets.

According to research published in the peer-reviewed Southern Medical Journal, “KPC-producing bacteria are a group of emerging highly drug-resistant Gram-negative bacilli causing infections associated with significant morbidity and mortality.”

Were those surfaces covered in this new bacterial-resistant coating, life-threatening infections in hospital ICUs could be prevented.

Taking Inspiration from Nature

In designing their new anti-microbial wrap, McMaster researchers took their inspiration from natural lotus leaves, which are effectively water-resistant and self-cleaning thanks to microscopic wrinkles that repel external molecules. Substances that come in contact with surfaces covered in the new non-stick coating—such as a water, blood, or germs—simply bounce off. They do not adhere to the material.

The “shrink-wrap” is flexible, durable, and inexpensive to manufacture. And, the researchers hope to locate a commercial partner to develop useful applications for their discovery. 

“We’re structurally tuning that plastic,” Soleymani told SciTechDaily. “This material gives us something that can be applied to all kinds of things.”

In the video above, Leyla Soleymani, PhD, Associate Professor at McMaster University, explains how “The new plastic surface—a treated form of conventional transparent wrap—can be shrink-wrapped onto door handles, railings, IV stands, and other surfaces that can be magnets for bacteria such as MRSA and C. difficile. This may be technology that has great value to clinical laboratories and microbiology laboratories. Click here to watch the video. (Image and video copyright: McMaster University/YouTube.)

Industries Outside of Healthcare Also Would Benefit

According to the US Centers for Disease Control and Prevention (CDC), at least 2.8 million people get an antibiotic-resistant infection in the US each year. More than 35,000 people die from these infections, making it one of the biggest health challenges of our time and a threat that needs to be eradicated. This innovative plastic coating could help alleviate these types of infections.

And it’s not just for healthcare. The researchers said the coating could be beneficial to the food industry as well. The plastic surface could help curtail the accidental transfer of bacteria, such as E. coli, Salmonella, and Listeria in food preparation and packaging, according to the published study.

“We can see this technology being used in all kinds of institutional and domestic settings,” Tohid Didar, PhD, Assistant Professor at McMaster University and co-author of the study, told SciTechDaily. “As the world confronts the crisis of anti-microbial resistance, we hope it will become an important part of the anti-bacterial toolbox.”

The research was led by Didar and Soleymani in collaboration with scientists from McMaster’s Institute for Infectious Disease Research (IIDR) and the McMaster-based Canadian Center for Electron Microscopy.

Clinical laboratories also are tasked with preventing the transference of dangerous bacteria to patients and lab personnel. Constant diligence in application of cleaning protocols is key. If this new anti-bacterial shrink wrap becomes widely available, medical laboratory managers and microbiologists will have a new tool to fight bacterial contamination.

—JP Schlingman

Related Information:

Researchers Create Ultimate Non-Stick Coating That Repels Everything—Even Viruses and Bacteria

Flexible Hierarchical Wraps Repel Drug-Resistant Gram-Negative and Positive Bacteria

Scientists Develop Superbug-resistant, Self-cleaning Plastic Wrap

Antibiotic Resistance Threats in the United States

Surface Allows Self-Cleaning

Repel Wraps: Ultimate Non-Stick Coating Repels Everything – Even Viruses and Bacteria

Could Proximity of Toilets to Sinks in Medical Intensive Care Units Contribute to Hospital-Acquired Infections?

Leapfrog Group Report Shows Hospitals Failing to Eliminate Hospital-Acquired Infections; Medical Laboratories Can Help Providers’ Antimicrobial Stewardship Programs

Collaboration between Pathologists, Medical Laboratories, and Hospital Staff Substantially Reduced Hospital-Acquired Infections, AHRQ Reports

Advancements That Could Bring Proteomics and Mass Spectrometry to Clinical Laboratories

Experts list the top challenges facing widespread adoption of proteomics in the medical laboratory industry

Year-by-year, clinical laboratories find new ways to use mass spectrometry to analyze clinical specimens, producing results that may be more precise than test results produced by other methodologies. This is particularly true in the field of proteomics.

However, though mass spectrometry is highly accurate and fast, taking only minutes to convert a specimen into a result, it is not fully automated and requires skilled technologists to operate the instruments.

Thus, although the science of proteomics is advancing quickly, the average pathology laboratory isn’t likely to be using mass spectrometry tools any time soon. Nevertheless, medical laboratory scientists are keenly interested in adapting mass spectrometry to medical lab test technology for a growing number of assays.

Molly Campbell, Science Writer and Editor in Genomics, Proteomics, Metabolomics, and Biopharma at Technology Networks, asked proteomics experts “what, in their opinion, are the greatest challenges currently existing in proteomics, and how can we look to overcome them?” Here’s a synopsis of their answers:

Lack of High Throughput Impacts Commercialization

Proteomics isn’t as efficient as it needs to be to be adopted at the commercial level. It’s not as efficient as its cousin genomics. For it to become sufficiently efficient, manufacturers must be involved.

John Yates III, PhD, Professor, Department of Molecular Medicine at Scripps Research California campus, told Technology Networks, “One of the complaints from funding agencies is that you can sequence literally thousands of genomes very quickly, but you can’t do the same in proteomics. There’s a push to try to increase the throughput of proteomics so that we are more compatible with genomics.”

For that to happen, Yates says manufacturers need to continue advancing the technology. Much of the research is happening at universities and in the academic realm. But with commercialization comes standardization and quality control.

“It’s always exciting when you go to ASMS [the conference for the American Society for Mass Spectrometry] to see what instruments or technologies are going to be introduced by manufacturers,” Yates said.

There are signs that commercialization isn’t far off. SomaLogic, a privately-owned American protein biomarker discovery and clinical diagnostics company located in Boulder, Colo., has reached the commercialization stage for a proteomics assay platform called SomaScan. “We’ll be able to supplant, in some cases, expensive diagnostic modalities simply from a blood test,” Roy Smythe, MD, CEO of SomaLogic, told Techonomy.


The graphic above illustrates the progression mass spectrometry took during its development, starting with small proteins (left) to supramolecular complexes of intact virus particles (center) and bacteriophages (right). Because of these developments, today’s medical laboratories have more assays that utilize mass spectrometry. (Photo copyright: Technology Networks/Heck laboratory, Utrecht University, the Netherlands.)

Achieving the Necessary Technical Skillset

One of the main reasons mass spectrometry is not more widely used is that it requires technical skill that not many professionals possess. “For a long time, MS-based proteomic analyses were technically demanding at various levels, including sample processing, separation science, MS and the analysis of the spectra with respect to sequence, abundance and modification-states of peptides and proteins and false discovery rate (FDR) considerations,” Ruedi Aebersold, PhD, Professor of Systems Biology at the Institute of Molecular Systems Biology (IMSB) at ETH Zurich, told Technology Networks.

Aebersold goes on to say that he thinks this specific challenge is nearing resolution. He says that, by removing the problem created by the need for technical skill, those who study proteomics will be able to “more strongly focus on creating interesting new biological or clinical research questions and experimental design.”

Yates agrees. In a paper titled, “Recent Technical Advances in Proteomics,” published in F1000 Research, a peer-reviewed open research publishing platform for scientists, scholars, and clinicians, he wrote, “Mass spectrometry is one of the key technologies of proteomics, and over the last decade important technical advances in mass spectrometry have driven an increased capability of proteomic discovery. In addition, new methods to capture important biological information have been developed to take advantage of improving proteomic tools.”

No High-Profile Projects to Stimulate Interest

Genomics had the Human Genome Project (HGP), which sparked public interest and attracted significant funding. One of the big challenges facing proteomics is that there are no similarly big, imagination-stimulating projects. The work is important and will result in advances that will be well-received, however, the field itself is complex and difficult to explain.

Emanuel Petricoin, PhD, is a professor and co-director of the Center for Applied Proteomics and Molecular Medicine at George Mason University. He told Technology Networks, “the field itself hasn’t yet identified or grabbed onto a specific ‘moon-shot’ project. For example, there will be no equivalent to the human genome project, the proteomics field just doesn’t have that.”

He added, “The equipment needs to be in the background and what you are doing with it needs to be in the foreground, as is what happened in the genomics space. If it’s just about the machinery, then proteomics will always be a ‘poor step-child’ to genomics.”

Democratizing Proteomics

Alexander Makarov, PhD, is Director of Research in Life Sciences Mass Spectrometry (MS) at Thermo Fisher Scientific. He told Technology Networks that as mass spectrometry grew into the industry we have today, “each new development required larger and larger research and development teams to match the increasing complexity of instruments and the skyrocketing importance of software at all levels, from firmware to application. All this extends the cycle time of each innovation and also forces [researchers] to concentrate on solutions that address the most pressing needs of the scientific community.”

Makarov describes this change as “the increasing democratization of MS,” and says that it “brings with it new requirements for instruments, such as far greater robustness and ease-of-use, which need to be balanced against some aspects of performance.”

One example of the increasing democratization of MS may be several public proteomic datasets available to scientists. In European Pharmaceutical Review, Juan Antonio Viscaíno, PhD, Proteomics Team Leader at the European Bioinformatics Institute (EMBL-EBI) wrote, “These datasets are increasingly reused for multiple applications, which contribute to improving our understanding of cell biology through proteomics data.”

Sparse Data and Difficulty Measuring It

Evangelia Petsalaki, PhD, Group Leader EMBL-EBI, told Technology Networks there are two related challenges in handling proteomic data. First, the data is “very sparse” and second “[researchers] have trouble measuring low abundance proteins.”

Petsalaki notes, “every time we take a measurement, we sample different parts of the proteome or phosphoproteome and we are usually missing low abundance players that are often the most important ones, such as transcription factors.” She added that in her group they take steps to mitigate those problems.

“However, with the advances in MS technologies developed by many companies and groups around the world … and other emerging technologies that promise to allow ‘sequencing’ proteomes, analogous to genomes … I expect that these will not be issues for very long.”

So, what does all this mean for clinical laboratories? At the current pace of development, its likely assays based on proteomics could become more common in the near future. And, if throughput and commercialization ever match that of genomics, mass spectrometry and other proteomics tools could become a standard technology for pathology laboratories.

—Dava Stewart

Related Information:

5 Key Challenges in Proteomics, As Told by the Experts

The Evolution of Proteomics—Professor John Yates

The Evolution of Proteomics—Professor Ruedi Aebersold

The Evolution of Proteomics—Professor Emanuel Petricoin

The Evolution of Proteomics—Professor Alexander Makarov

The Evolution of Proteomics—Dr. Evangelia Petsalaki

For a Clear Read on Our Health, Look to Proteomics

Recent Technical Advances in Proteomics

Emerging Applications in Clinical Mass Spectrometry

HPP Human Proteome Project

Open Data Policies in Proteomics Are Starting to Revolutionize the Field

Native Mass Spectrometry: A Glimpse Into the Machinations of Biology

Smartphone Apps Enable Healthcare Consumers to Receive Primary Care without Traditional Office Visits, But How Will They Provide Needed Medical Laboratory Samples?

These virtual office visits use artificial intelligence and text messaging to allow real physicians to diagnose patients, write prescriptions, and order clinical laboratory tests

Clinical laboratories may soon be receiving test orders from physicians who never see their patients in person, instead evaluating and diagnosing them through a smartphone app. In response to major changes in the primary care industry—mostly driven by consumer demand—mobile app developers are introducing new methods for delivering primary care involving smartphones and artificial intelligence (AI).

Medical laboratories and pathology groups should prepare for consumers who expect their healthcare to be delivered in ways that don’t require a visit to a traditional medical office. One question is how patients using virtual primary care services will provide the specimens required for clinical laboratory tests that their primary care providers want performed?

Two companies on the forefront of such advances are 98point6 and K Health, and they provide a glimpse of primary care’s future. The two companies have developed smartphone apps that incorporate AI and the ability to interact with real physicians via text messaging.

Virtual Primary Care 24/7 Nationwide

Dark Daily has repeatedly reported that primary care in America is undergoing major changes driven by many factors including increasingly busy schedules, the popularity of rapid retail and urgent care clinics, consumer use of smartphones and the Internet to self-diagnose, and decreasing numbers of new doctors choosing primary care as a career path. 

Writing in Stat, two physicians who had just completed internal medicine residencies, explained their own decisions to leave primary care. In their article, titled, “We were inspired to become primary care physicians. Now we’re reconsidering a field in crisis,” Richard Joseph, MD, and Sohan Japa, MD, cited factors that include long hours, low compensation in comparison with specialty care, and deficiencies in primary care training. At the time of their writing they were senior residents in primary care-internal medicine at Brigham and Women’s Hospital in Boston.

They also pointed to a decline in office visits to primary care doctors. “Patients are increasingly choosing urgent care centers, smartphone apps, telemedicine, and workplace and retail clinics that are often staffed by nurse practitioners and physician assistants for their immediate health needs,” they wrote.

One solution to declining populations of primary care physicians is a smartphone app created by Seattle-based 98point6. The service involves “providing virtual text-based primary care across the entire country, 24/7 of everyday,” explained Brad Younggren, MD, an emergency physician and Chief Medical Officer at 98point6, in a YouTube interview. “It’s text-based delivery of care overlaid with an AI platform on top of it.”

The service launched on May 1, 2018, in 10 states and is now available nationwide, according to press releases. 98point6 offers the service through individual subscriptions or through deals with employers, health plans, health systems, and other provider organizations. The personal plan costs $20 for the first year and $120 for the second, plus $1 per “visit.”

Here’s how it works:

  • Subscribers use text messaging to interact with an “automated assistant” that incorporates artificial intelligence. While messaging, they can describe symptoms or ask questions about medical topics.

“After the automated assistant has gathered as many questions as it deems necessary, it hands [the information] off to a physician,” Younggren said. In most cases, all communication is via text messaging. However, the doctor may ask the subscriber to send a photo or participate in a video meeting.

  • The doctor then makes a diagnosis and treatment plan. Prescriptions can be sent to a local pharmacy and the subscriber can be referred to a clinical laboratory for tests. LabCorp or Quest Diagnostics are preferred providers, but subscribers can choose to have orders sent to independent labs as well, states the company’s website.

Younggren claims the company’s physicians can resolve more than 90% of the cases they encounter. If, however, they can’t resolve a case, they can refer the patient to a local physician. And because most of 98point6’s interactions with subscribers are text-based, that messaging serves as reference documentation for other doctors, he said.

“We’ve set out to dramatically augment the primary-care physician with deep technology by delivering an on-demand primary-care experience,” Robbie Cape (above), CEO and co-founder of 98point6, told Modern Healthcare. (Photo copyright: Seattle Business Magazine.)

The 98point6 physicians are full-time employees and work with the company’s technologists to improve the AI’s capabilities, Younggren said. The company claims its doctors can diagnose and treat more than 400 conditions, including: allergies, asthma, skin problems, coughs, flu, diabetes, high blood pressure, and infections. For medical emergencies, subscribers are advised to seek emergency help locally.

98point6 also can function as a front end for interacting with patients in health systems that have their own primary-care doctors, Younggren said. The company’s health system clients “don’t actually have a good digital primary care front end to deliver care,” he said. “So, we can essentially give them that, and then we can also get some detailed understanding of how to coordinate care within the health system to drive patients to the care that they need.” For example, this can include directing the patient to an appropriate sub-specialist.

Leveraging Patient Data to Answer Health Questions

K Health in New York City offers a similar service based on its own AI-enabled smartphone app. The app incorporates data gleaned from the records of more than two million anonymous patients in Israel over the past 20 years, explained company co-founder Ran Shaul, co-founder and Chief Product Officer, in a blog post.

The software asks users about their “chief complaint” and then compares the answers with data from similar cases. “We call this group your ‘People Like Me’ cohort,” Shaul wrote. “It shows you how doctors diagnosed those people and all the ways they were treated.”

The K Health app is free, but for a fee ranging from $14 for a one-time visit to $39 for an annual subscription, users can text with doctors, the company’s website states.

Unlike 98point6, K Health’s doctors are employed by “affiliated physician-owned professional corporations,” the company says, not K Health itself.

“The doctor you chat with will discuss a recommended treatment plan that may include a physical exam, lab tests, or radiology scans,” states K Health’s website. “They may send you directly for some of these tests, but others will require you to visit a local doctor.”

These are just the latest examples of new technologies and services devised to help patients receive primary care. How a patient who uses a smartphone app gets the necessary clinical laboratory tests performed is a question yet to be answered.

Clinical laboratory leaders will want to watch this shift in the delivery of primary care and look for opportunities to serve consumers who are getting primary care from nontraditional sources.

—Stephen Beale

Related Information:

Bringing Primary Care to Smartphones

We Were Inspired to Become Primary Care Physicians. Now We’re Reconsidering A Field in Crisis

How K Delivers Free Personalized Healthcare Information

Robbie Cape Wants Everyone to Have Access to Affordable Primary Care

98point6 Inc.’s Hot Health Care App Is Attracting Investors

Consumer Trend to Use Walk-In and Urgent Care Clinics Instead of Traditional Primary Care Offices Could Impact Clinical Laboratory Test Ordering/Revenue

JAMA Study Shows American’s with Primary Care Physicians Receive More High-Value Care, Even as Millennials Reject Traditional Healthcare Settings

As Primary Care Providers and Health Insurers Embrace Telehealth, How Will Clinical Laboratories Provide Medical Lab Testing Services?

Does Precision Oncology Offer Patients Superior Treatment Therapies? Anatomic Pathologists Will Be Interested to Learn Why Oncology Experts Disagree

Number of patients eligible for genome-driven oncology therapy is increasing, but the percentage who reportedly benefit from the therapy remains at less than 5%

Advances in precision medicine in oncology (precision oncology) are fueling the need for clinical laboratory companion diagnostic tests that help physicians choose the best treatment protocols. In fact, this is a fast-growing area of clinical diagnostics for the nation’s anatomic pathologists. However, some experts in the field of genome-based cancer treatments disagree over whether such treatments offer more hype than hope.

At an annual meeting of the American Association for Cancer Research (AACR) in Chicago, David Hyman, MD, Chief of Early Drug Development at Memorial Sloan Kettering Cancer Center in New York, and Vinay Prasad, MD, MPH, Hematologist-Oncologist and Associate Professor of Medicine at Oregon Health and Science University (OHSU), squared off.

Science, a journal of the American Association for the Advancement of Science (AAAS), reported that during a panel discussion, titled, “Is Genome-Informed Cancer Medicine Generating Patient Benefit or Just Hype?,” Prasad argued precision oncology benefits far fewer advanced cancer patients than headlines suggest. “When you look at all the data, it’s a sobering picture,” he told the AACR attendees.

To support his claim, Prasad pointed to a study he co-authored that was published in JAMA Oncology, titled, “Estimation of the Percentage of US Patients with Cancer Who Benefit from Genome-Driven Oncology.”

Prasad and his colleagues evaluated 31 US Food and Drug Administration (FDA) approved drugs, which were “genome-targeted” or “genome-informed” for 38 indications between 2006 and 2018. The researchers sought to answer the question, “How many US patients with cancer are eligible for and benefit annually from genome-targeted therapies approved by the US Food and Drug Administration?”

They found that in 2018 only 8.33% of 609,640 patients with metastatic cancer were eligible for genome-targeted therapy—though this was an increase from 5.09% in 2006.

Even more telling from Prasad’s view, his research team concluded that only 4.9% had benefited from such treatments. Prasad’s study found the percentage of patients estimated to have benefited from genome-informed therapy rose from 1.3% in 2006 to 6.62% in 2018.

“Although the number of patients eligible for genome-driven treatment has increased over time, these drugs have helped a minority of patients with advanced cancer,” the researchers concluded. “To accelerate progress in precision oncology, novel trial designs of genomic therapies should be developed, and broad portfolios of drug development, including immunotherapeutic and cytotoxic approaches, should be pursued.”

The graph above is based on data from a study published in Science titled, “Estimation of the Percentage of US Patients With Cancer Who Benefit from Genome-Driven Oncology,” co-authored by Vinay Prasad, MD, MPH, et al. (Image copyright: Science.)

A Value versus Volume Argument?

Hyman, who leads a team of oncologists that conduct dozens of clinical trials and molecularly selected “basket studies” each year, countered Prasad’s assertions by noting the increase in the number of patients who qualify for precision oncology treatments.

As reported in Science, Hyman said during his AACR presentation that Sloan Kettering matched 15% of the 25,000 patients’ tumors it tested with FDA-approved drugs and 10% with drugs in clinical trials.

“I think this is certainly not hype,” he said during the conference.

Hyman added that another 10% to 15% of patient tumors have a DNA change that matches a potential drug tested in animals. He expects “basket” trials to further increase the patient pool by identifying drugs that can work for multiple tumor types.

The US National Institute of Health (NIH) describes “basket studies” as “a new sort of clinical studies to identify patients with the same kind of mutations and treat them with the same drug, irrespective of their specific cancer type. In basket studies, depending on the mutation types, patients are classified into ‘baskets.’ Targeted therapies that block that mutation are then identified and assigned to baskets where patients are treated accordingly.”

Are Expectations of Precision Medicine Exaggerated?

A profile in MIT Technology Review, titled, “The Skeptic: What Precision Medicine Revolution?,” describes Prasad’s reputation as a “professional scold” noting the 36-year-old professor’s “sharp critiques of contemporary biomedical research, including personalized medicine.” Nevertheless, Prasad is not alone in arguing that precision oncology’s promise is often exaggerated.

Following the Obama Administration’s 2015 announcement of its precision medicine initiative, Michael J. Joyner, MD, Professor of Anesthesiology at the Mayo Clinic, penned a New York Times (NYT) editorial in which he cast doubt on the predictive power of genetic variants to improve disease outcomes.

“Like most ‘moonshot’ medical research initiatives, precision medicine is likely to fall short of expectations,” Joyner wrote. “Medical problems and their underlying biology are not linear engineering exercises and solving them is more than a matter of vision, money, and will.”

Recently, he increased his dissent over current perceptions of precision medicine’s value. In a STAT article, titled, “Precision Medicine’s Rosy Predictions Haven’t Come True. We Need Fewer Promises and More Debate,” Joyner and co-author Nigel Paneth, MD, MPH, Professor of Epidemiology and Biostatistics and Pediatrics at Michigan State University, pushed for more debate over the “gene-centric paradigms” that now “pervade biomedical research.”

“Although some niche applications have been found for precision medicine—and gene therapy is now becoming a reality for a few rare diseases—the effects on public health are miniscule while the costs are astronomical,” they wrote.

Hope for Precision Medicine Remains High

However, optimism over precision oncology among some industry leaders has not waned. Cindy Perettie, CEO of molecular information company Foundation Medicine of Cambridge, Mass., argues genome-directed treatments have reached an “inflection point.”

“Personalized cancer treatment is a possibility for more patients than ever thanks to the advent of targeted therapies,” she told Genetic Engineering and Biotechnology News. “With a growing number of new treatments—including two pan-tumor approvals—the need for broad molecular diagnostic tools to match patients with these therapies has never been greater. We continue to advance our understanding of cancer as a disease of the genome—one in which treatment decisions can be informed by insight into the genomic changes that contribute to each patient’s unique cancer.”

Prasad acknowledges genome-driven therapies are beneficial for some cancers. However, he told MIT Technology Review the data doesn’t support the “rhetoric that we’re reaching exponential growth, or that is taking off, or there’s an inflection point” signaling rapid new advancements.

“Right now, we are investing heavily in immunotherapy and heavily in genomic therapy, but in other categories of drugs, such as cytotoxic drugs, we have stopped investigating in them,” he told Medscape Medical News. “But it’s foolish to do this—we need to have the vision to look beyond the fads we live by in cancer medicine and do things in a broader way,” he added.

“So, I support broader funding because you have to sustain efforts even when things are not in vogue if you want to make progress,” Prasad concluded.

Is precision oncology a fad? Dark Daily has covered the advancements in precision medicine extensively over the past decade, and with the launch of our new Precision Medicine Institute website, we plan to continue reporting on further advancements in personalized medicine.

Time will tell if precision oncology can fulfill its promise. If it does, anatomic pathologists will play an important role in pinpointing patients most likely to benefit from genome-driven treatments.

One thing that the debate between proponents of precision medicine in oncology and their critics makes clear is that more and better clinical studies are needed to document the true effectiveness of target therapies for oncology patients. Such evidence will only reinforce the essential role that anatomic pathologists play in diagnosis, guiding therapeutic decisions, and monitoring the progress of cancer patients.

—Andrea Downing Peck

Related Information:

A Cancer Drug Tailored to your Tumor? Experts Trade Barbs over Precision Oncology

Estimation of the Percentage of US Patients with Cancer who Benefit from Genome-Driven Oncology

2020 Vision: Predictions of What May Shape Precision Medicine

Precision Medicine’s Rosy Predictions Haven’t Come True. We Need Fewer Promises and More Debate

The Skeptic: What Precision Medicine Revolution?

‘Moonshot’ Medicine Will Let Us Down

Basket Studies: An Innovative Approach for Oncology Trials

‘Genome-Driven’ Cancer Drugs Treat Small Minority of Patients

Press Release: The All-New Precision Medicine Institute Website Makes Its Debut

Harvard Medical School Study Finds ‘Staggering’ Amounts of Genetic Diversity in Human Microbiome; Might Be Useful in Diagnostics and Precision Medicine

McKinsey and Company Report Highlights Precision Medicine’s Advancements in Integrating Genetic Testing Results with Electronic Medical Records

Precision Medicine’s Most Successful Innovators to Speak in Nashville, including Vanderbilt Univ. Med. Center, Illumina, Geisinger Health, Northwell Health

Targeted Cancer Therapies Bring New Precision Medicine Tools to Anatomic Pathologists and Clinical Laboratories

;