Nov 22, 2017 | Instruments & Equipment, Laboratory Instruments & Laboratory Equipment, Laboratory Management and Operations, Laboratory News, Laboratory Pathology, Laboratory Testing, Management & Operations
Industry analysts speculate that Apple might be planning to enter the EHR and healthcare related markets by transforming mobile technologies into gateway devices connected to providers’ EHR systems and patient data
Imagine a mobile device that monitors vitals while connected in real-time to healthcare providers, electronic health records (EHR), and clinical laboratories. One that measures the physical condition and emotional state of the user by casting light onto skin, and then records and transmits it with a swipe of the touch screen. Would such an innovation change how patients expect to interact with their providers? And how physicians, anatomic pathologists, and medical laboratories receive data from their patients? Certainly.
This is why US patents recently granted to Apple have caught the attention of industry analysts. Some speculate that the tech giant is planning to enter the mobile healthcare monitoring device, EHR, and healthcare data storage markets, as reported at Becker’s Health IT and CIO Review and Patently Apple.
How this would affect medical laboratories and anatomic pathology groups remains to be seen. But where Apple goes, industries follow. Thus, it’s worth following the company’s activities in the healthcare market.
Bringing Clinical Data, Medical Laboratory Test Results, to iPhone
Mobile devices launched the era of consumer-grade fitness wearables. It’s not uncommon for a smart phone or watch to capture and store a range of health data generated by users. This can include everything from heart rate and sleeping patterns to dietary logs and fertility tracking. But, to date, much of that healthcare data is user generated and does not integrate in any meaningful way with the majority of EHR systems. Nor does it enable communications with primary care providers or diagnostic services—such as medical laboratories or pathology groups.
This may soon change.
According to a CNBC report, a unit at Apple is “in talks with developers, hospitals, and other industry groups about bringing clinical data—such as detailed lab results and allergy lists—to the iPhone, according to a half-dozen people familiar with the team.”
The report states that Apple:
· “Wants the iPhone to become the central bank for health information;
· “Is looking to host clinical information, such as labs and allergy lists, and not just wellness data; and,
· “Is talking with hospitals, researching potential acquisitions, and attending health IT industry meetings.”
Christina Farr, the report’s author, predicts that Apple could be preparing to apply its music industry model to the healthcare industry by, “Replacing CDs and scattered MP3s with a centralized management system in iTunes and the iPod—in the similarly fragmented and complicated landscape for health data.”
Former National Coordinator of Health IT for the Department of Health and Human Services, Farzad Mostashari, MD, ScM, rather enthusiastically noted the significance of the move, stating, “If Apple is serious about this, it would be a big f—ing deal.”
At a special event in September, Apple COO Jeff Williams (above) announced Stanford Medicine’s Apple Heart Study, which uses “data from Apple Watch to identify irregular heart rhythms, including those from potentially serious heart conditions like atrial fibrillation,” and, according to Williams, “notify users.” This is just one of several healthcare-related study collaborations Apple is exploring. It is not known if Apple is looking to collaborate with medical laboratories. (Photo copyright: Apple.)
Apple’s History with Healthcare Related Technology
Taken as a single event, these speculations might not convince industry leaders. However, Apple’s long-term investments and acquisitions show a clear trend toward integrating healthcare data into the Apple ecosystem.
Healthcare IT News noted that from 2014 to 2017 Apple:
· Unveiled three different APIs—HealthKit, ResearchKit, and CareKit—designed to help capture, analyze, communicate, and integrate healthcare data with the Apple iOS and watchOS ecosystems;
· Hired several MDs, including: Stephen Friend, MD; Rajiv Kumar, MD; Mike Evans, MD; Ricky Bloomfield, MD; and Sumbul Ahmad Desai, MD; and,
· Engaged with the Argonaut Project and Health Gorilla (a centralized hub of healthcare data and information) suggesting a shift from wearables and basic device-based biometrics toward in-depth reporting, interoperability, and access to third-party healthcare data repositories—such as those in a person’s EHR or medical laboratory portal.
The Future of EHRs or Another Failed Attempt at Innovation?
Apple isn’t the only company to attempt such a system. Other efforts include Microsoft’s Health Vault and Google’s now shuttered Google Health. Another CNBC article notes that Amazon is also researching healthcare related options. “The new team is currently looking at opportunities that involve pushing and pulling data from legacy electronic medical record systems,” stated Farr. “The group is also exploring health applications for existing Amazon hardware, including Echo and Dash Wand.”
However, where most services fail to gain traction is user engagement. After all, if a system isn’t widely used or fails to offer benefits over existing systems, patients and service providers are not likely to go through the process of switching systems. Speaking with CNBC, Micky Tripathi, President and CEO of the Massachusetts eHealth Collaborative notes, “At any given time, only about 10% to 15% of patients care about this stuff. If any company can figure out engagement, it’s Apple.”
According to comScore, 85.8-million people over the age of 13 already own an iPhone in the US. The upcoming facial recognition features on Apple’s iPhone X might also provide the added security needed for those questioning the safety of their data. Should Apple succeed, communicating data between clinical laboratories, physicians, and patients might be both convenient and fast. More importantly, it might be the universal platform that finally provides health data access across the entire care continuum, while simultaneously improving access to providers and empowering healthcare consumers.
Of course, this is a few years from reality. But, we can speculate … would innovative medical laboratories have their patients’ lab test data hosted in the Cloud in such a way that patients and providers could access it securely, along with other protected clinical records?
Imagine how this would enable patients to have their complete medical record traveling with them at all times.
—Jon Stone
Related Information:
Could Apple Be Taking a Bite Out of EHRs?
Could Amazon or Apple Actually Make a Dent In the EHR Market?
Apple Extends Its Reach into Healthcare
Electronic device that computes health data
Apple Is Quietly Working on Turning Your iPhone Into the One-Stop Shop for All Your Medical Info
Wait! What? Amazon and Apple Eye Building EHRs
Apple Is Working with This Small Start-Up to Change How We Track Our Health
Timeline: How Apple Is Piecing Together Its Secret Healthcare Plan
Amazon Has a Secret Health Tech Team Called 1492 Working on Medical Records, Virtual Doc Visits
With Apple Consulting Argonaut Project on Health Records, Interoperability Could Get the Push It Needs
Apple Enlists Help of Startup Health Gorilla to Add Diagnostic Data to iPhones
Nov 17, 2017 | Laboratory Instruments & Laboratory Equipment, Laboratory Management and Operations, Laboratory News, Laboratory Operations, Laboratory Pathology, Laboratory Testing, Management & Operations
Ongoing research at the University of Washington promises new methods for identifying and cataloging large numbers of cells quickly, which could lead to more individualized treatments in support of precision medicine initiatives
Researchers have found a new method for identifying specific cell types by groups, a breakthrough that some experts say could lead to new and more accurate methods for diagnosing and treating disease in individual patients, and new tools for fighting cancer and other chronic diseases. If this happens, both clinical laboratories and anatomic pathology labs would benefit from this technology.
A study published in the journal Science titled, “Comprehensive Single-Cell Transcriptional Profiling of a Multicellular Organism,” describes advances in cataloging cells that are much faster than the traditional method of using a microscope. The research is still in the experimental stage, but it is being hailed as both exciting and promising by experts in the field.
Barcoding Large Numbers of Cells for Viewing Simultaneously
To test their method, researchers from the University of Washington (UW) sequenced each cell of an individual Caenorhabditis elegans (nematode). Nematodes are transparent roundworms that have been extensively studied making them ideal for the UW study, since much information exists about their cellular structure.
The researchers developed a strategy they dubbed “single-cell combinatorial indexing RNA sequencing,” or “sci-RNA-seq” for short, to profile the transcriptomes of nuclei. A New York Times article on the study describes sci-RNA-seq as a kind of barcoding that shows which genes are active in each cell.
“We came up with this scheme that allows us to look at very large numbers of cells at the same time, without ever isolating a single cell,” noted Jay Shendure, PhD, MD, Professor of Genome Sciences at the University of Washington.
The UW researchers used sci-RNA-seq to measure the activity in 42,035 cells at the same time. Once all of the cells were tagged, or barcoded, the researchers broke them open so the sequences of tags could be read simultaneously.
“We defined consensus expression profiles for 27 cell types and recovered rare neuronal cell types corresponding to as few as one or two cells,” wrote the researchers in their published study.
Because such a rich body of research on nematodes exists, the researchers could easily compare the results that got to those procured in previous studies.
Jay Shendure, MD, PhD (above), Professor of Genomic Sciences at the University of Washington, and an Investigator at the Howard Hughes Medical Institute, was just a graduate student when his work with genetics led to the development of today’s next-generation gene sequencing technologies. His new cell-type identification technology could eventually be used by clinical laboratories and anatomic pathology groups to diagnose disease. (Photo copyright: Howard Hughes Medical Institute.)
One Giant Leap for Medical Diagnostics
Identifying cell types has been a challenge to the medical community for at least 150 years. It is important for scientists to understand the most basic unity of life, but it has only been in the last few years that researchers have been able to measure transcriptomes in single cells. Even though the research so far is preliminary, the scientific community is excited about the results because—should the methods be refined—it could mean a great leap forward in the field of cell-typing.
However, the study did not identify all of the cell types known to exist in a nematode. “We don’t consider this a finished project,” stated Shendure in a New York Times article.
Nevertheless, researchers not associated with the study feel confident about the promise of the work. Cori Bargmann, PhD, a neurobiologist and Torsten N. Wiesel Professor at The Rockefeller University, and an Investigator for the Howard Hughes Medical Institute from 1995 to 2016, states that the results “will be valuable for me and for the whole field,” adding, “Of course, there’s more to do, but I am pretty optimistic that this can be solved.”
“The ability to measure the transcriptomes of single cells has only been feasible for a few years, and is becoming an extremely popular assay,” wrote Valentine Svensson, predoctoral fellow et al, of EMBL-EBI in the UK, in a paper titled, “Exponential Scaling of Single-Cell RNA-Seq in the Last Decade.” He added, “Technological developments and protocol improvements have fueled a consistent exponential increase in the numbers of cells studied in single cell RNA-seq analyses.” The UW research represents another such improvement.
Human Cell Atlas—Understanding the Basis of Life Itself
There are approximately 37-trillion cells in the human body and scientists have long believed there are 200 different cell types. Thus, there is an enormous difference between a nematode and a human body. For medical science to benefit from these studies, massive numbers of human cells must be identified and understood. Efforts are now underway to catalog and map them all.
The Human Cell Atlas (HCA) is an effort to catalog all of those disparate cell types. The mission of HCA is “To create comprehensive reference maps of all human cells—the fundamental units of life—as a basis for both understanding human health and diagnosing, monitoring, and treating disease.”
According to HCA’s website, having the atlas completed will impact our understanding of every aspect of human biology, from immunologic diseases to cancer. Aviv Regev, PhD, of the Broad Institute at MIT, who also is an Investigator with the HHMI and is co-chair of the organizing committee at the Human Cell Atlas notes, “The human cell atlas initiative will work through organs, tissues, and systems.”
One of the many complications of creating the atlas is that the locations of cells vary in humans. “The trick,” Regev noted in the New York Times article, “is to relate cells to the place they came from.” This would seem to be at the heart of the UW researchers’ new method for “barcoding” groups of cells.
Just as sequencing the entire human genome has brought about previously unimagined advances in science, so too will the research being conducted at the University of Washington, as well as the completion of the Human Cell Atlas Project. It is possible that pursuing the goal of quickly identifying and cataloging cells will lead to advances in anatomic pathology, and allow medical laboratory scientists to better interpret genetic variants, ultimately bringing healthcare closer to the delivery of true precision medicine.
—Dava Stewart
Related Information:
Comprehensive Single-Cell Transcriptional Profiling of a Multicellular Organism
A Speedier Way to Catalog Human Cells (All 37 Trillion of Them)
Exponential Scaling of Single-Cell RNA-Seq In the Last Decade
Human Cell Atlas
Genetic Fingerprint Helps Researchers Identify Aggressive Prostate Cancer from Non-Aggressive Types and Determine if Treatment Will Be Effective
Big Data Projects at Geisinger Health Are Beginning to Help Physicians Speed Up Diagnosis and Improve Patient Care
Biomarker Trends Are Auspicious for Pathologists and Clinical Laboratories
Pathologists and Clinical Laboratories May Soon Have a Test for Identifying Cardiac Patients at Risk from Specific Heart Drugs by Studying the Patients’ Own Heart Cells
Nov 15, 2017 | Instruments & Equipment, Laboratory Instruments & Laboratory Equipment, Laboratory Management and Operations, Laboratory News, Laboratory Pathology, Management & Operations
Onboard cooling system ensures samples remain viable for medical laboratory analysis after three-hour flight across Arizona desert
Clinical laboratories and anatomic pathology groups could soon be receiving blood samples and tissue specimens through the air by medical drone. The technology has been tested successfully in Europe, which Dark Daily reported in July. Now, Johns Hopkins University Medicine (JHUM) has set a record in America for the longest distance drone delivery of viable medical specimens.
In a project to demonstrate the viability of using drones to transport medical laboratory specimens, the Johns Hopkins University team flew a drone with specimens more than 161 miles across the Arizona desert. The goal is to bring autonomous medical delivery drones a step closer to transforming how specimens get transported across long distances, according to a Johns Hopkins press release.
A previous Johns Hopkins study in 2015 proved common and routine blood tests were not affected when medical laboratory specimens were transported in up to 40-minute flights on hobby-sized drones. This latest research provides evidence that unmanned aircraft may be able to successfully and quickly shuttle medical specimens even longer distances between remote hospitals and medical laboratories.
Transporting Clinical Laboratory Samples by Air Can Save Lives
In conducting its most recent study, Johns Hopkins researchers obtained paired chemistry and hematology samples from 21 adults (84 samples in total). One sample from each pair was held at a drone test range in a car with active cooling. Remaining samples were flown for three hours in a drone with a Johns Hopkins-designed onboard payload-cooling system to maintain temperature control in the hot desert environment.
A temperature-controlled specimen transport container (above) designed by the Johns Hopkins University research team ensured the blood samples remained cooled and were viable for testing after the three-hour drone flight in the Arizona heat. The project demonstrated the viability of using drones to transport medical laboratory specimens. (Photo copyright: Johns Hopkins Medicine.)
After the 161-mile flight, all samples were transported 62 miles by car to the Mayo Clinic in Scottsdale, Ariz., for testing. Flown and not-flown paired samples showed similar results for red blood cell, white blood cell and platelet counts, and sodium levels, among other results. Only glucose and potassium levels revealed minor but statistically significant differences in results.
Pathologist Timothy Amukele, MD, PhD (above), led a team of researchers at Johns Hopkins University School of Medicine that set a new distance delivery record for medical drones after successfully transporting human blood samples 161 miles across the Arizona desert. The test flight adds to the growing evidence that unmanned aircraft may be the most effective way to quickly transport blood and other medical samples to clinical laboratories. (Photo copyright: Johns Hopkins Medicine.)
In a report of the findings published in the American Journal of Clinical Pathology (AJCP), the research team concludes that long drone flights at high temperature “do not appear to affect the accuracy of 17 of the 19 test types in this study.” However, they note, “Time- and temperature-sensitive analytes such as glucose and potassium will require good pre-planning and stringent environmental controls to ensure reliable results.”
The John Hopkins team believes their achievement adds to mounting evidence that drone transportation can transform the delivery of clinical laboratory specimens.
“We expect that in many cases, drone transport will be the quickest, safest, and most efficient option to deliver some biological samples to a laboratory from rural or urban settings,” stated Timothy Kien Amukele, MD, PhD, Assistant Professor of Pathology at Johns Hopkins University School of Medicine and the paper’s senior author, in a Johns Hopkins Magazine article.
“Getting diagnostic results far more quickly under difficult conditions will almost certainly improve care and save more lives,” Amukele added.
Full Drone Delivery Network Operating Over Switzerland
Medical drones are rapidly moving from demonstration projects to active use. As Dark Daily previously reported, Switzerland is establishing a delivery network of medical drones in the city of Lugano. In March 2017, drone logistics system developer Matternet, based in Menlo Park, Calif., received authorization from the Swiss Federal Office for Civil Aviation (FOCO) for full operation of drone logistics networks over densely populated areas in Switzerland. Working in partnership with Swiss Post (Switzerland’s postal service) and the Ticino EOC hospital group, Matternet successfully completed roughly 100 drone transport test flights between two of Ticino EOC’s hospitals in Lugano.
Another major player in medical drone delivery is Zipline, a Silicon Valley-based drone delivery company that since October 2016 has flown more than 14,000 flights in Rwanda, delivering 2,600 units of blood. The company’s foothold in Africa expanded in August when Tanzania announced it was partnering with Zipline to launch the “world’s largest drone delivery service to provide emergency on-demand access to critical and life-saving medicines.” Tanzania will establish four distribution centers that will use more than 100 drones to make up to 2,000 flights a day.
The emergence of medical drones not only could speed up diagnoses for patients in remote regions of the world and rural communities, but also could revolutionize anatomic pathology specimen deliveries to clinical laboratories in urban areas by providing a faster, more reliable and lower-cost delivery option than third-party couriers using ground transportation.
—Andrea Downing Peck
Related Information:
Study Sets New Distance Record for Medical Drone Transport
Drone Transport of Chemistry and Hematology Samples Over Long Distances
Using Drones to Transport Blood Samples Could Speed Diagnosis, Treatment
Drone Carrying Blood Samples Travels 160 Miles in Arizona Desert to Set New Record
Matternet Unveils the Matternet Station
Tanzania Announces World’s Largest National Drone Delivery Network Partnering with Zipline
Drones Used to Deliver Clinical Laboratory Specimens in Switzerland
Nov 8, 2017 | Laboratory Hiring & Human Resources, Laboratory Instruments & Laboratory Equipment, Laboratory Management and Operations, Laboratory News, Laboratory Operations, Laboratory Pathology, Laboratory Testing, Management & Operations
Increased use of telemedicine may create opportunities for clinical laboratories to deliver increased value to both physicians and nurses
Recent data shows widespread employer adoption of telehealth services may soon become a reality. However, studies also show virtual provider visits and other telemedicine technologies are unlikely to diminish the role of clinical laboratories in providing the data required for diagnosis and treatment decisions. Instead, laboratories and anatomic pathology groups will likely see changes in how samples are collected from patients using telemedicine and how medical laboratory test results are reported, as access to telemedicine grows.
A recent National Business Group on Health (NBGH) survey indicates that in 2018 “virtually all [large] employers (96%) will make telehealth services available in states where it is allowed.” The survey was conducted between May and June 2017, with 148 large employers participating.
Christine Smalley, Managing Director with consulting firm Claremont Hudson, divides telemedicine technology into three distinct segments:
1. Provider-to-provider;
2. Remote patient monitoring; and,
3. Patient-to-provider.
In an article she penned for MedCityNews, Smalley calls provider-to-provider telemedicine the “most evolved to-date” segment of the telehealth trend. She highlights ICU stroke care with remote consults and monitoring as an example of its “success,” and notes a large potential for growth in remote patient monitoring (RPM). Smalley cites a Berg Insight report that estimates 50-million patients will use remote monitored devices by 2021. However, Smalley also notes consumer acceptance of patient-to-provider telemedicine has fallen short of industry expectations.
While virtual office visits—where patients have access to physicians via telephone or videoconferencing—grab headlines, Smalley argues that “several factors” are hindering adoption.
“Reimbursement is not yet universal,” she notes. “But consumers are growing used to paying more out-of-pocket with high-deductible plans. Physicians have long resisted change in how they practice, and many remain lukewarm at best about telemedicine. It’s no coincidence that many of the innovations and pioneering models have come from outside of healthcare delivery … The barriers that loom the largest may likely be consumer awareness and trial.”
The Center for Connected Health Policy (CCHP) reports that 35 states have laws governing private payer reimbursement of telehealth, a number that has not changed since 2016. According to a CCHP press release, some state laws require reimbursement be equal to in-person visits, though not all laws mandate reimbursement.
Adopting Existing Retail Models to Promote Telemedicine to Patients
Smalley contends “smart marketing” will be needed to get consumers to leverage the telemedicine options that are becoming available to them. She says simply offering video or telephone visits is not enough. She encourages integrated delivery systems to take a page out of retailers’ playbooks.
“Look at how retailers, like Walmart, integrate online shopping and the store experience by offering side-by-side options supporting product delivery and in-store pickup. Telemedicine options ultimately need to be offered in a way that feels integrated and seamless to the health consumer,” she suggested, in her MedCityNews article. One example, she notes, would be providing an easy-to-navigate link to a virtual visit on a healthcare network’s urgent care webpage.
Click image above to see YouTube video
Healthcare Spending Could Increase Due to Telehealth
While health plans have zeroed in on telehealth as a way to drive down healthcare costs, a 2017 RAND Corp. study published in Health Affairs found virtual visits to physicians might not decrease spending, though access to care is improved.
“Instead of saving money by substitution [replacing more expensive visits to physician offices or EDs], direct-to-consumer telehealth may increase spending by new utilization [increasing the total number of patient visits],” a MedCityNews article suggests.
The RAND study examined commercial claims data of workers enrolled in the California Public Employees’ Retirement System (CalPERS) Blue Shield of California HMO (Health Maintenance Organization) from 2011-2013. Researchers focused on care received for acute respiratory infections. According to a RAND press release, net annual spending for acute respiratory infections increased by $45 per telehealth user.
“Given that direct-to-consumer telehealth is even more convenient than traveling to retail clinics, it may not be surprising that an even greater share of telehealth services represents new medical use,” noted Lori Uscher-Pines, PhD, a RAND Policy Researcher. “There may be a dose response with respect to convenience and use: the more convenient the location, the lower the threshold for seeking care and the greater the use of medical services.”
Telehealth in Clinical Laboratories
Will telehealth services offered by hospital networks and healthcare providers impact clinical laboratories? While a physical visit is still required for drawing blood, collecting urine, or performing pathology testing, interpretive digital pathology, such as Whole Slide Imaging (AKA, Virtual Slide), does enable pathologists to provided distance interpretation services of blood tests to remote and/or resource deficient areas of the world, as Dark Daily reported in past e-briefings. This could become a substantial revenue stream in the future if telepathology’s global popularity continues to rise.
—Andrea Downing Peck
Related Information:
Telemedicine Is on the Rise, Including for Labs
Large U.S. Employers Project Health Care Benefit Costs to Surpass $14,000 per Employee in 2018, National Business Group on Health Survey Finds
Large Employers’ 2018 Health Care Strategy and Plan Design Survey
Take a Lesson from Retail to Improve Patient Adoption
mHealth and Home Monitoring
Direct-to-Consumer Telehealth Prompts New Use of Medical Services; Not Likely to Decrease Health Spending
State Telehealth Laws and Reimbursement Policies, April 2017
CCHP Releases Fifth Edition of 50 State Telehealth Lawns and Reimbursement Policies Report
Almost All Large Employers Plan to Offer Telehealth in 2018, but Will Employees Use It?
Direct-to-Consumer Telehealth May Increase Access to Care but Does Not Decrease Spending
International Telemedicine Gains Momentum, Opening New Markets for Pathologists and Other Specialists
‘Nighthawk’ Radiology Services Expand to Hospital Pharmacies: Could Pathology Laboratories Be Next?
From Micro-hospitals to Mobile ERs: New Models of Healthcare Create Challenges and Opportunities for Pathologists and Medical Laboratories
Oct 27, 2017 | Instruments & Equipment, Laboratory Instruments & Laboratory Equipment, Laboratory Management and Operations, Laboratory Pathology, Laboratory Testing
Is gut microbiota the fabled fountain of youth? Researchers at Valenzano Research Lab in Germany found it works for killifish. Could it work for other vertebrates as well?
Research into the microbiomes of humans and other animals is uncovering tantalizing insights as to how different microbes can be beneficial or destructive to the host. It is reasonable to expect ongoing research will eventually give microbiologists and clinical laboratories useful new medical laboratory tests that assess an individual’s microbiome for diagnostic and therapeutic purposes.
Human microbiota (AKA, microbiome) have been identified as having a key role in several different health conditions. In previous ebriefings, Dark Daily reported on several breakthroughs involving the microbiome that bring the promise of precision medicine ever closer. Research and clinical studies are contributing to more accurate diagnoses, identification of best drugs for specific patients, and, enhanced information for physician decision-making, to name just a few benefits.
Now, researchers at Valenzano Research Lab at the Max Planck Institute for Biology of Aging in Cologne, Germany, are looking into whether gut microbiota could potentially increase life spans in all vertebrates, a group of species that includes humans.
Valenzano Lab published its study online in August. The team of scientists and researchers led by Dario Valenzano, PhD, focused on the longevity of the turquoise killifish (Nothobranchius furzeri), a tiny fish native to the African countries of Mozambique and Zimbabwe. They found that when older killifish ate the fecal matter of younger killifish they lived longer. The fecal matter carried the microbiota to the older fish and extended their lifespans.
Moving Microbiome from One Gut to Another
To perform the research, Valenzano and his team first treated killifish that were nine and a half weeks old (considered middle-aged) with antibiotics to cleanse their gut flora. The fish were then placed in a sterile aquarium containing the gut contents of young adult killifish that were just six weeks old. Although killifish won’t typically eat feces, they would nip at the gut contents in the water and swallow some of the microbes from the younger fish in the process. The researchers discovered that the transplanted microbes were able to successfully colonize the stomachs of the older fish.
Dario Valenzano, PhD (above), gazes at an older Killifish, the subject in his research into increased aging at the Valenzano Research Lab in Cologne, Germany. Studies of the microbiomes of different species is expected to eventually give microbiologists new and useful clinical laboratory tests. (Photo copyright: Max Planck Institute for Biology of Aging.)
When the middle-aged killifish reached the age of 16 weeks—considered elderly—their gut microbiomes were still similar to that of a six-week-old fish. The process had a noticeable effect on the lifespan of the killifish that received the microbiome transplants from the young fish. They lived 41% longer than killifish that received microbes from middle-aged fish and their longevity increased by 37% over fish that were not exposed to any treatment at all. In addition, at 16 weeks, the killifish who had received the transplants were much more active than fish of the same age who had not received the transplants.
“These results suggest that controlling the composition of the gut microbes can improve health and increase life span,” the study paper noted. “The model system used in this study could provide new ways to manipulate the gut microbial community and gain key insights into how the gut microbes affect aging. Manipulating gut microbes to resemble a community found in young individuals could be a strategy to delay the onset of age-related diseases.”
Transferring Fecal Microbiota to Save/Extend Human Lives
Previous research has indicated there may be a connection between microbiomes and aging in some animals, and that the diversity of gut microbes decreases with age. This study proved that this same pattern is true in turquoise killifish.
However, Valenzano does not know how the microbes are affecting the lifespans of the older killifish. “It is possible that an aging immune system is less effective at protecting the micro-organisms in the intestines, with the result that there is a higher prevalence of pathogens in older guts. The gut microbiota in a young organism could help to counter this and therefore support the immune system and prevent inflammation. This could lead to longer life expectancy and better health,” he stated in a press release.
“You can really tell whether a fish is young or old based on its gut microbiota,” Valenzano told Nature. He noted, however, that it is too early to determine if fecal transplants can be used in humans to extend life. “I wouldn’t go that far. This is really early evidence that this has a potential positive effect.”
There is, however, a similar procedure used in humans called Fecal Microbiota Transplant or FMT that has demonstrated promising results in treating certain illnesses.
In a fecal transplant, fecal matter is collected from an approved donor, treated, and placed in a patient during a colonoscopy, endoscopy, sigmoidoscopy, or enema. The purpose of the transplant is to replace good bacteria in a colon that has undergone an event that caused the colon to be inundated with bad bacteria, such as Clostridium difficile, resulting in C. diff. infection, a life-threatening illness that, according to the Centers for Disease Control and Prevention (CDC), kills tens of thousands of people each year.
“The challenge with all of these experiments is going to be to dissect the mechanism. I expect it will be very complex,” stated Heinrich Jasper, PhD, in the Nature article. Jasper is a professor at the Buck Institute for Research on Aging in Novato, California. His lab is working on similar research with microbiome transplants in fruit flies. He predicts this type of longevity research will be performed on other animals in the future.
Valenzano’s and Jasper’s research may eventually create new diagnostic tools for microbiologists to assess the microbiome of individual patients. This technology may also enable microbiologists to advise pathologists and clinical laboratories regarding what specific microbes may be harmful and what microbes may be therapeutically beneficial to patients.
—JP Schlingman
Related Information:
‘Young Poo’ Makes Aged Fish Live Longer
Gut Bacteria Affect Aging
Killifish Project Sheds Light on the Genetic Basis for Aging
National Project to Harness Microbes for Health, Environment
Effort to Map Human Microbiome Will Generate Useful New Clinical Lab Tests for Pathologists
Mayo Clinic and Whole Biome Announce Collaboration to Research the Role of the Human Microbiome in Women’s Diseases Using Unique Medical Laboratory Tests
Expanding Knowledge about the Human Microbiome Will Lead to New Clinical Pathology Laboratory Tests
Oct 25, 2017 | Instruments & Equipment, Laboratory Instruments & Laboratory Equipment, Laboratory Management and Operations, Laboratory News, Laboratory Pathology
Researchers demonstrated it was feasible to encode digital malware onto a strand of synthesized DNA and infect the gene sequencers and computer networks used by medical laboratories
As if anatomic pathology groups and clinical laboratory leaders don’t already have enough to think about, here comes a security vulnerability right out of a sci-fi thriller. Researchers at the University of Washington (UW) have used synthesized DNA to encode digital malware into a physical strand of DNA capable of establishing a remote connection to the computer network on which the sequenced DNA is read!
Stated differently, researchers have now demonstrated that is possible for bad guys to hack into a medical laboratory’s instrument systems and computer network using a physical strand of synthesized DNA that is encoded with digital malware.
Another Threat to Clinical Laboratories, Pathology Groups?
Does this translate into an immediate security issue for medical laboratories? For now, the threat is only theoretical. While researchers did succeed, their study findings should provide some comfort to pathology groups or medical laboratories worried about the implications of DNA-based malware. The UW researchers published their findings at the 2017 USENIX Security Symposium.
Synthetic DNA Malware Exploit is More Proof-of-Concept than Immediate Threat
At its core, computer code (AKA source code) is similar to DNA in that it is composed of a set number of states—with binary, zeroes, and ones. This led UW researchers to question whether they could translate the AGCT elements (adenine, guanine, cytosine, and thymine) of DNA into binary code capable of hacking DNA sequencers and accessing the information they contain.
In an article in The Atlantic, Tadayoshi Kohno, PhD, Short-Dooley Professor in the Department of Computer Science and Engineering at UW, who led the research team, noted that, “The present-day threat is very small, and people don’t need to lose sleep immediately. But we wanted to know what was possible and what the issues are down the line.”
Complexity of Engineering a DNA-Powered Computer Virus
To begin the process, researchers needed to create a specific DNA strand encoded with the exact proteins that would later convert into their exploit. An article in ArsTechnica suggests this would be a challenge due to the physical properties of DNA’s double-helix design.
In the article, John Timmer, PhD, wrote, “DNA with Gs and Cs forms a stronger double-helix. Too many of them, and the strand won’t open up easily for sequencing. Too few, and it’ll pop open when you don’t want it to.”
The study shows it took multiple attempts to find a DNA sequence that would both carry the malware code and withstand the synthesizing and sequencing processes. Even then, researchers needed an exploit for the software used on sequencers in clinical laboratories and other diagnostics providers to prove their theory. Study authors used their own modified version of an open-source sequencing software, adding an exploit they could target, instead of a version of the software already publicly in use.
Lee Organick (above left), Karl Koscher (center), and Peter Ney (right) worked with Luis Ceze and Tadayoshi Kohno, PhD, at the University of Washington to develop the DNA sequence containing the malware code. The researchers determined that it was feasible for the gene instruments used by clinical laboratories to be infected with the malware, which could then move to infect a clinical lab’s computer network. (Photo copyright: University of Washington.)
With their proteins synthesized and customized software in place, researchers still faced challenges getting the code to trigger. “With reads randomly appearing in an FASTQ file,” the researchers noted, “we would expect the modified program to be exploited 37.4% of the time.”
As with genetic code, the binary code of a program is highly sensitive to errors. Any misread bases or splitting of the code resulted in failure. When sequencers only read a few hundred bases at a time, ensuring the code doesn’t hit one of these splits is a challenge.
One unique difference between binary and genetic code also caused trouble—genetic sequences aren’t direction dependent, while binary sequences are. If the code is read in reverse, it won’t execute properly.
Future Concerns for Clinical Laboratories and Genetic Researchers
Today, the threat to medical laboratories and the sensitive data generated by sequencing is minor. However, tomorrow that threat could be more common.
In a WIRED article on the subject, Jason Callahan, Chief Information Security Officer for Illumina stated, “This is interesting research about potential long-term risks. We agree with the premise of the study—that this does not pose an imminent threat and is not a typical cyber security capability.”
Don Rule, founder of Translational Software, agrees. When asked about the threat posed to clinical laboratories, he said, “… if you have to pre-introduce the hack in the analytics program, this is a pretty circuitous way to take over a computer. I can see how it is feasible and right now Norton Antivirus is not looking for viruses encoded in the AGCT code set, but we are right not to lose a lot of sleep over it.”
However, as genetic sequencing becomes a common part of medicine, attackers might have increased reason to disrupt services or intercept data. The UW researchers cite “important domains like forensics, medicine, and agriculture” as potential targets.
While their successful attack was highly engineered, their research into open-source sequencing software revealed a range of common security weaknesses. Many clinical laboratories and anatomic pathology groups also run proprietary analysis software or use hardware with embedded software.
They recommend that medical laboratories work to centralize software updates and create ways to verify data and patches through digital signatures or other secure measures.
Already, genetic researchers take care to avoid synthesizing potentially dangerous sequences, and to contain tests and data. But this study shows that not all threats come from within the research or clinical laboratory environment. Both engineers of sequencing technology and hardware—and the medical laboratories using them—will need to optimize operations and monitor trends closely to see how security issues evolve alongside sequencing capabilities.
—Jon Stone
Related Information:
These Scientists Took Over a Computer by Encoding Malware in DNA
Computer Security and Privacy in DNA Sequencing
Computer Security, Privacy, and DNA Sequencing: Compromising Computers with Synthesized DNA, Privacy Leaks, and More
This Speck of DNA Contains a Movie, a Computer Virus, and an Amazon Gift Card
Researchers Encode Malware in DNA, Compromise DNA Sequencing Software
Biohackers Encoded Malware in a Strand of DNA
The Ultimate Virus: How Malware Encoded in Synthesized DNA Can Compromise a Computer System
Researchers Hacked into DNA and Encoded It with Malware