Tim Stenzel, MD, PhD, will discuss what clinical laboratories need to know about the draft LDT rule, FDA memo on assay reclassification, and ISO-13485 harmonization
Many clinical laboratories anxiously await a final rule from the US Food and Drug Administration (FDA) that is expected to establish federal policies under which the agency will regulate laboratory developed tests (LDTs). The agency released a proposed rule on Oct. 3, 2023, setting a Dec. 4 deadline for submission of comments. The White House’s Office of Management and Budget received a draft of the final rule less than three months later on March 1, 2024.
“Given how fast it moved through HHS, the final [rule] is likely pretty close” to the draft version, wrote former FDA commissioner Scott Gottlieb, MD, in a post on LinkedIn. Gottlieb and other regulatory experts expect the White House to submit the final rule to Congress no later than May 22, and perhaps as soon as this month.
Stenzel, who retired from the FDA last year, emphasized that he was not speaking on behalf of the federal agency and that he adheres to all FDA confidentiality requirements. He formed a new company—Grey Haven LLC—through which he is accepting speaking engagements in what he describes as a public service.
“I’m taking a wait and see approach,” said Tim Stenzel, MD, PhD (above), former director of the FDA’s Office of In Vitro Diagnostics, in an interview with Dark Daily. “The rule is not finalized. The FDA received thousands of comments. It’s my impression that the FDA takes those comments seriously. Until the rule is published, we don’t know what it will say, so I don’t think it does any good to make assumptions.” Clinical laboratory leaders will have an opportunity to learn how to prepare for FDA regulation of LDTs directly from Stenzel at the upcoming Executive War College in May. (Photo copyright: LinkedIn.)
FDA’s History of LDT Regulation
Prior to his five-year stint at the agency, Stenzel held high-level positions at diagnostics manufacturers Invivoscribe, Quidel Corporation, Asuragen, and Abbott Laboratories. He also directed the clinical molecular diagnostics laboratory at Duke University Medical Center in North Carolina. In the latter role, during the late 1990s, he oversaw development of numerous LDTs, he said.
The FDA, he observed, has long taken the position that it has authority to regulate LDTs. However, since the 1970s, after Congress passed the Medical Device Amendments to the federal Food, Drug, and Cosmetic Act, the agency has generally exercised “enforcement discretion,” he said, in which it declined to regulate most of these tests.
At the time, “many LDTs were lower risk, small volume, and used for specialized needs of a local patient population,” the agency stated in a press release announcing the proposed rule. “Since then, due to changes in business practices and increasing ability to ship patient specimens across the country quickly, many LDTs are now used more widely, for a larger and more diverse population, with large laboratories accepting specimens from across the country.”
Clinical Labs Need a Plan for Submission of LDTs to FDA
The FDA proposed the new rule after Congress failed to vote on the VALID Act (Verifying Accurate Leading-edge IVCT Development Act of 2021), which would have established a statutory framework for FDA oversight of LDTs. Citing public comments from FDA officials, Stenzel believes the agency would have preferred the legislative approach. But when that failed, “they thought they needed to act, which left them with the rulemaking path,” he said.
The new rule, as proposed, would phase out enforcement discretion in five stages over four years, he noted. Labs would have to begin submitting high-risk tests for premarket review about three-and-a-half years from publication of the final rule, but not before Oct. 1, 2027. Premarket review requirements for moderate- or low-risk tests would follow about six months later.
While he suggested a “wait and see” approach to the final rule, he advises labs that might be affected to develop a plan for dealing with it.
Potential Lawsuits
Stenzel also noted the likelihood of litigation in which labs or other stakeholders will seek to block implementation of the rule. “It’s a fairly widespread belief that there will be a lawsuit or lawsuits that will take this issue through the courts,” he said. “That could take several years. There is no guarantee that the courts will ultimately side with the FDA.”
He acknowledged that it is a controversial issue among clinical laboratories. Many labs have voiced opposition to the rule as well as the Valid Act.
Currently in retirement, Stenzel says he is making himself available as a resource through public speaking for laboratory professionals and other test developers who are seeking insights about the agency.
“The potential value that I bring is recent experience with the FDA and with stakeholders both inside and outside the FDA,” he said, adding that during his presentations he likes “to leave plenty of time for open-ended questions.”
In the case of his talks at the Executive War College, Stenzel said he anticipates “a robust conversation.”
He also expects to address other FDA-related issues, including:
A recent memo in which the agency said it would begin reclassifying most high-risk In Vitro Diagnostic (IVD) tests—those in class III (high risk)—into class II (moderate to high risk).
The emergence of multi-cancer detection (MCD) tests, which he described as a “hot topic in the LDT world.” The FDA has not yet approved any MCD tests, but some are available as LDTs.
A new voluntary pilot program in which the FDA will evaluate LDTs in situations where the agency has approved a treatment but has not authorized a corresponding companion diagnostic.
An FDA effort to harmonize ISO 13485—a set of international standards governing development of medical devices and diagnostics—with the agency’s own quality system regulations. Compliance with the ISO standards is necessary to market products in many countries outside the US, particularly in Europe, Stenzel noted. Harmonization will simplify product development, he said, because manufacturers won’t have to follow two or more sets of rules.
To learn how to prepare for the FDA’s future regulation of LDTs, clinical laboratory and pathology group managers would be wise to attend Stenzel’s presentations at this year’s Executive War College. Visit here to learn more and to secure your seat in New Orleans.
Biomarker may lead to clinical laboratory testing that enables clinical pathologists and urologists to diagnose risk for diabetic kidney failure years before it occurs
Clinical laboratories working with nephrologists and urologists to diagnose patients experiencing urinary system difficulties know that albumin (excessive protein found in the urine) is a common biomarker used in clinical laboratory testing for kidney disease. But patients with diabetes generally have low protein in their urine due to that disease. Thus, it is difficult to diagnose early stage kidney failure in diabetic patients.
But now, researchers at the University of Texas Health Science Center at San Antonio (UT Health San Antonio) have discovered a biomarker called adenine (also found in the urine) which, they say, offers the ability to diagnose diabetic patients at risk of kidney failure significantly earlier than other biomarkers.
A UT Health San Antonio news release states, “Urine levels of adenine, a metabolite produced in the kidney, are predictive and a causative biomarker of looming progressive kidney failure in patients with diabetes, a finding that could lead to earlier diagnosis and intervention.”
The study’s senior author Kumar Sharma, MD, professor and Chief of Nephrology at UT Health San Antonio, said, “The finding paves the way for clinic testing to determine—five to 10 years before kidney failure—that a patient is at risk.”
“The study is remarkable as it could pave the way to precision medicine for diabetic kidney disease at an early stage of the disease,” said study lead Kumar Sharma, MD (above), professor and Chief of Nephrology at UT Health San Antonio, in a news release. This would be a boon to clinical laboratories and pathology groups that work with urologists to diagnose and treat diabetic patients who are at-risk for kidney failure. (Photo copyright: UT Health San Antonio.)
Completing the UT Health Study
Sharma and his team worked for five years to discover that the adenine molecule was damaging kidney tissue, News4SA reported. The research required the team to develop new methods for viewing small molecules known as metabolites.
“UT Health San Antonio is one of few centers in the US perfecting a technique called spatial metabolomics on kidney biopsies from human patients,” the news release notes. The kidney biopsies were obtained through the Kidney Precision Medicine Project (KPMP) and were gathered from various US academic centers.
“It’s a very difficult technique, and it took us several years to develop a method where we combine high resolution of the geography of the kidney with mass spectrometry analysis to look at the metabolites,” Sharma said.
Testing by the UT Health team unearthed “endogenous adenine around scarred blood vessels in the kidney and around tubular-shaped kidney cells that were being destroyed. Endogenous substances are those that naturally occur in the body,” the news release notes.
Findings Could Affect Diabetic Care
UT Health San Diego’s study findings could allow for early intervention and change the way diabetes care is managed, Sharma said.
“The study results are significant because until now, the most important marker for kidney disease has been protein (or albumin) in the urine. Up to half of diabetes patients who develop kidney failure never have much protein in their urine. As 90% of patients with diabetes (more than 37 million patients in the US) remain at increased risk despite low levels of albumin in their urine, this study has widespread consequences. It is the first study to identify these patients at an early stage by measuring this new causative marker in the urine,” the UT Health news release states.
“We’re hoping that by identifying patients early in their course, and with new therapies targeting adenine and kidney scarring, we can block kidney disease or extend the life of the kidney much longer,” Sharma said.
Getting Ahead of Kidney Disease
Though many patients recognize their risk for kidney disease, those who do not have protein in their urine may not take the risk seriously enough, Sharma noted.
“They could be feeling a false sense of security that there is no kidney disease occurring in their body, but in fact, in many cases it is progressing, and they often don’t find out until the kidney disease is pretty far advanced. And at that time, it is much harder to protect the kidneys and prevent dialysis,” he said in the new release.
“Once a patient needs dialysis, he or she must have a fistula or catheter placed and go on a dialysis machine three times a week, four hours at a time to clean the blood,” the news release states.
“The death rate is very high, especially in patients with diabetes,” Sharma added. “There is about 40% mortality within five years in patients with diabetes and kidney failure.”
Though measuring adenine in urine is a challenge, Sharma and his team developed a method that can be performed at UT Health San Antonio on at-risk patients with a doctor’s order. The test results go back to the patient’s doctor.
“The test is being approved for clinical use and right now it is an experimental test, but we expect it to be available for all patients in the near future.” Sharma told News4SA.
“What we’re hoping is that by identifying patients early in their course, and with new therapies targeting adenine and kidney scarring, we can block kidney disease or extend the life of the kidney much longer,” Sharma said in the news release.
And so, thanks to the UT Health researchers, pathologists and clinical laboratories may soon see a new diagnostic test biomarker that will help urologists identify diabetic patients at-risk for kidney failure years earlier than previously possible.
Research could lead to similar treatments for other diseases, as well as creating a demand for a new line of oncology tests for clinical labs and pathology groups
Cancer treatment has come a long way in the past decades, and it seems poised to take another leap forward thanks to research being conducted at Rice University in Houston. Molecular scientists there have developed what they call a “molecular jackhammer” that uses special molecules and near-infrared light to attack and kill cancer cells.
The technique has been effective in research settings. Should it be cleared for use in patient care, it could change the way doctors treat cancer patients while giving clinical laboratories a new diagnostic tool that could guide treatment decisions.
The researchers “found that the atoms of a small dye molecule used for medical imaging can vibrate in unison—forming what is known as a plasmon [a quantum of plasma oscillation]—when stimulated by near-infrared light, causing the cell membrane of cancerous cells to rupture,” a Rice University news release noted.
The small dye molecule is called aminocyanine, a type of fluorescent synthetic dye that is already in use in medical imaging.
“These molecules are simple dyes that people have been using for a long time,” said physical chemistry scientist Ciceron Ayala-Orozco, PhD, the researcher who led the study, in the news release. “They’re biocompatible, stable in water, and very good at attaching themselves to the fatty outer lining of cells. But even though they were being used for imaging, people did not know how to activate these as plasmons.”
“The method had a 99% efficiency against lab cultures of human melanoma cells, and half of the mice with melanoma tumors became cancer-free after treatment,” according to the Rice University news release.
“I spent approximately four years working with these ideas on using molecular forces and what is called blue-light activated molecular motors,” Ciceron Ayala-Orozco, PhD (above), told Oncology Times. “At some point, I connected the dots that what I wanted to do is use a simple molecule, not necessarily a motor, that absorbs NIR light in similar ways as plasmonic nanoparticles do and go deeper into the tissue. When activated, we found that the molecules vibrate even faster than our minds can imagine and serve as a force to break the cancer cells apart.” Once approved for use treating cancer patients, clinical laboratories working with oncologists may play a key role in diagnosing candidates for the new treatment. (Photo copyright: Rice University.)
How the Technique Works
Nuclei of the aminocyanine molecules oscillate in sync when exposed to near-infrared radiation and pummel the surface of the cancer cell. These blows are so powerful they rupture the cell’s membrane sufficiently enough to destroy it.
“The speed of this type of therapy can completely kill the cancer much faster than, say, photodynamic therapy,” Ayala-Orozco noted. “The mechanical action through the molecular jackhammer is immediate, within a few minutes.”
One advantage to near-infrared light is that it can infiltrate deeper into the body than visible light and access organs and bones without damaging tissue.
“Near-infrared light can go as deep as 10 centimeters (four inches) into the human body as opposed to only half a centimeter (0.2 inches), the depth of penetration for visible light, which we used to activate the nanodrills,” said James Tour, PhD, T. T. and W. F. Chao Professor of Chemistry, Professor of Materials Science and NanoEngineering at Rice University, in the news release. “It is a huge advance.”
The molecular plasmons identified by the team had a near-symmetrical structure. The plasmons have an arm on one side that does not contribute to the motion, but rather anchors the molecule to the lipid bilayer of the cell membrane. The scientists had to prove that the motion could not be categorized as a form of either photodynamic or photothermal therapy.
“What needs to be highlighted is that we’ve discovered another explanation for how these molecules can work,” Ayala-Orozco said in the Rice news release. “This is the first time a molecular plasmon is utilized in this way to excite the whole molecule and to actually produce mechanical action used to achieve a particular goal—in this case, tearing apart cancer cells’ membrane.
“This study is about a different way to treat cancer using mechanical forces at the molecular scale,” he added.
New Ways to Treat Cancer
The likelihood of cancer cells developing a resistance to these molecular jackhammers is extremely low, which renders them a safer and more cost effective method for inducing cancer cell death.
“The whole difference about this is because it’s a mechanical action, it’s not relying on some chemical effect,” Tour told KOMO News. “It’s highly unlikely that the cell will be able to battle against this. Once it’s cell-associated, the cell is toast once it gets hit by light. Only if a cell could prevent a scalpel from being able to cut it in half, could it prevent this.
“It will kill all sorts of cell types. With our other mechanical action molecules, we’ve demonstrated that they kill bacteria; we’ve demonstrated that they kill fungi. If a person has lost the ability to move a limb, if you can stimulate the muscle with light, that would be quite advantageous. Cancer is just the beginning,” he added.
“From the medical point of view, when this technique is available, it will be beneficial and less expensive than methods such as photothermal therapy, photodynamics, radio-radiation, and chemotherapy,” said Jorge Seminario, PhD, Professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University in a news release.
“This is one of the very few theoretical-experimental approaches of this nature. Usually, research in the fields related to medicine does not use first principles quantum-chemistry techniques like those used in the present work, despite the strong benefit of knowing what the electrons and nuclei of all atoms are doing in molecules or materials of interest,” Seminario noted.
“It’s really a tremendous advance. What this is going to do is open up a whole new mode of treatment for medicine,” Tour said. “It’s just like when radiation came in [and] when immunotherapy came in. This is a whole new modality. And when a new modality comes in, so much begins to open up.
“Hopefully, this is going to change medicine in a big way,” he added.
More research and clinical studies are needed before this new technology is ready for patient care. Clinical laboratories and anatomic pathology groups will likely be involved identifying patients who would be good candidates for the new treatment. These molecular jackhammers could be a useful tool in the future fight against cancer, which is ranked second (after heart disease) as the most common cause of death in the US.
Switching from non-profit to for-profit may affect how clinical laboratories operate in the new healthcare system
Shifting away from fee-for-service payment models and towards value-based healthcare is the goal of many non-profit hospital systems. One such transformation is underway at Summa Health, one of the largest integrated delivery networks (IDNs) in Ohio. On January 17, venture capital firm General Catalyst announced that its subsidiary—Health Assurance Transformation Corporation (HATCo)—had entered into an agreement to purchase Summa Health.
“HATCo’s investment into Summa Health will drive not only near-term benefit to the organization and the patients it serves but also sustainable, long-term transformation through a true shift to value-based care and access to new revenue streams, resources, innovations, and technologies,” states a General Catalyst news release penned by Marc Harrison, MD, CEO of HATCo.
Harrison was formerly President and CEO of Intermountain Healthcare, a 33 hospital not-for-profit IDN in Salt Lake City, Utah. This is a noteworthy fact because Intermountain Health has a national reputation as an innovative multi-hospital health system. Some observers believe that Harrison’s involvement signals that General Catalyst believes it has a care model that can deliver better patient care in a profitable manner.
“Under its new structure, Summa will become a for-profit organization, and General Catalyst says it will introduce new tech-enabled solutions that aim to make care more accessible and affordable,” CNBCreported.
“This is the first time that anybody has done anything quite like this,” Harrison told CNBC. “There are many digital health solutions that are out there as point solutions. This is the first holistic transformation of a health system to a thoughtful combination of digital and in-person care.”
“Our intent is to build on and augment the system’s considerable strengths. First and foremost, we share Summa Health’s commitment to serving all members of the community,” wrote HATCo CEO Marc Harrison, MD (above), in a news release. “The Summa Health team also shares our belief that achieving healthcare transformation will require a shift to value-based care … Together, we intend to demonstrate that a model that is better for patients can also be good for business, creating a blueprint for other health systems to effectively serve all people in their communities.” How this shift will affect Summa’s clinical laboratories remains to be seen. (Photo copyright: General Catalyst.)
Betting on Healthcare
In 2023, General Catalyst, an American venture capital firm headquartered in Cambridge, Mass., unveiled its Health Assurance Transformation Corporation (HATCo) and began shopping for a health system to buy.
HATCo has 20 healthcare systems in a network that spans 43 states and four countries, according to Healthcare Dive. The company’s news release states it has been focused on three areas since its start-up:
Helping its partners on their “transformation journeys.”
Planning to “acquire and operate a health system for the long-term.”
“The goal of the purchase is for the health system to act as a proving ground for General Catalyst to test ways to improve hospital operations and patient care, without risk aversion or cash shortfalls, management said,” Healthcare Dive reported.
Thus, the firm’s announcement to purchase a health system last October “sent shockwaves through the healthcare industry” according to Healthcare Dive.
“At its core, General Catalyst’s long-term Health Assurance thesis is that value-based care not only is good for patients, but also can be a successful business model if deployed with innovative technology at meaningful scale. Its rationale for buying a health system is a belief that it can improve on the traditional model of not-for-profit health system governance and management by embedding new incentives,” wrote Christopher Kerns, CEO and co-founder of Washington, D.C-based research firm Union Healthcare Insight, in a blog post analysis.
General Catalyst’s HATCo may offer up “a profit motive, a longer time horizon, and a channel for dozens of innovative companies to demonstrate value,” he noted.
“The single biggest barrier to promising young healthcare companies is an inability to scale. Many of their innovations—in digital health, patient engagement, revenue cycle workflow, etc.—require willing health system partners who are famously conservative in their investments and service providers, and rarely take risks on newbies. The addition of Summa provides an open laboratory for those innovations,” Kerns added.
Is the Summa Health Deal Good for Healthcare?
Some in the industry were taken aback by General Catalyst’s announcement.
“A lot of people feel like a PE (private equity) or venture capital company owning a hospital is kind of like asking Freddy Krueger to come babysit your kids. It just makes people a little nervous, and it doesn’t feel quite aligned with this concept of healthcare being a human right,” John Bass, CEO of Hashed Health, a Nashville, Tenn.-based healthcare venture studio, told CNBC.
Nevertheless, it’s a moot point. HATCo is moving forward with its purchase of Summa Health.
“For this bet to work, Summa will have to be a solid proving ground for [General Catalyst’s] portfolio companies. And that means either Summa itself will have to grow, or it will have to act as a force multiplier for its other value-based portfolio companies to justify the considerable capital expended. I have to say, that’s a tall order, but not an insane one,” said Kerns in the Union Healthcare Insight blog post.
Healthcare managers may find it interesting to follow HATCo and Summa Health on their planned journey. The results may speak for themselves. Either way, clinical laboratories and anatomic pathology group practices in HATCo’s health system may be in for some interesting changes.
Phages are miniscule, tripod-looking viruses that are genetically programmed to locate, attack, and eradicate a specific kind of pathogen. These microscopic creatures have saved lives and are being touted as a potential solution to superbugs, which are strains of bacteria, viruses, parasites, and fungi that are resistant to most antibiotics and other treatments utilized to counteract infections.
“These multi-drug-resistant superbugs can cause chronic infections in individuals for months to years to sometimes decades,” Dwayne Roach, PhD, Assistant Professor of Bacteriophages, Infectious Disease, and Immunology at SDSU told CNN. “It’s ridiculous just how virulent some of these bacteria get over time.”
Labs across the country are conducting research on phages in eradicating superbugs. Roach’s lab is currently probing the body’s immune response to phages and developing purification techniques to prepare phage samples for intravenous use in patients.
“There are a lot of approaches right now that are happening in parallel,” said Dwayne Roach, PhD (above), Assistant Professor of Bacteriophages, Infectious Disease, and Immunology at San Diego State University (SDSU), in a CNN interview. “Do we engineer phages? Do we make a phage cocktail, and then how big is the cocktail? Is it two phages or 12 phages? Should phages be inhaled, applied topically, or injected intravenously? There’s a lot of work underway on exactly how to best do this.” Clinical laboratories that test for bacterial infections may play a key role in diagnosis and treatment involving bacteriophages. (Photo copyright: San Diego State University.)
Building Libraries of Phages
When certain a bacterial species or its genotypes needs to be annihilated, a collection of phages can be created to attack it via methods that enter and weaken the bacterial cell. The bacteria will attempt to counter the intrusion by employing evasive actions, such as shedding outer skins to eliminate the docking ports utilized by the phages. These maneuvers can cause the bacteria to lose their antibiotic resistance, making them vulnerable to destruction.
Some research labs are developing libraries of phages, accumulating strains found in nature in prime breeding grounds for bacteria to locate the correct phage for a particular infection. Other labs, however, are speeding up the process by producing phages in the lab.
“Rather than just sourcing new phages from the environment, we have a bioreactor that in real time creates billions upon billions of phages,” Anthony Maresso, PhD, Associate Professor at Baylor College of Medicine in Houston told CNN. “Most of those phages won’t be active against the drug-resistant bacteria, but at some point, there will be a rare variant that has been trained, so to speak, to attack the resistant bacteria, and we’ll add that to our arsenal. It’s a next-generation approach on phage libraries.”
For the Baylor study, 12 patients were treated with phages customized to each individual’s unique bacterial profile. The antibiotic-resistant bacteria were exterminated in five of the patients, while several others showed improvement.
Clinical trials are currently being executed to test the effectiveness of phages against a variety of chronic health conditions, including:
Using a phage cocktail could be used to treat a superbug outbreak in real time, while preventing a patient from a future infection of the same superbug.
“The issue is that when patients have infections with these drug-resistant bacteria, they can still carry that organism in or on their bodies even after treatment,” Maroya Walters, PhD, epidemiologist at the federal Centers for Disease Control and Prevention (CDC) told CNN.
“They don’t show any signs or symptoms of illness, but they can get infections again, and they can also transmit the bacteria to other people,” she added.
More Studies are Needed
According to CDC data, more than 2.8 million antimicrobial-resistant (AMR) infections occur annually in the United States. More than 35,000 people in the country will die as a result of these infections.
In addition, AMR infections are a huge global threat, associated with nearly five million deaths worldwide in 2019. Resistant infections can be extremely difficult and sometimes impossible to treat.
More research is needed before phages can be used clinically to treat superbugs. But if phages prove to be useful in fighting antibiotic-resistant bacteria, microbiologists and their clinical laboratories may soon have new tools to help protect patients from these deadly pathogens.
Forces in play will directly impact the operations and financial stability of many of the nation’s clinical laboratories
With significant regulatory changes expected in the next 18 to 24 months, experts are predicting a “Perfect Storm” for managers of clinical laboratories and pathology practices.
Currently looming are changes to critical regulations in two regulatory areas that will affect hospitals and medical laboratories. One regulatory change is unfolding with the US Food and Drug Administration (FDA) and the other regulatory effort centers around efforts to update the Clinical Laboratory Improvement Amendments of 1988 (CLIA).
The major FDA changes involve the soon-to-be-published Final Rule on Laboratory Developed Tests (LDTs), which is currently causing its own individual storm within healthcare and will likely lead to lawsuits, according to the FDA Law Blog.
In a similar fashion—and being managed under the federal Centers for Medicare and Medicaid Services (CMS)—are the changes to CLIA rules that are expected to be the most significant since 2003.
The final element of the “Perfect Storm” of changes coming to the lab industry is the increased use by private payers of Z-Codes for genetic test claims.
In his general keynote, Robert L. Michel, Dark Daily’s Editor-in-Chief and creator of the 29th Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management, will set the stage by introducing a session titled, “Regulatory Trifecta Coming Soon to All Labs! Anticipating the Federal LDT Rule, Revisions to CLIA Regulations, and Private Payers’ Z-Code Policies for Genetic Claims.”
“There are an unprecedented set of regulatory challenges all smashing into each other and the time is now to start preparing for the coming storm,” says Robert L. Michel (above), Dark Daily’s Editor-in-Chief and creator of the 29th Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management, a national conference on lab management taking place April 30-May 1, 2024, at the Hyatt in New Orleans. (Photo copyright: The Dark Intelligence Group.)
Coming Trifecta of Disruptive Forces to Clinical Laboratory, Anatomic Pathology
The upcoming changes, Michel notes, have the potential to cause major disruptions at hospitals and clinical laboratories nationwide.
“Importantly, this perfect storm—which I like to describe as a Trifecta because these three disruptive forces that will affect how labs will conduct business—is not yet on the radar screen of most lab administrators, executives, and pathologists,” he says.
Because of that, several sessions at this year’s Executive War College conference, now in its 29th year, will offer information designed to give attendees a better understanding of how to manage what’s coming for their labs and anatomic pathology practices.
“This regulatory trifecta consists of three elements,” adds Michel, who is also Editor-in-Chief of Dark Daily’s sister publication The Dark Report, a business intelligence service for senior level executives in the clinical laboratory and pathology industry, as well in companies that offer solutions to labs and pathology groups.
According to Michel, that trifecta includes the following:
Element 1
FDA’s Draft LDT Rule
FDA’s LDT rule is currently the headline story in the lab industry. Speaking about this development and two other FDA initiatives involving diagnostics at the upcoming Executive War College will be pathologist Tim Stenzel, MD, PhD, former director of the FDA’s Office of In Vitro Diagnostics. It’s expected that the final rule on LDTs could be published by the end of April.
Stenzel will also discuss harmonization of ISO 13485 Medical Devices and the FDA’s recent memo on reclassifying most high-risk in vitro diagnostics to moderate-risk to ease the regulatory burden on companies seeking agency review of their diagnostic assays.
Salerno will also cover the CDC’s efforts to foster closer connections with clinical labs and their local public health laboratories, as well as the expanding menu of services for labs that his department now offers.
Element 3
Private Payer Use of Z-Codes for Test Claims
On the third development—increased use by private payers of Z-Codes for genetic test claims—the speaker will be pathologist Gabriel Bien-Willner, MD, PhD. He is the Medical Director of the MolDX program at Palmetto GBA, a Medicare Administrative Contractor (MAC). It is the MolDX program that oversees the issuance of Z-Codes for molecular and diagnostic tests.
UnitedHealthcare (UHC) was first to issue such a Z-Code policy last year, although it has delayed implementation several times. Other major payers are watching to see if UHC succeeds with this requirement, Michel says.
Other Critical Topics to be Covered at EWC
In addition to these need-to-know regulatory topics, Michel says that this year’s Executive War College will present almost 100 sessions and include 148 speakers. Some of the other topics on the agenda in New Orleans include the following and more:
Standardizing automation, analyzers, and tests across 25 lab sites.
Effective ways to attract, hire, and retain top-performing pathologists.
Leveraging your lab’s managed care contracts to increase covered tests.
“Our agenda is filled with the topics that are critically important to senior managers when it comes to managing their labs and anatomic pathology practices,” Michel notes.
“Every laboratory in the United States should recognize these three powerful developments are all in play at the same time and each will have direct impact on the clinical and financial performance of our nation’s labs,” Michel says. “For that reason, every lab should have one or more of their leadership team present at this year’s Executive War College to understand the implications of these developments.”
Visit here to learn more about the 29th Executive War College conference taking place in New Orleans.