News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

CDC Enlists Five Commercial Medical Laboratories to Bolster Avian Flu Testing Capacity in the United States

Move comes following criticism from public health experts over the federal agency’s difficulties creating clinical laboratory tests for COVID-19

Amid the ongoing outbreak of the Highly Pathogenic Avian Influenza A(H5N1) bird flu virus, the US Centers for Disease Control and Prevention (CDC) announced on Sept. 13 that it is awarding contracts to five clinical laboratory companies to bolster testing capacity for “new and emerging pathogens,” including HPAI A(H5N1).

Citing Nirav Shah, MD, MPH, Senior Scholar, Clinical Excellence Research Center at Stanford University School of Medicine and co-chair of the Data and Surveillance Workgroup (DSW) at the CDC, the Associated Press (AP), reported that the agency will initially spend at least $5 million on the effort, with “plans to scale up to $118 million over the next five years if necessary.”

The five medical laboratory companies the CDC chose are:

“Previously … CDC developed tests for emerging pathogens and then shared those tests with others, and then after that, commercial labs would develop their own tests,” Shah told CNN. “That process took time. Now with these new arrangements, commercial labs will be developing new tests for public health responses alongside CDC, not after CDC.”

In a news release announcing the contract, ARUP Laboratories also characterized the move as a shift for the agency.

“The new contract formalizes ARUP’s relationship with the CDC,” said Benjamin Bradley, MD, PhD, medical director of the ARUP Institute for Research and Innovation in Infectious Disease Genomic Technologies, High Consequence Pathogen Response, Virology, and Molecular Infectious Diseases. “We continue to expand our capabilities to address public health crises and are prepared to scale up testing for H5N1, or develop other tests quickly, should the need arise.”

“To be clear, we have no evidence so far that this [bird flu] virus can easily infect human beings or that it can spread between human beings easily in a sustained fashion,” Jennifer Nuzzo, DrPH (above), Director of the Pandemic Center and Professor of Epidemiology at Brown University School of Public Health, told CNN. “If it did have those abilities, we would be in a pandemic.” Clinical laboratory leaders will recall the challenges at the CDC as it developed its SARS-CoV-2 test early in the COVID-19 pandemic. (Photo copyright: Brown University.)

Missouri Case Raises Concerns

The first human infection of HPAI was reported in late March following a farmer’s “exposure to dairy cows presumably infected with bird flu,” the CDC stated in its June 3, 2024, bird flu Situation Summary. That followed confirmation by the USDA’s Animal and Plant Health Inspection Service (APHIS) of an HPAI outbreak in commercial poultry flocks in February 2022, and the CDC’s confirmation of the first known infections in dairy herds reported on March 25, 2024.

Concerns about the outbreak were heightened in September following news that a person in Missouri had been infected with the virus despite having no known contact with infected animals. CNN reported that it was the 14th human case in the US this year, but all previous cases were in farm workers known to be exposed to infected dairy cattle or poultry.

In a news release, the Missouri Department of Health and Senior Services (DHSS) revealed that the patient, who was not identified, was hospitalized on Aug. 22. This person had “underlying medical conditions,” DHSS reported, and has since recovered and was sent home. Both DHSS and the CDC conducted tests to determine that the virus was the H5 subtype, the news release states.

At present, the CDC states that the public health risk from the virus is low. However, public health experts are concerned that risks could rise as the weather gets cooler, creating opportunities for the virus to mutate “since both cows and other flu viruses will be on the move,” CNN reported.

Concerns over CDC Testing and FDA Oversight

In the months immediately following the first human case of the bird flu virus, Nuzzo was among several public health experts sounding an alarm about the country’s ability to ramp up testing in the face of new pathogens.

“We’re flying blind,” she told KFF Health News in June, due to an inability to track infections in farmworkers. At that time, tests had been distributed to approximately 100 public health labs, but Nuzzo and other experts noted that doctors typically order tests from commercial laboratories and universities.

“Pull us into the game. We’re stuck on the bench,” Alex Greninger MD, PhD, of the University of Washington Medicine Clinical Virology Laboratory, told KFF News.

KFF reported that one diagnostics company, Neelyx Labs, ran into obstacles as it tried to license the CDC’s bird flu test. Founder, CEO, and lead scientist Shyam Saladi, PhD, told KFF that the federal agency had promised to cooperate by facilitating a license and a “right to reference” CDC data when applying for FDA authorization but was slow to come through.

While acknowledging the need for testing accuracy, Greninger contended that the CDC was prioritizing caution over speed, as it did in the early days of the COVID-19 pandemic. “The CDC should be trying to open this up to labs with national reach and a good reputation,” he told KFF.

Another problem, KFF reported, related to the FDA’s new oversight of laboratory developed tests (LDTs), which is causing labs to move cautiously in developing their own tests.

“It’s slowing things down because it’s adding to the confusion about what is allowable,” American Clinical Laboratory Association (ACLA) President Susan Van Meter told KFF.

New Testing Playbook

Jennifer Nuzzo, DrPH (above), Director of the Pandemic Center and Professor of Epidemiology at the Brown University School of Public Health co-authored a June 2024 analysis in Health Affairs that called on the CDC to develop “a better testing playbook for biological emergencies.” The authors’ analysis cited earlier problems with the responses to the COVID-19 and mpox (formerly known as monkeypox) outbreaks.

If global surveillance networks have detected a novel pathogen, the authors advise, the US should gather information and “begin examining the existing testing landscape” within the first 48 hours.

Once the pathogen is detected in the US, they continued, FDA-authorized tests should be distributed to public health laboratories and the CDC’s Laboratory Response Network (LRN) laboratories within 48 hours.

Advocates of this approach suggest that within the first week diagnostics manufacturers should begin developing their own tests and the federal government should begin working with commercial labs. Then, within the first month, commercial laboratories should be using FDA-authorized tests to provide “high throughput capacity.”

This may be good advice. Experts in the clinical laboratory and healthcare professions believe there needs to be improvement in how novel tests are developed and made available as novel infectious agents are identified.

—Stephen Beale

Related Information:

CDC Adds Commercial Lab Contracts for Infectious Disease, Bird Flu Testing

Strengthening Response to Public Health Threats through Expanded Laboratory Testing and Access to Data

ARUP Awarded CDC Contract for Bird Flu Test Development

Test Surge and Data Sharing Multiple Award Indefinite Delivery Indefinite Quantity (IDIQ) Solicitation

Interim Guidance on Specimen Collection and Testing for Patients with Suspected Infection with Novel Influenza A Viruses Associated with Severe Disease or with the Potential to Cause Severe Disease in Humans

Current H5N1 Bird Flu Situation in Dairy Cows

The US Is Entering a Riskier Season for Spread of H5N1 Bird Flu. Here’s Why Experts Are Worried

Wastewater Testing Specifically for Bird Flu Virus Will Scale Up Nationally in Coming Weeks

Wastewater Surveillance for Influenza A Virus and H5 Subtype Concurrent with the Highly Pathogenic Avian Influenza A(H5N1) Virus Outbreak in Cattle and Poultry and Associated Human Cases

Two California Farmworkers Test Positive for Bird Flu

Avian Flu Spreading in California Raises Pandemic Threat for Humans

Bird Flu Is Spreading. Why Aren’t More People Getting Tested?

Why Fears of Human-to-Human Bird Flu Spread in Missouri Are Overblown

The United States Needs a Better Testing Playbook for Future Public Health Emergencies

Brigham and Women’s Hospital Researchers Develop Blood Test That Enables Rapid Diagnosis of LVO Stroke in Non-hospital Settings

New technique could allow emergency responders to determine severity of LVO stroke while patient is still in the ambulance

Researchers at Brigham and Women’s Hospital in Massachusetts say they have developed a clinical laboratory test that can quickly determine whether a patient is experiencing one of the deadliest types of strokes, known as an ischemic large vessel occlusion (LVO) stroke. The development team believes this new assay could be deployed as a point-of-care test to enable faster diagnosis of stroke events.

The test combines measurement of two blood plasma biomarkers with an established clinical score used by clinicians and EMS personnel to assess stroke severity. Compared with current approaches, their technique more accurately differentiates LVO strokes from other types of strokes, making it more likely that patients receive appropriate treatment in a timely manner, the researchers said in a Brigham news release.

Dark Daily has long predicted that advances in technology and computing power would make it possible for pathologists and clinical laboratory scientists to combine multiple established biomarkers (individually not associated with the disease state targeted) with other clinical and patient data to create the ability to make an accurate and earlier diagnosis.

The researchers published their findings in the journal Stroke: Vascular and Interventional Neurology titled, “Prospective Validation of Glial Fibrillary Acidic Protein, d‐Dimer, and Clinical Scales for Acute Large‐Vessel Occlusion Ischemic Stroke Detection.”

Ultimately, Brigham’s research could “aid in the development of a point‐of‐care diagnostic test capable of guiding prehospital LVO stroke triage,” wrote Joshua Bernstock, MD, PhD, Clinical Fellow in Neurosurgery at Brigham and Women’s Hospital, lead author of the study, and colleagues.

“We have developed a game-changing, accessible tool that could help ensure that more people suffering from stroke are in the right place at the right time to receive critical, life-restoring care,” said Joshua Bernstock, MD, PhD (above), Clinical Fellow in Neurosurgery at Brigham and Women’s Hospital and lead author of the Brigham study that developed the clinical laboratory test that the researchers say can enable emergency caregivers to determine quickly and accurately if a patient is having an ischemic large vessel occlusion (LVO) stroke. (Photo copyright: Brigham and Women’s Hospital.)

Early Identification of LVO Stroke

As explained in the news release, an LVO stroke is a type of ischemic stroke caused by obstruction in a major brain artery. The researchers noted that LVO strokes account for “62% of poststroke disabilities and 96% of poststroke death.”

These strokes are readily treatable using endovascular thrombectomy (EVT), in which the blockages are surgically removed, the news release note. However, the researchers observed that EVT “requires specialized teams and equipment, limiting its availability to comprehensive stroke centers and other EVT‐capable centers.”

This can lead to delays as patients are transferred to those facilities, worsening outcomes and increasing the risk of death, the researchers wrote in Stroke: Vascular and Interventional Neurology. So, early identification of LVO stroke is key to ensuring patients receive timely treatment.

Identifying False Negatives/Positives

One challenge, the news release notes, is that brain bleeds (hemorrhagic stroke) can present similar symptoms, yet require “vastly different” treatment.

“A growing body of work has, therefore, evaluated prehospital stroke assessment scales in an effort to identify LVO strokes in the field,” the researchers wrote. “However, such severity scales lack the sensitivity and specificity required for triaging LVO patients with confidence, resulting in false negatives in patients with LVO as well as false positives in patients with stroke mimics or hemorrhagic stroke.”

As explained by EMS Aware, these assessment scales, such as FAST-ED (field assessment stroke triage for emergency destination) and RACE (rapid arterial occlusion evaluation), attempt to determine the severity of a stroke by assigning scores based on symptoms such as facial palsy, arm weakness, and speech difficulties.

To develop their test, Bernstock and colleagues proposed combining the scales with measurement of two blood proteins:

In their study, they attempted to validate cutoff values for the biomarkers and scales.

To do so, the researchers analyzed data from 323 patients admitted to a Florida hospital with suspected stroke between May 2021 and August 2022. Each was assigned to one of four diagnostic categories based on clinical data from their medical records, which included results of computed tomography (CT scan) or magnetic resonance angiography (MRA). The diagnostic categories included:

The patients were assessed using five stroke severity scales. The researchers used frozen blood samples from the patients to measure the biomarkers. They then used this data to determine the likelihood of LVO stroke and compared the results with the diagnoses as determined by the clinical data.

“Combinations of the blood biomarkers with the scales FAST‐ED or RACE showed the best performance for LVO detection, with a specificity of 94% (for either scale combination) and a sensitivity of 71% for both scales,” the researchers wrote.

Sensitivity was higher in patients who presented within the first six hours from onset of symptoms.

“Critically, application of the biomarker and stroke scale algorithms ruled out all patients with hemorrhage,” the researchers wrote. However, they also suggested that their algorithm could be adjusted to enable early identification of hemorrhagic stroke.

The researchers noted that they chose biomarker cutoffs to maximize specificity, so “a certain number of LVOs are missed. However, as such patients default into ‘standard‐of‐care’ triaging pathways, such a decision is unlikely to represent much clinical risk.”

Testing in the Field

The Brigham researchers used established biological biomarkers combined with modern computing—in combination with the scores from a field assessment test—to develop their new clinical laboratory test that identifies the type of stroke.

Their next step is to carry out “another prospective trial to measure the test’s performance when used in an ambulance,” the news release states. “They have also designed an interventional trial that leverages the technology to expedite the triage of stroke patients by having them bypass standard imaging and move directly to intervention.”

“In stroke care, time is brain,” Bernstock said. “The sooner a patient is put on the right care pathway, the better they are going to do. Whether that means ruling out bleeds or ruling in something that needs an intervention, being able to do this in a prehospital setting with the technology that we built is going to be truly transformative.”

More research and clinical studies are needed. However, the fact that the Brigham team wants to deploy this approach in ambulances is an indication that there is high clinical value from this approach.

Clinical pathologists and medical laboratory managers will want to watch the ongoing development and deployment of this new assay, whether it is run in near-patient settings or core clinical laboratories in support of patients presenting in emergency departments.

—Stephen Beale

Related Information:

Researchers Develop “Game-Changing” Blood Test for Stroke Detection

Prospective Validation of Glial Fibrillary Acidic Protein, d‐Dimer, and Clinical Scales for Acute Large‐Vessel Occlusion Ischemic Stroke Detection

New Blood Test Could Spot Dangerous Type of Stroke

Researchers Develop a Blood Test That Can Detect Stroke Quickly

Blood Test a ‘Game Changer’ for Faster Diagnosis, Treatment of LVO Stroke

New Rapid Blood Test Can Accurately Detect Stroke in Six Hours, Save Lives

University of Missouri-Kansas City Study Finds Colorectal Cancer Cases Up 500% among Children

Trend will likely lead to physicians ordering more clinical laboratory screening tests for cancer among all age groups, including young patients

Upticks in colorectal cancer cases among younger populations, as reported in recent news stores, is an issue that has implications for clinical laboratories. According to a study conducted at the University of Missouri-Kansas City (UMKC), the number of colorectal cancer cases in the US has increased greatly since 1999 with the “most dramatic jumps” seen in children, teens, and young adults, a Digestive Disease Week (DDW) news release reported.

“Colorectal cancer is no longer considered just a disease of the elderly population,” said lead researcher Islam Mohamed, MD, an internal medicine resident physician at UMKC. “It’s important that the public is aware of signs and symptoms of colorectal cancer.” 

The researchers noted in the DDW news release that “colorectal cancer cases, over about two decades, increased by 500% among children, ages 10 to 14; 333% in teens, ages 15 to 19; and 185% among young adults, ages 20 to 24.”

The UMKC researchers presented their study, “Evolving Trends in Colorectal Cancer Incidence among Patients Under 45: A 22-Year Analysis of the Centers for Disease Control Wonder Database,” at the 2024 Digestive Disease Week conference in May.

DDW is “the largest international gathering of physicians, researchers, and academics in the fields of gastroenterology, hepatology, endoscopy and gastrointestinal surgery. Jointly sponsored by the American Association for the Study of Liver Diseases (AASLD), the American Gastroenterological Association (AGA), the American Society for Gastrointestinal Endoscopy (ASGE) and the Society for Surgery of the Alimentary Tract (SSAT),” the news release states.

“[The results of the UMKC study] means that there is a trend. We don’t know what to make of it yet. It could be lifestyle factors or genetics, but there is a trend,” lead researcher Islam Mohamed, MD (above), Internal Medicine Resident, University of Missouri-Kansas City, told NBC News. If proved, this trend could lead to increased demand for clinical laboratory screening tests for colorectal and other cancers among young people. (Photo copyright: Digestive Disease Week.)

Small Number of Cases, Big Rate of Change

Mohamed and his UMKC research team tapped the Centers for Disease Control and Prevention Wonder online database to determine the incidence of colorectal cancer in people aged 10 to 44 from 1999 to 2020. They found that in 2020 cases had reached:

  • 0.6/100,000 children ages 10 to 14 (a 500% increase).
  • 1.3/100,000 teens ages 15 to 19 (a 333% increase).
  • Two/100,000 young adults ages 20 to 24 (a 185% increase).

Albeit small numbers, the cases are growing at a rate that is troublesome, according to experts. As NBC put it, “any increase can take on a larger significance” when rates begin at low points.  

“When you are starting off with a very rare disease in a 15-year-old and you add a couple cases, you are going to have a huge percentage increase,” Folasade May, MD, PhD, Assistant Professor at the David Geffen School of Medicine and an Associate Director of the UCLA Kaiser Permanente Center for Health Equity, told NBC News.

The study also found incidence of colorectal cancer up in people in their 30s and 40s, reaching by 2020:

  • 6.5/100,000 people ages 30 to 34 (a 71% increase).
  • 11.7/100,000 people ages 35 to 39 (a 58% increase).
  • 20/100,000 people ages 40 to 44 (a 37% increase).

Screening Guidelines May Need to Change

Further research based on UMKC’s study findings could lead to changes in cancer screening guidelines.

“We were screening people from the age of 60 for colon cancer. This has now been lowered to 55, and that is due to be lowered again to 50 over the next few months,” Jude Tidbury, RN, nurse endoscopist and clinical nurse specialist, gastroenterology and endoscopy, at the UK’s East Sussex Healthcare NHS Trust, told Healthline.

In the US, the American Cancer Society advises people of average risk for cancer to start screening for colorectal cancer at age 45. The test options ACS recommends annually include:

Other Study Findings

What is behind early-onset colorectal cancer among certain age groups? An international study led by Fred Hutchinson Cancer Center (Fred Hutch), Seattle, found “strong correlations” with consuming alcohol and being obese with early-onset colorectal cancer in adults under age 50, according to a news release.

The researchers set out to explore the common genetic variants and causal modifiable risk factors that are behind early-onset colorectal cancer, according to a paper they published in the journal Annals of Oncology.

To do so they used big databases, pulling out 6,176 early-onset colorectal cancer cases and 65,829 controls from sources including:

They then conducted a genome-wide association study and Mendelian randomization analysis to identify causes of early-onset colorectal cancer.

They focused on “lifestyle factors increasing risk” by comparing the genetic variations in those with colorectal cancer to healthy people, the Fred Hutch news release explained.

“It’s important to see that alcohol and obesity are linked to early-onset colorectal cancer. Also, insulin signaling and infection-related biological pathways. These are all really important to understand—it’s helping us to develop interventions,” said Ulrike Peters, PhD, Professor and Associate Director, Public Health Services Division, Fred Hutch, who co-led the research, in the news release.

Peters noted future research may aim to address data gaps relating to racial and ethnic groups.  

More Colorectal Cancer Tests

As studies continue to explore the notion that cancer may not be a disease of aging,

clinical laboratories could see more primary care physicians and healthcare consumers using colorectal cancer screening tests, which require analysis and reporting by labs.

Medical laboratory leaders may want to proactively encourage lab sales and service representatives to educate physician office staff about using the lab’s available resources for screening young adults for colorectal cancer.

—Donna Marie Pocius

Related Information:

Colorectal Cancer Cases More than Tripled among Teens over Two Decades

Evolving Trends in Colorectal Cancer Incidence among Patients Under 45: A 22-Year Analysis of the Centers for Disease Control Wonder Database

Colon Cancer Rates Have Been Rising for Decades in Younger People, Study Finds

Colorectal Cancer Rates Falling in Older Adults but Rising in Children

Study Digs into What’s Driving Early-onset Colon Cancer

Genome-wide Association Studies and Mendelian Randomization Analyses Provide Insights into the Causes of Early-onset Colorectal Cancer

Mass General Brigham Joins with Best Buy Health to Create Country’s Largest Hospital-at-Home Program

Clinical laboratories with mobile phlebotomy programs are positioned to benefit as demand for at-home blood draws increases

Hospital-at-Home (HaH) models of remote healthcare continue to pick up speed. The latest example comes from the 793-bed Mass General Brigham (MGB) health system which partnered with Best Buy Health to build the largest HaH program in the nation, according to Becker’s Hospital Review. This means clinical laboratories will have new opportunities to provide mobile phlebotomy home-draw services for MGB’s HaH patients.

Headquartered in Somerville, Mass., MGB presented its new “Home Hospital” program at the World Medical Innovation Forum (WMIF) in September.

“The health system now has a capacity for acute hospital care at home of 70 patients and is currently treating about 50 to 60 a day. The goal is to move to 10% of Mass General Brigham’s overall capacity, or about 200 to 300 patients,” Becker’s reported.

Best Buy Health provides MGB’s Home Hospital patients with computer tablets and Internet access, Becker’s noted.

“Healthcare is fragmented, the technology doesn’t always connect. Technology is our expertise,” said Chemu Lang’at, COO, Best Buy Health, during the WMIF presentation.

The hospital is the most expensive site of care in the US healthcare industry. Thus, preventing patients from needing to be hospitalized—or treating them in their homes—could reduce the cost of care considerably for both patients and multihospital systems.

“It’s been estimated that 30% of inpatient care will move to the home in the next five years, representing $82 billion in revenue. This is a tremendous opportunity,” said Heather O’Sullivan, MS, RN, A-GNP, Mass General Brigham’s President of Healthcare at Home, during MGB’s presentation at the World Medical Innovation Forum in September, according to Becker’s Hospital Review. MGB’s HaH program offers clinical laboratories with new opportunities to provide mobile phlebotomy services to the health system’s Hospital-at-Home patients. (Photo copyright: Mass General Brigham.)

Hospital-at-Home

Proponents of HaH call it a “sustainable, innovative, and next-generation healthcare model. [It is] person-centered medical care that keeps patients out of the hospital, away from possible complications, and on to better outcomes,” RamaOnHealthcare reported.

Some of the biggest payoffs of HaH include:

• Cost Savings: Anne Klibanski, MD, President and CEO, MGB, described the HaH program as “a way the health system could stay afloat and thrive amid financial challenges affecting the industry, with lower costs and better outcomes for patients at home,” Becker’s Hospital Review reported.

• Increased Capacity: Having an HaH program can help alleviate bed shortages by treating many conditions in patient’s homes rather than in the ER. “The program … typically treats patients with conditions like COPD flare-ups, heart failure exacerbations, acute infections and complex cellulitis,” Becker’s reported.

“It’s not typically comfortable to be cared for in the emergency room,” said O’Neil Britton, MD, MGB’s Chief Integration Officer, at WMIF.

• Decreased Staff Exhaustion: “Clinicians have described getting an extra level of joy from treating patients at home,” said Jatin Dave, MD, CMO, MassHealth, at WMIF. He added that this could provide one solution to healthcare burnout, Becker’s noted.

• Lab Connection: Clinical laboratories have the opportunity to meet the need for mobile phlebotomists to draw blood specimens from HaH patients in their homes.

• Patient Satisfaction: “The data suggests that for populations studied in multiple areas, [HaH] is a safe service with high-quality care, low readmission rates, low escalation rates, low infection rates and—bottom line—patients love it.” Adam Groff, MD, co-founder of Maribel Health, told RamaOnHealthcare.

HaH Program Going Forward

Britton told the WMIF audience that MGB hopes to “expand the program for surgery, oncology, and pain management patients, recently admitting its first colorectal surgery patient,” Becker’s reported.

However, the future of MGB’s HaH program is not assured. “The Centers for Medicare and Medicaid Services (CMS) waiver to provide acute hospital care at home expires at the end of 2024. A bill to extend the program recently passed a House committee,” Becker’s reported.

Dave said at WMIF that he “hopes the home will one day provide a ‘single infrastructure’ for all levels of care: from primary to inpatient care to skilled nursing,” Becker’s Hospital Review noted, adding, “The home is where, in the long run, we can have this full continuum.”

Hospital-at-Home programs are not new. In “Best Buy Health and Atrium Health Collaborate on a Hospital-at-Home Program, Leveraging the Electronics Retailer’s ‘Specially Trained’ Geek Squad, Omnichannel Expertise,” Dark Daily covered how Best Buy Health had partnered with 40-hospital Atrium Health in an HaH program that the healthcare system plans to scale nationally.

And in “Orlando Health’s New Hospital-in-the-Home Program Brings Quality Healthcare to Patients in the Comfort of their Homes,” we reported how 3,200-bed Orlando Health had launched its Hospital Care at Home program to provide patients in central Florida acute care outside of traditional hospital settings.

Overall, this can be a snapshot of where the HaH movement in the US is currently at, with the Mass General Brigham example showing that this mode of healthcare is delivering results and helping patients. Clinical laboratories across the nation should track efforts by hospitals and health systems in their areas to establish and expand hospital-at-home programs.

—Kristin Althea O’Connor

Related Information:

How Mass General Brigham Built the Largest ‘Hospital at Home’

‘Society Will Greatly Benefit’ from the Transformative Hospital-at-Home Movement

Are Hospital at Home Programs Forgetting about the Patient?

Best Buy Health and Atrium Health Collaborate on a Hospital-at-Home Program, Leveraging the Electronics Retailer’s ‘Specially Trained’ Geek Squad, Omnichannel Expertise

Orlando Health’s New Hospital-in-the-Home Program Brings Quality Healthcare to Patients in the Comfort of their Homes

Washington University Researchers Uses Medical Laboratory Test Results and Big Data to Find Accelerated Aging and Risk of Early Cancer in Young Adults

Study shows that computer analysis of clinical laboratory test results has improved greatly in recent years

Studies using “big data” continue to show how combining different types of healthcare information can generate insights not available with smaller datasets. In this case, researchers at Washington University School of Medicine (WashU Medicine), St. Louis, Mo., determined that—by using the results from nine different types of clinical laboratory tests—they could correlate those test results to younger people who had “aged faster” and had developed cancer earlier than usual, according to CNN.

“Accumulating evidence suggests that the younger generations may be aging more swiftly than anticipated, likely due to earlier exposure to various risk factors and environmental insults. However, the impact of accelerated aging on early-onset cancer development remains unclear,” said Ruiyi Tian, PhD candidate at WashU Medicine’s Yin Cao Lab in an American Association for Cancer Research (AACR) news release.

The scientists presented their findings, which have not yet been published, at the AACR’s annual meeting held in April. Tian and the other researchers “hypothesized that increased biological age, indicative of accelerated aging, may contribute to the development of early-onset cancers, often defined as cancers diagnosed in adults younger than 55 years. In contrast to chronological age—which measures how long a person has been alive—biological age refers to the condition of a person’s body and physiological processes and is considered modifiable,” AACR noted in a news release.

“We all know cancer is an aging disease. However, it is really coming to a younger population. So, whether we can use the well-developed concept of biological aging to apply that to the younger generation is a really untouched area,” Yin Cao, ScD MPH (above), associate professor of surgery and associate professor of medicine at Washington University School of Medicine in St. Louis, and senior author of the study, told CNN. Analysis of clinical laboratory test results using computer algorithms continues to show value for new research into deadly diseases. (Photo copyright: Washington University.)

Lab Tests Share Insights about Aging

To acquire the data they needed for their research, the WashU Medicine scientists turned to the UK Biobank, a biomedical and research resource with genetic and health information on half a million UK residents.

The researchers reviewed the medical records of 148,724 biobank participants, age 37 to 54, focusing on nine blood-based biomarkers that “have been shown to correlate with biological age,” CNN reported. Those biomarkers are:

According to CNN, the researchers “plugged” the nine values into an algorithm called PhenoAge. Using the algorithm they compared the biological ages with each person’s actual chronological age to determine “accelerated aging.” They then consulted cancer registries to capture data on those in the study who were diagnosed with cancer before age 55. They found 3,200 cases.

Young Adults Aging Faster than Earlier Generations

According to the AACR news release, the WashU Medicine study found that:

  • “Individuals born in or after 1965 had a 17% higher likelihood of accelerated aging than those born between 1950 and 1954.
  • “Each standard deviation increase in accelerated aging was associated with a 42% increased risk of early-onset lung cancer, a 22% increased risk of early-onset gastrointestinal cancer, and a 36% increased risk of early-onset uterine cancer.
  • “Accelerated aging did not significantly impact the risk of late-onset lung cancer (defined here as cancer diagnosed after age 55), but it was associated with a 16% and 23% increased risk of late-onset gastrointestinal and uterine cancers, respectively.”

“We speculate that common pathways, such as chronic inflammation and cellular senescence, may link accelerated aging to the development of early-onset cancers,” the study’s principal investigator Yin Cao, ScD, MPH, associate professor of surgery and associate professor of medicine at WashU Medicine, told The Hill.

“Historically, both cancer and aging have been viewed primarily as concerns for older populations. The realization that cancer, and now aging, are becoming significant issues for younger demographics over the past decades was unexpected,” Tian told Fox News.

More Screenings, Further Analysis

The study’s results may suggest a change in clinical laboratory screenings for younger people.

“We see cancers earlier all the time now, and nobody knows why. The subset in the population that has accelerated aging may need screening more often or earlier,” Emanuela Taioli, MD, PhD, professor of population health and science and of thoracic surgery, and director of the Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, told Health.

In future studies, WashU Medicine scientists may aim to include groups of greater diversity and explore why people are aging faster and have risk of early-onset cancers. 

“There is room to improve using better technologies. Looking at the bigger picture, the aging concept can be applied to younger people to include cancers, cardiovascular disease, and diabetes,” Cao told Discover Magazine.

While more research is needed, use of the UK’s Biobank of healthcare data—including clinical laboratory test results—enabled the WashU Medicine researchers to determine that accelerated aging among young adults is happening with some regularity. This shows that capabilities in computer analysis are gaining more refined capabilities and are able to tease out insights impossible to achieve with earlier generations of analytical software.

These findings should inspire clinical laboratory professionals and pathologists to look for opportunities to collaborate in healthcare big data projects involving their patients and the communities they serve.

—Donna Marie Pocius

Related Information:

Accelerated Aging May Increase the Risk of Early-onset Cancers in Younger Generations

Accelerated Aging Linked to Cancer Risk in Younger Adults, Research Shows

An Epigenetic Biomarker of Aging for Lifespan and Health Span in Aging

Accelerated Aging May be a Cause of Increased Cancers in People under 55

Cancer Rates Rising in Young People Due to “Accelerated Aging,” New Study Finds

Research Shows Accelerated Aging Linked to Increased Cancer Risk in Younger Adults

Rate of Biological Aging is Accelerating in Young People, Leading to Medical Issues

National Institutes of Health Study Finds No Reliable Biomarkers Exist for Long COVID

Study is another example of how important clinical laboratory testing is when government officials attack a new public health issue

Long COVID—aka SARS-CoV-2 infection’s post-acute sequelae (PASC)—continues to confound researchers seeking one or more clinical laboratory biomarkers for diagnosing the condition. A new study led by the National Institutes of Health’s (NIH) RECOVER Initiative and supported by NYU Langone Health recently revealed that “routine clinical laboratory tests were unable to provide a reliable biomarker of … long COVID,” Inside Precision Medicine reported.

The NIH’s Researching COVID to Enhance Recovery (RECOVER) Initiative used a cohort study of more than 10,000 individuals with and without previous COVID-19 diagnoses and compared samples using 25 common laboratory tests in hopes a useful biomarker could be identified. They were unsuccessful.

Leora Horwitz, MD, director of the Center for Healthcare Innovation and Delivery Science and co-principal investigator for the RECOVER CSC (Clinical Science Core) at NYU Langone; Andrea S. Foulkes, ScD, director of biostatistics at Massachusetts General Hospital, Boston; and Grace A. McComsey, MD, VP of research and associate chief scientific officer at University Hospitals Health System, and professor of pediatrics and medicine at Case Western Reserve University, led the study.

Long COVID—or PASC—is an umbrella term for those with persistent post-COVID infection symptoms that negatively impact quality of life. Though it affects millions worldwide and has been called a major public health burden, the NIH/Langone study scientists noted one glaring problem: PASC is defined differently in the major tests they studied. This makes consistent diagnoses difficult.

The study brought to light possible roadblocks that prevented biomarker identification.

“Although potential models of pathogenesis have been postulated, including immune dysregulation, viral persistence, organ injury, endothelial dysfunction, and gut dysbiosis, there are currently no validated clinical biomarkers of PASC,” the study authors wrote in their study, “Differentiation of Prior SARS-CoV-2 Infection and Postacute Sequelae by Standard Clinical Laboratory Measurements in the RECOVER Cohort,” published in the journal Annals of Internal Medicine.

“This study is an important step toward defining long COVID beyond any one individual symptom,” said study author Leora Horwitz, MD (above), director of the Center for Healthcare Innovation and Delivery Science and co-principal investigator for the RECOVER CSC at NYU Langone, in a Langone Health news release. “This definition—which may evolve over time—will serve as a critical foundation for scientific discovery and treatment design.” In the future, clinical laboratories may be tasked with finding combinations of routine and reference tests that, together, enable a more precise and earlier diagnosis of long COVID.  (Photo copyright: Yale School of Medicine.)

NIH/Langone Study Details

“The study … examined 25 routinely used and standardized laboratory tests chosen based on availability across institutions, prior literature, and clinical experience. These tests were conducted prospectively in laboratories that are certified by the Clinical Laboratory Improvement Amendments (CLIA). The samples were collected from 10,094 RECOVER-Adult participants, representing a diverse cohort from all over the US,” Inside Precision Medicine reported.

However, the scientists found no clinical laboratory “value” among the 25 tests examined that “reliably indicate previous infection, PASC, or the particular cluster type of PASC,” Inside Precision Medicine noted, adding that “Although some minor differences in the results of specific laboratory tests attempted to differentiate between individuals with and without a history of infection, these findings were generally clinically meaningless.”

“In a cohort study of more than 10,000 participants with and without prior SARS-CoV-2 infection, we found no evidence that any of 25 routine clinical laboratory values provide a reliable biomarker of prior infection, PASC, or the specific type of PASC cluster. … Overall, no evidence was found that any of the 25 routine clinical laboratory values assessed in this study could serve as a clinically useful biomarker of PASC,” the study authors wrote in Annals of Internal Medicine.

In addition to a vague definition of PASC, the NIH/Langone researchers noted a few other potential problems identifying a biomarker from the research.

“Use of only selected biomarkers, choice of comparison groups, if any (people who have recovered from PASC or healthy control participants); duration of symptoms; types of symptoms or phenotypes; and patient population features, such as sex, age, race, vaccination status, comorbidities, and severity of initial infection,” could be a cause for ambiguous results, the scientists wrote.

Future Research

“Understanding the basic biological underpinnings of persistent symptoms after SARS-CoV-2 infection will likely require a rigorous focus on investigations beyond routine clinical laboratory studies (for example, transcriptomics, proteomics, metabolomics) to identify novel biomarkers,” the study authors wrote in Annals of Internal Medicine.

“Our challenge is to discover biomarkers that can help us quickly and accurately diagnose long COVID to ensure people struggling with this disease receive the most appropriate care as soon as possible,” said David Goff, MD, PhD, director of the division of cardiovascular sciences at the NIH’s National Heart, Lung, and Blood Institute, in an NHLBI news release. “Long COVID symptoms can prevent someone from returning to work or school, and may even make everyday tasks a burden, so the ability for rapid diagnosis is key.”

“Approximately one in 20 US adults reported persisting symptoms after COVID-19 in June 2024, with 1.4% reporting significant limitations,” the NIH/Langone scientists wrote in their published study.

Astute clinical laboratory scientists will recognize this as possible future diagnostic testing. There is no shortage of need.

—Kristin Althea O’Connor

Related Information:

“Long COVID” Evades Common SARS-CoV-2 Clinical Lab Tests

Differentiation of Prior SARS-CoV-2 Infection and Postacute Sequelae by Standard Clinical Laboratory Measurements in the RECOVER Cohort

Long COVID Diagnostics: An Unconquered Challenge

RECOVER Study Offers Expanded Working Definition of Long COVID

Routine Lab Tests Are Not a Reliable Way to Diagnose Long COVID

;