News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Fred Hutch Researchers Identify Oral Bacteria That Appear to Play a Role in Certain Colon Cancers

Discovery highlights how ongoing microbiome research points to new opportunities that can lead to development of more effective cancer screening clinical laboratory tests

New research from the Fred Hutchinson Cancer Center in Seattle once again demonstrates that the human microbiome plays a sophisticated role in many biological processes. Microbiologists and anatomic pathologists who diagnose tissue/biopsies will find this study’s findings intriguing.

This breakthrough in colon cancer research came from the discovery that a “subspecies” of a common type of a bacteria that resides in the mouth and causes dental plaque also “shields tumor cells from cancer treatment,” according to NBC News.

The scientists inspected colorectal cancer (CRC) tumors and found that 50% of those examined featured a subspecies of Fusobacterium nucleatum (F. nucleatum or Fn) and that this anaerobic bacterium was “shielding tumor cells from cancer-fighting drugs,” NBC News noted. Many of these tumors were considered aggressive cases of cancer. 

“The discovery, experts say, could pave the way for new treatments and possibly new methods of screening,” NBC News reported.

The Fred Hutchinson Cancer Center scientists published their findings in the journal Nature titled, “A Distinct Fusobacterium Nucleatum Clade Dominates the Colorectal Cancer Niche.”

“Patients who have high levels of this bacteria in their colorectal tumors have a far worse prognosis,” Susan Bullman, PhD (above), who jointly supervised the Fred Hutch research team and who is now Associate Professor of Immunology at MD Anderson Cancer Center, told NBC News. “They don’t respond as well to chemotherapy, and they have an increased risk of recurrence,” she added. Microbiologists and clinical laboratories working with oncologists on cancer treatments will want to follow this research as it may lead to new methods for screening cancer patients. (Photo copyright: Fred Hutchinson Cancer Center.)

Developing Effective Treatments

Susan Bullman, PhD, Associate Professor of Immunology at MD Anderson Cancer Center, who along with her husband and fellow researcher Christopher D. Johnston, PhD, Assistant Professor at Fred Hutchinson Cancer Center, jointly supervised an international team of scientists that examined the genomes of 80 F. nucleatum strains from the mouths of cancer-free patients and 55 strains from tumors in patients with colorectal cancer, according to the National Institutes of Health (NIH). The NIH funded the research.

The researchers targeted a subspecies of F. nucleatum called F. nucleatum animalis (Fna) that “was more likely to be present in colorectal tumors. Further analyses revealed that there were two distinct types of Fna. Both were present in mouths, but only one type, called Fna C2, was associated with colorectal cancer” the NIH wrote in an article on its website titled, “Gum Disease-related Bacteria Tied to Colorectal Cancer.”

“Tumor-isolated strains predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses reveal that Fna, considered a single subspecies, is instead composed of two distinct clades (Fna C1 and Fna C2). Of these, only Fna C2 dominates the CRC tumor niche,” the Fred Hutch researchers wrote in their Nature paper.

“We have pinpointed the exact bacterial lineage that is associated with colorectal cancer, and that knowledge is critical for developing effective preventive and treatment methods,” Johnston told the NIH.

How Bacteria Got from Mouth to Colon Not Fully Understood

Traditionally, F. nucleatum makes its home in the mouth in minute quantities. Thus, it is not fully understood how these bacteria travel from the mouth to the colon. However, the Fred Hutch researchers showed that Fna C2 could survive in acidic conditions, like those found in the gut, longer than the other types of Fna. This suggests that the bacteria may travel along a direct route through the digestive tract.

The study, which focused on participants over 50, comes at a time when colorectal cancer rates are trending upward. Rates are doubling for those under 55, jumping from 11% in 1995 to 20% in 2019. CRC is the second-leading cancer death and over 53,000 will succumb to the disease in 2024, according to NBC News.

Many of the newer diagnoses are in later stages with no clear reason why, and the Fred Hutch scientists are trying to understand how their findings tie into the increase of younger cases of colon cancer.

Bullman says it will be important to look at “whether there are elevated levels of this bacterium in young onset colorectal cancer, which is on the rise globally for unknown reasons,” she told NBC News.

Possibility of More Effective Cancer Screening

There is hope that scientists equipped with this knowledge can develop new and more effective screening and treatment options for colon cancer, as well as studying the microbiome’s impact on other diseases.

On the prevention side, researchers have seen that in mice the addition of Fna “appeared to cause precancerous polyps to form, one of the first warning signs of colorectal cancer, though Bullman added that this causation hasn’t yet been proven in humans.” NBC reported.

Future research may find that screening for Fna could determine if colorectal tumors will be aggressive, NIH reported.

“It’s possible that scientists could identify the subspecies while it’s still in the mouth and give a person antibiotics at that point, wiping it out before it could travel to the colon,” Bullman told NBC News. “Even if antibiotics can’t successfully eliminate the bacteria from the mouth, its presence there could serve as an indication that someone is at higher risk for aggressive colon cancer.”

There is also the thought of developing antibiotics to target a specific subtype of bacteria. Doing so would eliminate the need to be “wiping out both forms of the bacteria or all of the bacteria in the mouth. Further, it’s relevant to consider the possibility of harnessing the bacteria to do the cancer-fighting work,” NBC noted.

“The subtype has already proven that it can enter cancer cells quite easily, so it might be possible to genetically modify the bacteria to carry cancer-fighting drugs directly into the tumors,” Bullman told NBC News.

Further studies and research are needed. However, the Fred Hutch researchers’ findings highlight the sophistication of the human microbiome and hint at the potential role it can play in the diagnosis of cancer by clinical laboratories and pathology groups, along with better cancer treatments in the future.

—Kristin Althea O’Connor

Related Information:

A New Type of Bacteria was Found in 50% Of Colon Cancers. Many Were Aggressive Cases.

Gum Disease-related Bacteria Tied to Colorectal Cancer

A Distinct Fusobacterium Nucleatum Clade Dominates the Colorectal Cancer Niche

UPMC Researchers Develop Biomarkers That Identify Biological Age While Also Predicting Disease Risk

Scientists turned to metabolomics to find cause of biological aging and release index of 25 metabolites that predict healthy and rapid agers

Researchers at the University of Pittsburg Medical Center and the University of Pittsburgh School of Medicine have identified biomarkers in human blood which appear to affect biological aging (aka, senescence). Since biological aging is connected to a person’s overall condition, further research and studies confirming UPMC’s findings will likely lead to a new panel of tests clinical laboratories can run to support physicians’ assessment of their patients’ health.

UPMC’s research “points to pathways and compounds that may underlie biological age, shedding light on why people age differently and suggesting novel targets for interventions that could slow aging and promote health span, the length of time a person is healthy,” according to a UPMC news release.

“We decided to look at metabolites because they’re very dynamic,” Aditi Gurkar, PhD, the study’s senior author, told the Pittsburgh Post-Gazette. Gurkar is Assistant Professor of Medicine, Division of Geriatric Medicine, Aging Institute at the University of Pittsburg. “They can change because of the diet, they can change because of exercise, they can change because of lifestyle changes like smoking,” she added.

The scientists identified 25 metabolites that “showed clear differences” in the metabolomes of both healthy and rapid agers. Based on those findings, the researchers developed the Healthy Aging Metabolic (HAM) Index, a panel of metabolites that predicted healthy agers regardless of gender or race.

The researchers published their findings in the journal Aging Cell titled, “A Molecular Index for Biological Age Identified from the Metabolome and Senescence-associated Secretome in Humans.”

“Age is more than just a number,” said Aditi Gurkar, PhD (above), Assistant Professor of Geriatric Medicine at University of Pittsburg School of Medicine and the study’s senior author in a news release. “Imagine two people aged 65: One rides a bike to work and goes skiing on the weekends and the other can’t climb a flight of stairs. They have the same chronological age, but very different biological ages. Why do these two people age differently? This question drives my research.” Gurkar’s research may one day lead to new clinical laboratory tests physicians will order when evaluating their patients’ health. (Photo copyright: University of Pittsburg.)

Clear Differences in Metabolites

According to the National Cancer Institute, a metabolite is a “substance made or used when the body breaks down food, drugs, or chemicals, or its own tissue (for example, fat or muscle tissue). This process, called metabolism, makes energy and the materials needed for growth, reproduction, and maintaining health. It also helps get rid of toxic substances.”

The UPMC researchers used metabolomics—the study of chemical process in the body that involves metabolites, other processes, and biproducts of cell metabolism—to create a “molecular fingerprint” of blood drawn from individuals in two separate study groups.

They included:

  • People over age 75 able to walk a flight of stairs or walk for 15 minutes without a break, and
  • People, age 65 to 75, who needed to rest during stair climbing and walk challenges.

The researchers found “clear differences” in the metabolomes of healthy agers as compared to rapid agers, suggesting that “metabolites in the blood could reflect biological age,” according to the UPMC news release.

“Other studies have looked at genetics to measure biological aging, but genes are very static. The genes you’re born with are the genes you die with,” said Gurkar in the news release.

Past studies on aging have explored other markers of biological age such as low grade-inflammation, muscle mass, and physical strength. But those markers fell short in “representing complexity of biological aging,” the UPMC study authors wrote in Aging Cell.

“One potential advantage of metabolomics over other ‘omic’ approaches is that metabolites are the final downstream products, and changes are closely related to the immediate (path) physiologic state of an individual,” they added.

The researchers used an artificial intelligence (AI) model that could identify “potential drivers of biological traits” and found three metabolites “that were most likely to promote healthy aging or drive rapid aging. In future research, they plan to delve into how these metabolites, and the molecular pathways that produce them, contribute to biological aging and explore interventions that could slow this process,” the new release noted.

“While it’s great that we can predict biological aging in older adults, what would be even more exciting is a blood test that, for example, can tell someone who’s 35 that they have a biological age more like a 45-year-old,” Gurkar said. “That person could then think about changing aspects of their lifestyle early—whether that’s improving their sleep, diet or exercise regime—to hopefully reverse their biological age.”

Looking Ahead

The UPMC scientists plan more studies to explore metabolites that promote healthy aging and rapid aging, and interventions to slow disease progression.

It’s possible that the blood-based HAM Index may one day become a diagnostic tool physicians and clinical laboratories use to aid monitoring of chronic diseases. As a commonly ordered blood test, it could help people find out biological age and make necessary lifestyle changes to improve their health and longevity.

With the incidence of chronic disease a major problem in the US and other developed countries, a useful diagnostic and monitoring tool like HAM could become a commonly ordered diagnostic procedure. In turn, that would allow clinical laboratories to track the same patient over many years, with the ability to use multi-year lab test data to flag patients whose biomarkers are changing in the wrong direction—thus enabling physicians to be proactive in treating their patients.

—Donna Marie Pocius

Related Information:

New Study Reveals Molecular Fingerprint of Biological Aging

Blood Test Could Reveal Your Biological Age and Predict Disease Risk

A Molecular Index for Biological Age Identified from the Metabolome and Senescence-associated Secretome in Humans

Family History with Cancer Led Professor into “Healthy Aging” Research

Zombie Cells, Aging and Health

Pitt Researcher Uncovers Cellular Signs of Healthy Aging

True Biological Age is Hidden in Several Newly Identified Blood Markers

The Senescence-associated Secretome as An Indicator of Age and Medical Risk

Woman Performs Do-it-yourself Fecal Transplant to Relieve Symptoms of IBS, Gets Donor’s Acne

Clinical laboratory scientists and microbiologists could play a role in helping doctors explain to patients the potential dangers of do-it-yourself medical treatments

Be careful what you wish for when you perform do-it-yourself (DIY) medical treatments. That’s the lesson learned by a woman who was seeking relief for irritable bowel syndrome (IBS). When college student Daniell Koepke did her own fecal transplant using poop from her brother and her boyfriend as donors her IBS symptoms improved, but she began to experience medical conditions that afflicted both fecal donors.

“It’s possible that the bacteria in the stool can influence inflammation in the recipient’s body, by affecting their metabolism and activating their immune response,” microbial ecologist Jack Gilbert, PhD, Professor and Associate Vice Chancellor at University of California San Diego (UC San Diego) told Business Insider. “This would cause shifts in their hormonal activity, which could promote the bacteria that can cause acne on the skin. We nearly all have this bacterium on skin, but it is often dormant,” he added.

A Fecal Microbiota Transplant (FMT) is a procedure where stool from a healthy donor is transplanted into the microbiome of a patient plagued by a certain medical condition.

Our guts are home to trillions of microorganisms (aka, microbes), known as the gut microbiota, that serve many important functions in the body. The microbiome is a delicate ecosystem which can be pushed out of balance when advantageous microbes are outnumbered by unfavorable ones. An FMT is an uncomplicated and powerful method of repopulating the microbiome with beneficial microbes.   

“With fecal microbiome transplants there is really compelling evidence, but the science is still developing. We’re still working on if it actually has benefits for wider populations and if the benefit is long-lasting,” said Gilbert in a Netflix documentary titled, “Hack Your Health: The Secrets of Your Gut.”

“The microbial community inside our gut can have surprising influences on different parts of our body,” microbial ecologist Jack Gilbert, PhD (above), of the Gilbert Lab at University of California San Diego told Business Insider. “Stools are screened before clinical FMTs, and anything that could cause major problems, such as certain pathogens, would be detected. When you do this at home, you don’t get that kind of screening.” Doctors and clinical laboratories screening patients for IBS understand the dangers of DIY medical treatments. (Photo copyright: University of California San Diego.)

Changing Poop Donors

When Koepke began experiencing symptoms of IBS including indigestion, stabbing pains from trapped gas and severe constipation, she initially turned to physicians for help.

In the Netflix documentary, Koepke stated that she was being prescribed antibiotics “like candy.” Over the course of five years, she completed six rounds of antibiotics per year, but to no avail.

She also changed her diet, removing foods that were making her symptoms worse. This caused her to lose weight and she eventually reached a point where she could only eat 10 to 15 foods. 

“It’s really hard for me to remember what it was like to eat food before it became associated with anxiety and pain and discomfort,” she said.

In an attempt to relieve her IBS symptoms, Koepke made her own homemade fecal transplant pills using donated stool from her brother. After taking them her IBS symptoms subsided and she slowly gained weight. But she developed hormonal acne just like her brother. 

Koepke then changed donors, using her boyfriend’s poop to make new fecal transplant pills. After she took the new pills, her acne dissipated but she developed depression, just like her boyfriend. 

“Over time, I realized my depression was worse than it’s ever been in my life,” Koepke stated in the documentary.

She believes the microbes that were contributing to her boyfriend’s depression were also transplanted into her via the fecal transplant pills. When she reverted to using her brother’s poop, her depression abated within a week.

Gilbert told Business Insider his research illustrates that people who suffer from depression are lacking certain bacteria in their gut microbiome.

“She may have had the ‘anti-depressant’ bacteria in her gut, but when she swapped her microbiome with his, her anti-depressant bacteria got wiped out,” he said.

FDA Approves FMT Therapy for Certain Conditions

Typically, the fecal material for an FMT procedure performed by a doctor comes from fecal donors who have been rigorously screened for infections and diseases. The donations are mixed with a sterile saline solution and filtered which produces a liquid solution. That solution is then administered to a recipient or frozen for later use. 

Fecal transplant methods include:

On November 30, 2022, the US Food and Drug Administration (FDA) approved the first FMT therapy, called Rebyota, for the prevention of Clostridioides difficile (C. diff.) in adults whose symptoms do not respond to antibiotic therapies. Rebyota is a single-dose treatment that is administered rectally into the gut microbiome at a doctor’s office. 

Then, in April of 2023, the FDA approved the use of a medicine called Vowst, which is the first oral FMT approved by the FDA.

According to the Cleveland Clinic, scientists are exploring the possibility that fecal transplants may be used as a possible treatment for many health conditions, including:

Doctors and clinical laboratories know that do-it-yourself medicine is typically not a good idea for obvious reasons. Patients seldom appreciate all the implications of the symptoms of an illness, nor do they fully understand the potentially dangerous consequences of self-treatment. Scientists are still researching the benefits of fecal microbiota transplants and hope to discover more uses for this treatment. 

—JP Schlingman

Related Information:

A Woman Gave Herself Poop Transplants Using Her Brother’s Feces to Treat Debilitating IBS. Then She Started Getting Acne Just Like Him.

FDA Approves First Orally Administered Fecal Microbiota Product for the Prevention of Recurrence of Clostridioides Difficile Infection

FDA Approves First FMT Therapy and Issues Guidance

Everything You Want to Know about Irritable Bowel Syndrome (IBS)

Stanford University Scientists Discover New Lifeform Residing in Human Microbiome

Microbiome Firm Raises $86.5 Million and Inks Deal to Sell Consumer Test Kits in 200 CVS Pharmacies

Researchers Find Health of Human Microbiome Greatly Influenced by Foods We Eat

History of the Clinical Laboratory Critical Values Reporting System

Development of the Critical Values system redefined what STAT means in clinical laboratory testing turnaround times

Where did the concept of critical values and having clinical laboratories report them to referring physicians originate? How did the concept blossom into a standard practice in laboratory medicine? Given the importance of critical values, a lookback into how this aspect of laboratory medicine was developed is helpful to understand how and why this has become an essential element in the practice of medicine and an opportunity for labs to add value in patient care.

According to Stanford Medicine, critical/panic values are defined as “values that are outside the normal range to a degree that may constitute an immediate health risk to the individual or require immediate action on the part of the ordering physician.”

In an article he penned for the National Medical Journal of India, George Lundberg, MD, Editor-at-Large at Medscape, states that the practice of reporting critical values originated with a case that occurred in 1969 at the Los Angeles County-University of Southern California Medical Center. Lundberg is also Editor-in-Chief at Cancer Commons, President and Chair of the Board of Directors of the Lundberg Institute, and a clinical professor of pathology at Northwestern University.

What you’ll read below is an insider’s account of the “birth of critical values reporting.”

According to Lundberg, an unaccompanied man was brought to the hospital in a coma and an examination revealed a laceration to his scalp. The patient was admitted to the neurosurgical unit where clinical laboratory tests were performed, including a complete blood count (CBC) analysis, urinalysis, and serum electrolytes. All the test results came back normal except the patient’s serum glucose (blood sugar level) which was 6 mg% in concentration.

“The hard-copy laboratory results were returned to the ward of origin within two hours of receipt of the specimens in the laboratory. However, the results were not noticed by the house officers who were busy with several other seriously ill patients. Ward personnel also failed to communicate the lab results to the responsible physicians,” Lundberg wrote.

When hospital staff did finally notice the test result the next morning glucose was immediately administered to the patient, but it was too late to prevent irreversible brain damage. The man soon passed away.

Following this incident, the hospital developed a “Critical Value Recognition and Reporting System.” The system generated new numbers that were termed “Panic Values.” 

However, “critics complained that good doctors should never panic, so the name was changed to Critical Values,” Lundberg explained.

When any of these critical test values were out of the norm, “we required the responsible laboratory person to quickly verify the result and use the telephone (long before laboratory computers) to personally notify a responsible individual (no messages left) who agreed to find a physician who could quickly act on the result. All was documented with times and names,” he wrote. 

“We understand that when a physician wants something, he/she wants it, no matter what. Well, in this patient-focused approach, the physician cannot have it, except as offered by the patient-focused approach, based on TAT [turnaround times of clinical laboratory tests],” wrote George Lundberg, MD (above), President and Chair of the Board of Directors of the Lundberg Institute, and Clinical Professor of Pathology at Northwestern University in an article he penned for the National Medical Journal of India (Photo copyright: Dark Intelligence Group. Shows Dr. Lundberg in 2011 addressing the Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management.)

New Clinical Laboratory Standards

Recognition of the urgency to adopt new hospital standards related to certain clinical laboratory test results came swiftly. In 1972, Lundberg was invited to publish an article explaining the new Critical Value Recognition and Reporting System in Medical Laboratory Observer

“Within weeks, laboratories all over the USA adopted their own version of the system,” Lundberg wrote in his National Medical Journal of India (NMJI) article. “The test chosen, and critical values, were established by each medical staff. … A critical value system quickly became standard of practice as required by the College of American Pathologists (CAP) Laboratory Accreditation Program and the Joint Commission on Accreditation of Hospitals.”

According to Lundberg, “most laboratory tests that are done do not need to be done; the results are either negative, normal, or show no change from a prior result. But some are crucial.”

The original set of Critical Values included the following testing results:

The list of values were later expanded to include “vital values.” These values describe lab results for which “action” is important, but where timing is less urgent. Examples of vital values include:

STAT Lab Orders Redefined

Lundberg and his colleagues went on to redefine what constitutes a laboratory test and what renders a test successful. They discussed laboratory procedures with committees of clinicians, lab personnel and patients, and reorganized hematology, chemistry, and toxicology based on the turnaround time (TAT) of tests.

“We ‘started the clock’—any and all days/times 24×7—when a specimen arrived at some place within the laboratory, and stopped the clock when a final result was available somewhere in the laboratory,” Lundberg wrote in NMJI. “We categorized all tests as: less than one hour, less than four hours, less than 24 hours, and more than 24 hours, guaranteed, 24×7. As a trade-off, we abolished the concept of ‘STAT’ orders … NO EXCEPTIONS. The rationale of each TAT was the speed with which a result was needed to render proper medical care that mattered to the welfare of the patient, and, of course, that was technically possible.”

Since then, very little has changed for the Critical Values System over the past 50 years. The majority of values added have fallen under the “Vital” category and not the “Critical” category. Today, most health systems and clinical laboratories create their own internal processes and procedures regarding which values need to be reported immediately (critical), which values are not urgent (vital), and how those results should be handled.

—JP Schlingman

Related Information:

The Origin and Evolution of Critical Laboratory Values

Critical Values

Critical Laboratory Values Communication: Summary Recommendations from Available Guidelines

Yale University’s Mobile Clinical Laboratory Provides Free Medical Tests to Underserved Communities in Connecticut

Clinical laboratories nationwide could follow Yale’s example and enact programs to bring much needed lab services to traditionally underserved communities

Ever since the COVID-19 pandemic drove up demand for telehealth medical services, mobile clinical laboratories have grown in popularity as well, especially among residents of remote and traditionally underserved communities. Now, several divisions of Yale University are getting in on the trend.

In April, Yale Pathology Labs (YPL), the Yale Department of Pathology at Yale School of Medicine (YSM), and Yale School of Public Health (YSPH) unveiled their new Laboratory-in-a-Van program with plans to bring free clinical laboratory services to the public in the communities where they live, a YSPH news release announced. 

“Using a van retrofitted with laboratory-grade diagnostic equipment, the mobile clinic will employ SalivaDirect—a saliva-based COVID-19 PCR test developed at YSPH—to facilitate on-site testing with a turnaround time of two to three hours,” Yale Daily News reported.

Funded by a federal grant, the initial goal was to provide 400 free COVID-19 tests, but the program has exceeded that number. By April 10, the mobile lab had been deployed more than 60 times, appearing at events and pop-up sites throughout various communities in Connecticut, including regular stops at the WHEAT Food Pantry of West Haven.

“[The clinical laboratory-in-a-van] is a brilliant way to reduce the barriers to testing, instead taking the lab to communities who may be less likely—or unable—to access the necessary clinic or labs,” microbiologist Anne Wyllie, PhD, a research scientist who helped develop the PCR test deployed by the mobile lab told Yale Daily News. Wyllie works in the Department of Epidemiology of Microbial Diseases at Yale School of Public Health. “We are actively working with our community partners to identify how we can best serve their communities,” she added. (Photo copyright: Yale School of Medicine.)

Mobile Lab’s Capabilities

Collecting samples, processing, and delivering same-day COVID-19 results was the initial goal but that plan has expanded, Yale School of Medicine noted in a news release

“Same-day onsite delivery of test results is an added benefit for communities and individuals without access to Wi-Fi or the ability to receive private health information electronically,” Yale added. 

The mobile van is staffed with trained clinical laboratory technicians as well as community health navigators who provide both healthcare information and proper follow-up connections as needed for patients who receive positive COVID-19 results. The van runs off power from outdoor electrical outlets at each location and currently serves historically underserved populations in Hartford, Middlesex, Fairfield, New Haven, and New London counties, Yale noted.

“The van allows us to bring our services, as well as healthcare information, directly to communities where they are needed,” said Angelique Levi, MD, Associate Professor, Vice Chair and Director of Pathology Reference Services, and CLIA Laboratory Medical Director in the Department of Pathology at Yale University School of Medicine in a news release.

Launch of a High Complexity Molecular Lab on Wheels

YPL and YSPH collaborated to make the mobile lab a reality. YSPH created the saliva-based COVID-19 test and YPL “provided clinical validation necessary to get the testing method ready for emergency use authorization by the US Food and Drug Administration,” Yale noted.

“YPL recognized the need to be closer to the front lines of patient care and that retrofitting a fully licensed, high complexity molecular laboratory into a consumer-sized van was the right next step,” Chen Liu, MD, PhD, Chair of the Department of Pathology at Yale School of Medicine, noted in a Yale news release. This “gives us options to efficiently deliver accurate diagnostic information when and where it’s needed,” he added.

Throughout the COVID-19 pandemic, the Connecticut Department of Public Health, the City of New Haven, and various community organizations partnered with YPL, YSPH, and the SalivaDirect team to offer free SARS-CoV-2 testing to the public at two different sites in New Haven.

Principal investigators Levi and microbiologist Anne Wyllie, PhD, who helped develop the PCR test deployed by the mobile, lab led the Yale lab-in-a-van research project.

Flambeau Diagnostics, a biomedical company that specializing in mobile lab testing, worked with the Yale team to design and implement the mobile lab van.

“According to Wyllie, the new YSPH and YPL initiative utilizes one of the former Flambeau vans that had been retrofitted for clinical testing,” a Yale news release noted.

Kat Fajardo, Laboratory Manager at Yale University, added custom pieces of equipment to ensure seamless PCR testing. One was a Magnetic Induction Cycler (Mic) measuring only six by six inches. The Mic allowed for measurement of 46 biological specimens, while it’s diminutive size freed up space on the van’s countertop. This allowed lab techs to process specimens concurrently while also providing COVID-19 testing, according to a Yale news release.

Additionally, the van has a Myra portable robotic liquid handler which is “designed to automate the process of moving clinical specimens between vials,” the news release notes.

“What we wanted to do is run high complexity testing in the van, with a reduced timeframe, and then be able to get the results out to the patients as soon as we possibly could,” Fajardo stated.

Exploring the Mobile Laboratory’s Potential

According to a news release, YPL and YSPH consult with community partners to select locations for the mobile lab to visit. These partners include:

Although the van was initially used to provide SalivaDirect COVID-19 testing to vulnerable populations, YPL is working with its partners in those communities to identify other testing needs beyond COVID.

The Yale team is considering additional offerings and support such as the addition of a social worker as well as expanding lung health awareness beyond COVID-19 to other respiratory diseases. Also under consideration:

  • Health screenings such as for glucose levels,
  • Blood pressure checks,
  • Vaccinations including for COVID-19 and Hepatitis B, and
  • Health education and materials for harm reduction and STI prevention, a Yale news release noted. 

Yale’s Laboratory-in-a-Van program is a consumer-facing effort that is bringing much needed clinical lab services to traditionally underserved communities in Connecticut. Clinical laboratories throughout the nation could do the same with remote or homebound patients who cannot reach critical care.

—Kristin Althea O’Connor

Related Information:

High-Tech Mobile Lab-in-a-Van Will Bring Needed Testing to Underserved Communities

Yale Pathology Labs Mobile Lab Provides over 400 Free Tests to Community

Yale Pathology Labs to Serve Vulnerable Populations with New Mobile Testing Van

YSPH and YPL launch Laboratory-in-a-Van program

Endocrine Society Releases New Guidelines Advising Physicians to Not Screen for Vitamin D, which Could Affect Test Referrals to Clinical Laboratories

New guidelines also advise people to limit their vitamin D supplementation to recommended daily doses

Clinical laboratories may eventually receive fewer doctors’ orders for vitamin D testing thanks to new guidelines released by the Endocrine Society. The new Clinical Practice Guideline advises against “unnecessary testing for vitamin D levels.” It also urges healthy people, and those 75-years of age or younger, to avoid taking the vitamin at levels above the daily recommended amounts, according to a news release.

The Society shared its recommendations at its annual meeting and in the Journal of Clinical Endocrinology and Metabolism titled, “Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline.”

Even though the Endocrine Society does recommend vitamin D supplements for certain groups, it advises individuals to hold off on routine testing. That’s because there appears to be uncertainty among ordering clinicians about what to do for patients based on their vitamin D test results.

“When clinicians measure vitamin D, they’re forced to decide what to do about it. That’s where questions about the levels come in. And that’s a big problem. So, what this panel is saying is ‘Don’t screen,’” Clifford Rosen, MD, Director of Clinical and Translational Research and Senior Scientist, Maine Medical Center Research Institute at the University of Maine, told Medscape Medical News.

“We have no data that there’s anything about screening that allows us to improve quality of life. Screening is probably not worthwhile in any age group,” he added.

“This guideline refers to people who are otherwise healthy, and there’s no clear indication for vitamin D, such as people with already established osteoporosis. This guideline is not relevant to them,” the author of the Endocrine Society guideline, Anastassios G. Pittas, MD (above), Professor of Medicine at Tufts University School of Medicine in Boston, told Medscape Medical News. This new guideline could result in doctors ordering fewer vitamin D tests from clinical laboratories. (Photo copyright: Tufts University.)

Vitamin D Screening Not Recommended for Certain Groups

The Endocrine Society’s new clinical guidelines advise healthy adults under 75 years of age to refrain from taking vitamin D supplements that exceed US Institute of Medicine—now the National Academy of Medicine (NAM)—recommendations.

Additionally, these updated guidelines:

  • Recommend vitamin D supplements at levels above NAM recommendations to help lower risks faced by children 18 years and younger, adults 75 and older, pregnant women, and people with prediabetes.
  • Suggest daily, lower-dose vitamin D (instead of non-daily, higher-dose of the vitamin) for people 50 years and older who have “indications for vitamin D supplementation or treatment.”
  • Advise “against routine testing for 25-hydroxyvitamin D [aka, calcifediol] levels” in all the above groups “since outcome-specific benefits based on these levels have not been identified. This includes 25-hyrdoxyvitamin D screening in people with dark complexion or obesity.”

One exception to the guideline applies to people with already established osteoporosis, according to the guideline’s author endocrinologist Anastassios G. Pittas, MD, Chief of Endocrinology, Diabetes and Metabolism; Co-Director, Tuft’s Diabetes and Lipid Center; and Professor of Medicine at Tufts University School of Medicine in Boston.

Vitamin D’s Link to Disease Studied

During a panel discussion at the Endocrine Society’s annual meeting, members acknowledged that many studies have shown relationships between serum concentrations of 25-hydroxy vitamin D (25(OH)D) and physical disorders including those of musculoskeletal, metabolic, and cardiovascular systems. Still, they questioned the link of vitamin D supplementation and testing with disease prevention.

“There is paucity of data regarding definition of optimal levels and optimal intake of vitamin D for preventing specific diseases. … What we really need are large-scale clinical trials and biomarkers so we can predict disease outcome before it happens,” said Panel Chair Marie Demay, MD, Endocrinologist, Massachusetts General Hospital, and Professor of Medicine, Harvard Medical School, Boston, Medscape Medical News reported.

Meanwhile, in their Journal of Clinical Endocrinology and Metabolism paper, the researchers note that use of supplements (1,000 IU or more per day) increased from 0.3% to 18.2%, according to the National Health and Nutrition Examination Survey (NHANES) conducted by the National Center for Health Statistics (NCHS), CDC, for the years 1999-2000 and 2013-2014.

“The use of 25(OH)D testing in clinical practice has also been increasing; however, the cost effectiveness of widespread testing has been questioned, especially given the uncertainty surrounding the optimal level of 25(OH)D required to prevent disease,” the authors wrote.

“Thus, the panel suggests against routine 25(OH)D testing in all populations considered,” the researchers stated at the Endocrine Society annual meeting.

Other Groups Weigh-in on Vitamin D Testing

Pathologists and medical laboratory leaders may recall the explosion in vitamin D testing starting about 20 years ago. Vitamin D testing reimbursed by Medicare Part B “increased 83-fold” during the years 2000 to 2010, according to data cited in an analysis by the American Academy of Family Physicians (AAFP).

“Screening for vitamin D deficiency leads to hundreds of millions of dollars of waste in testing costs annually,” the AAFP noted in an editorial on the organization’s website titled, “Vitamin D Screening and Supplementation in Primary Care: Time to Curb Our Enthusiasm.”

Also, the US Preventive Services Task Force (USPSTF) said in a statement that there is not enough information to “recommend for or against” testing for vitamin D deficiency.

“No organization recommends population-based screening for vitamin D deficiency, and the American Society for Clinical Pathology recommends against it,” the USPSTF noted.

Clinical Laboratories Can Get the Word Out

The vitamin D debate has been going on for a while. And the latest guidance from the Endocrine Society may cause physicians and patients to stop ordering vitamin D tests as part of annual physicals or in routine screenings.

Medical laboratories can provide value by ensuring physicians and patients have the latest information about vitamin D test orders, reports, and interpretation.

—Donna Marie Pocius

Related Information:

Endocrine Society Recommends Healthy Adults Take the Recommended Daily Allowance of Vitamin D

Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline

Don’t Screen for Vitamin D: New Endo Society Guideline

Institute of Medicine Recommendations Vitamin D

Vitamin D Screening and Supplementation in Primary Care: Time to Curb Our Enthusiasm

US Preventive Services Task Force Recommendation Vitamin D Deficiency Screening

;