News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Endocrine Society Releases New Guidelines Advising Physicians to Not Screen for Vitamin D, which Could Affect Test Referrals to Clinical Laboratories

New guidelines also advise people to limit their vitamin D supplementation to recommended daily doses

Clinical laboratories may eventually receive fewer doctors’ orders for vitamin D testing thanks to new guidelines released by the Endocrine Society. The new Clinical Practice Guideline advises against “unnecessary testing for vitamin D levels.” It also urges healthy people, and those 75-years of age or younger, to avoid taking the vitamin at levels above the daily recommended amounts, according to a news release.

The Society shared its recommendations at its annual meeting and in the Journal of Clinical Endocrinology and Metabolism titled, “Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline.”

Even though the Endocrine Society does recommend vitamin D supplements for certain groups, it advises individuals to hold off on routine testing. That’s because there appears to be uncertainty among ordering clinicians about what to do for patients based on their vitamin D test results.

“When clinicians measure vitamin D, they’re forced to decide what to do about it. That’s where questions about the levels come in. And that’s a big problem. So, what this panel is saying is ‘Don’t screen,’” Clifford Rosen, MD, Director of Clinical and Translational Research and Senior Scientist, Maine Medical Center Research Institute at the University of Maine, told Medscape Medical News.

“We have no data that there’s anything about screening that allows us to improve quality of life. Screening is probably not worthwhile in any age group,” he added.

“This guideline refers to people who are otherwise healthy, and there’s no clear indication for vitamin D, such as people with already established osteoporosis. This guideline is not relevant to them,” the author of the Endocrine Society guideline, Anastassios G. Pittas, MD (above), Professor of Medicine at Tufts University School of Medicine in Boston, told Medscape Medical News. This new guideline could result in doctors ordering fewer vitamin D tests from clinical laboratories. (Photo copyright: Tufts University.)

Vitamin D Screening Not Recommended for Certain Groups

The Endocrine Society’s new clinical guidelines advise healthy adults under 75 years of age to refrain from taking vitamin D supplements that exceed US Institute of Medicine—now the National Academy of Medicine (NAM)—recommendations.

Additionally, these updated guidelines:

  • Recommend vitamin D supplements at levels above NAM recommendations to help lower risks faced by children 18 years and younger, adults 75 and older, pregnant women, and people with prediabetes.
  • Suggest daily, lower-dose vitamin D (instead of non-daily, higher-dose of the vitamin) for people 50 years and older who have “indications for vitamin D supplementation or treatment.”
  • Advise “against routine testing for 25-hydroxyvitamin D [aka, calcifediol] levels” in all the above groups “since outcome-specific benefits based on these levels have not been identified. This includes 25-hyrdoxyvitamin D screening in people with dark complexion or obesity.”

One exception to the guideline applies to people with already established osteoporosis, according to the guideline’s author endocrinologist Anastassios G. Pittas, MD, Chief of Endocrinology, Diabetes and Metabolism; Co-Director, Tuft’s Diabetes and Lipid Center; and Professor of Medicine at Tufts University School of Medicine in Boston.

Vitamin D’s Link to Disease Studied

During a panel discussion at the Endocrine Society’s annual meeting, members acknowledged that many studies have shown relationships between serum concentrations of 25-hydroxy vitamin D (25(OH)D) and physical disorders including those of musculoskeletal, metabolic, and cardiovascular systems. Still, they questioned the link of vitamin D supplementation and testing with disease prevention.

“There is paucity of data regarding definition of optimal levels and optimal intake of vitamin D for preventing specific diseases. … What we really need are large-scale clinical trials and biomarkers so we can predict disease outcome before it happens,” said Panel Chair Marie Demay, MD, Endocrinologist, Massachusetts General Hospital, and Professor of Medicine, Harvard Medical School, Boston, Medscape Medical News reported.

Meanwhile, in their Journal of Clinical Endocrinology and Metabolism paper, the researchers note that use of supplements (1,000 IU or more per day) increased from 0.3% to 18.2%, according to the National Health and Nutrition Examination Survey (NHANES) conducted by the National Center for Health Statistics (NCHS), CDC, for the years 1999-2000 and 2013-2014.

“The use of 25(OH)D testing in clinical practice has also been increasing; however, the cost effectiveness of widespread testing has been questioned, especially given the uncertainty surrounding the optimal level of 25(OH)D required to prevent disease,” the authors wrote.

“Thus, the panel suggests against routine 25(OH)D testing in all populations considered,” the researchers stated at the Endocrine Society annual meeting.

Other Groups Weigh-in on Vitamin D Testing

Pathologists and medical laboratory leaders may recall the explosion in vitamin D testing starting about 20 years ago. Vitamin D testing reimbursed by Medicare Part B “increased 83-fold” during the years 2000 to 2010, according to data cited in an analysis by the American Academy of Family Physicians (AAFP).

“Screening for vitamin D deficiency leads to hundreds of millions of dollars of waste in testing costs annually,” the AAFP noted in an editorial on the organization’s website titled, “Vitamin D Screening and Supplementation in Primary Care: Time to Curb Our Enthusiasm.”

Also, the US Preventive Services Task Force (USPSTF) said in a statement that there is not enough information to “recommend for or against” testing for vitamin D deficiency.

“No organization recommends population-based screening for vitamin D deficiency, and the American Society for Clinical Pathology recommends against it,” the USPSTF noted.

Clinical Laboratories Can Get the Word Out

The vitamin D debate has been going on for a while. And the latest guidance from the Endocrine Society may cause physicians and patients to stop ordering vitamin D tests as part of annual physicals or in routine screenings.

Medical laboratories can provide value by ensuring physicians and patients have the latest information about vitamin D test orders, reports, and interpretation.

—Donna Marie Pocius

Related Information:

Endocrine Society Recommends Healthy Adults Take the Recommended Daily Allowance of Vitamin D

Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline

Don’t Screen for Vitamin D: New Endo Society Guideline

Institute of Medicine Recommendations Vitamin D

Vitamin D Screening and Supplementation in Primary Care: Time to Curb Our Enthusiasm

US Preventive Services Task Force Recommendation Vitamin D Deficiency Screening

FDA Grants Marketing Authorization to First Ever AI-Powered SaMD Diagnostic Tool for Sepsis That Shares Patient’s Risk within 24 Hours and Works with EHRs

Infection control teams and clinical laboratory managers may want to look at this new product designed to improve the diagnosis and treatment of sepsis

Accurate and fast diagnosis of sepsis for patients arriving in emergency departments is the goal of a new product that was just cleared by the federal Food and Drug Administration (FDA). It is also the newest example of how artificial intelligence (AI) continues to find its way into pathology and clinical laboratory medicine.

Sepsis is one of the deadliest killers in US hospitals. That is why there is interest in the recent action by the FDA to grant marketing authorization for an AI-powered sepsis detection software through the agency’s De Novo Classification Request. The DNCR “provides a marketing pathway to classify novel medical devices for which general controls alone, or general and special controls, provide reasonable assurance of safety and effectiveness for the intended use, but for which there is no legally marketed predicate device,” the FDA’s website states.

Developed by Chicago-based Prenosis, the Sepsis ImmunoScore is an AI and machine learning (ML) Software as a Medical Device (SaMD) used to “guide rapid diagnosis and prediction of sepsis” within 24 hours of the patient’s presentation in an emergency department or hospital, according to a company news release.

In a separate statement, Prenosis announced a commercial distribution deal with Roche, Basel, Switzerland, as well as the SaMD’s availability on Roche’s navify Algorithm Suite (a digital library of medical algorithms).

Unlike a single analyte assay that is run in a clinical laboratory, Prenosis’ AI/ML software uses 22 diagnostic and predictive parameters, along with ML algorithms, to analyze data and produce a clinically actionable answer on sepsis.

It is important for clinical laboratory managers and pathologists to recognize that this diagnostic approach to sepsis brings together a number of data points commonly found in a patient’s electronic health record (EHR), some of which the lab generated and others the lab did not generate.

“Sepsis is a serious and sometimes deadly complication. Technologies developed to help prevent this condition have the potential to provide a significant benefit to patients,” said Jeff Shuren, MD, JD, Director of the FDA’s Center for Devices and Radiological Health, in a statement. “The FDA’s authorization of the Prenosis Sepsis ImmunoScore software establishes specific premarket and post-market requirements for this device type.” Clinical laboratory EHRs contain some of the data points Prenosis’ diagnostic software uses. (Photo copyright: US Food and Drug Administration.)  

How it Works

To assist doctors diagnose sepsis, the ImmunoScore software is first integrated into the patient’s hospital EHR. From there, it leverages 22 parameters including:

Instead of requiring a doctor or nurse to look at each parameter separately, the SaMD tool uses AI “to evaluate all those markers at once”, CNBC noted. It then produces a risk score and four discrete risk stratification categories (low, medium, high, and very high) which correlate to “a patient’s risk of deterioration” represented by:

  • Hospital length of stay.
  • In-hospital mortality.
  • Intensive care unit transfer within 24 hours.
  • Vasopressor use within 24 hours.
  • Need for mechanical ventilation within 24 hours.

By sharing these details—a number from one to 100 for each of the 22 diagnostic and predictive parameters—Sepsis ImmunoScore helps doctors determine which will likely contribute most to the patient’s risk for developing sepsis, MedTech Dive reported.

“A lot of clinicians don’t trust AI products for multiple reasons. We are trying very hard to counter that skepticism by making a tool that was validated by the FDA first, and then the second piece is we’re not trying to replace the clinician,” Bobby Reddy Jr., PhD, Prenosis co-founder and CEO, told MedTech Dive.

Big Biobank and Blood Sample Data

Prenosis, which says its goal is the “enabling [of] precision medicine in acute care” developed Sepsis ImmunoScore using the company’s own biobank and a dataset of more than 100,000 blood samples from more than 25,000 patients.

AI algorithms drew on this biological/clinical dataset—the largest in the world for acute care patients suspected of having serious infections, according to Prenosis—to “elucidate patterns in rapid immune response.”

Carle Foundation Hospital, Urbana, Ill., is one of three Illinois hospitals that helped build the biobank and dataset used by Prenosis, according to a Carle news release.

“It does not work without data, and the data started at Carle,” said critical care specialist Karen White, MD, PhD, Carle Foundation Hospital, St. Louis, MO, in the news release.  “The project involved a large number of physicians, research staff, and internal medicine residents at Carle who helped recruit patients, collect data, and samples,” she said.

Opportunity for Clinical Laboratories

Sepsis is a life-threatening condition based on an “extreme response to an infection” that affects nearly 1.7 million adults in the US each year and is responsible for 350,000 deaths, according to US Centers for Disease Control and Prevention (CDC) data. 

A non-invasive diagnostic tool like Sepsis ImmunoScore will be a boon to emergency physicians and the patients they treat. Now that the FDA has authorized the SaMD diagnostic tool to go to market, it may not be long before physicians can use the information it produces to save lives.

Clinical laboratory managers inspired by the development of Sepsis ImmunoScore may want to look for similar ways they can take certain lab test results and combine them with other data in an EHR to create intelligence that physicians can use to better treat their patients. The way forward in laboratory medicine will be combining lab test results with other relevant sets of data to create clinically actionable intelligence for physicians, patients, and payers.

—Donna Marie Pocius

Related Information:

Prenosis Announces FDA De Novo Marketing Authorization of the Sepsis ImmunoScore  

Prenosis Announces Commercial Distribution Collaboration with Roche for Sepsis ImmunoScore

FDA Authorizes Prenosis Software as First AI Tool That Can Diagnose Sepsis

FDA Round-Up April 5, 2024

FDA Grants De Novo Clearance to AI Tool for Detecting Sepsis

New AI Tool for Sepsis Diagnosis Gets its Start to Research at Carle

An AI Tool to Stop Sepsis

Harvard and Google Scientists Studying Connectomics Create Massive Highly Detailed 3D Nanoscale Model of Human Neural Tissue

Ten year collaboration between Google and Harvard may lead to a deeper understanding of the brain and new clinical laboratory diagnostics

With all our anatomic pathology and clinical laboratory science, we still do not know that much about the structure of the brain. But now, scientists at Harvard University and Google Research studying the emerging field of connectomics have published a highly detailed 3D reconstruction of human brain tissue that allows visualization of neurons and their connections at unprecedented nanoscale resolutions.

Further investigation of the nano-connections within the human brain could lead to novel insights about the role specific proteins and molecules play in the function of the brain. Though it will likely be years down the road, data derived from this study could be used to develop new clinical laboratory diagnostic tests.

The data to generate the model came from Google’s use of artificial intelligence (AI) algorithms to color-code Harvard’s electron microscope imaging of a cubic millimeter of neural tissue—equivalent to a half-grain of rice—that was surgically removed from an epilepsy patient.

“That tiny square contains 57,000 cells, 230 millimeters of blood vessels, and 150 million synapses, all amounting to 1,400 terabytes of data,” according to the Harvard Gazette, which described the project as “the largest-ever dataset of human neural connections.”

“A terabyte is, for most people, gigantic, yet a fragment of a human brain—just a minuscule, teeny-weeny little bit of human brain—is still thousands of terabytes,” said neuroscientist Jeff W. Lichtman, MD, PhD, Jeremy R. Knowles Professor of Molecular and Cellular Biology, whose Lichtman Lab at Harvard University collaborated on the project with researchers from Google. The two labs have been working together for nearly 10 years on this project, the Harvard Gazette reported.

Lichtman’s lab focuses on the emerging field of connectomics, defined “as understanding how individual neurons are connected to one another to form functional networks,” said neurobiologist Wei-Chung Allen Lee, PhD, Assistant Professor of Neurology, Harvard Medical School, in an interview with Harvard Medical News. “The goal is to create connectomes—or detailed structural maps of connectivity—where we can see every neuron and every connection.” Lee was not involved with the Harvard/Google Research study.

The scientists published their study in the journal Science titled, “A Petavoxel Fragment of Human Cerebral Cortex Reconstructed at Nanoscale Resolution.”

“The human brain uses no more power than a dim incandescent light bulb, yet it can accomplish feats still not possible with the largest artificial computing systems,” wrote Google Research scientist Viren Jain, PhD (above), in a blog post. “To understand how requires a level of understanding more profound than knowing what part of the brain is responsible for what function. The field of connectomics aims to achieve this by precisely mapping how each cell is connected to others.” Google’s 10-year collaboration with Harvard University may lead to new clinical laboratory diagnostics. (Photo copyright: Google Research.)

Study Data and Tools Freely Available

Along with the Science paper, the researchers publicly released the data along with analytic and visualization tools. The study noted that the dataset “is large and incompletely scrutinized,” so the scientists are inviting other researchers to assist in improving the model.

“The ability for other researchers to proofread and refine this human brain connectome is one of many ways that we see the release of this paper and the associated tools as not only the culmination of 10 years of work, but the beginning of something new,” wrote Google Research scientist Viren Jain, PhD, in a blog post that included links to the online resources.

One of those tools—Neuroglancer—allows any user with a web browser to view 3D models of neurons, axons, synapses, dendrites, blood vessels, and other objects. Users can rotate the models in xyz dimensions.

Users with the requisite knowledge and skills can proofread and correct the models by signing up for a CAVE (Connectome Annotation Versioning Engine) account.

Researchers Found Several Surprises

To perform their study, Lichtman’s team cut the neural tissue into 5,000 slices, each approximately 30 nanometers thick, Jain explained in the blog post. They then used a multibeam scanning electron microscope to capture high-resolution images, a process that took 326 days.

Jain’s team at Google used AI tools to build the model. They “stitched and aligned the image data, reconstructed the three dimensional structure of each cell, including its axons and dendrites, identified synaptic connections, and classified cell types,” he explained.

Jain pointed to “several surprises” that the reconstruction revealed. For example, he noted that “96.5% of contacts between axons and their target cells have just one synapse.” However, he added, “we found a class of rare but extremely powerful synaptic connections in which a pair of neurons may be connected by more than 50 individual synapses.”

In their Science paper, the researchers suggest that “these powerful connections are not the result of chance, but rather that these pairs had a reason to be more strongly connected than is typical,” Jain wrote in the blog post. “Further study of these connections could reveal their functional role in the brain.”

Mysterious Structures

Another anomaly was the presence of “axon whorls,” as Jain described them, “beautiful but mysterious structures in which an axon wraps itself into complicated knots.”

Because the sample came from an epilepsy patient, Jain noted that the whorls could be connected to the disease or therapies or could be found in all brains.

“Given the scale and complexity of the dataset, we expect that there are many other novel structures and characteristics yet to be discovered,” he wrote. “These findings are the tip of the iceberg of what we expect connectomics will tell us about human brains.”

The researchers have a larger goal to create a comprehensive high-resolution map of a mouse’s brain, Harvard Medical News noted. This would contain approximately 1,000 times the data found in the 1-cubic-millimeter human sample.

Dark Daily has been tracking the different fields of “omics” for years, as research teams announce new findings and coin new areas of science and medicine to which “omics” is appended. Connectomics fits that description.

Though the Harvard/Google research is not likely to lead to diagnostic assays or clinical laboratory tests any time soon, it is an example of how advances in technologies are enabling researchers to investigate smaller and smaller elements within the human body.

—Stephen Beale

Related Information:

Researchers Publish Largest-Ever Dataset of Neural Connections

A Petavoxel Fragment of Human Cerebral Cortex Reconstructed at Nanoscale Resolution

Ten Years of Neuroscience at Google Yields Maps of Human Brain

Groundbreaking Images Reveal the Human Brain at Nanoscale Resolution

A New Field of Neuroscience Aims to Map Connections in the Brain

Johns Hopkins Research Team Uses Machine Learning on DNA “Dark Matter” in Blood to Identify Cancer

Findings could lead to new biomarkers clinical laboratories would use for identifying cancer in patients and monitoring treatments

As DNA “dark matter” (the DNA sequences between genes) continues to be studied, researchers are learning that so-called “junk DNA” (non-functional DNA) may influence multiple health conditions and diseases including cancer. This will be of interest to pathologists and clinical laboratories engaged in cancer diagnosis and may lead to new non-invasive liquid biopsy methods for identifying cancer in blood draws.

Researchers at Johns Hopkins Kimmel Cancer Center in Baltimore, Md., developed a technique to identify changes in repeat elements of genetic code in cancerous tissue as well as in cell-free DNA (cf-DNA) that are shed in blood, according to a Johns Hopkins news release.

The Hopkins researchers described their machine learning approach—called ARTEMIS (Analysis of RepeaT EleMents in dISease)—in the journal Science Translational Medicine titled, “Genomewide Repeat Landscapes in Cancer and Cell-Free DNA.”

ARTEMIS “shows potential to predict cases of early-stage lung cancer or liver cancer in humans by detecting repetitive genetic sequences,” Genetic Engineering and Biotechnology News (GEN) reported.

This technique could enable non-invasive monitoring of cancer treatment and cancer diagnosis, Technology Networks noted.

“Our study shows that ARTEMIS can reveal genomewide repeat landscapes that reflect dramatic underlying changes in human cancers,” said study co-leader Akshaya Annapragada (above), an MD/PhD student at the Johns Hopkins University School of Medicine, in a news release. “By illuminating the so-called ‘dark genome,’ the work offers unique insights into the cancer genome and provides a proof-of-concept for the utility of genomewide repeat landscapes as tissue and blood-based biomarkers for cancer detection, characterization, and monitoring.” Clinical laboratories may soon have new biomarkers for the detection of cancer. (Photo copyright: Johns Hopkins University.)

Detecting Early Lung, Liver Cancer

Artemis is a Greek word meaning “hunting goddess.” For the Johns Hopkins researchers, ARTEMIS also describes a technique “to analyze junk DNA found in tumors” and which float in the bloodstream, Financial Times explained.

“It’s like a grand unveiling of what’s behind the curtain,” said geneticist Victor Velculescu, MD, PhD, Professor of Oncology and co-director of the Cancer Genetics and Epigenetics Program at Johns Hopkins Kimmel Cancer Center, in the news release.

“Until ARTEMIS, this dark matter of the genome was essentially ignored, but now we’re seeing that these repeats are not occurring randomly,” he added. “They end up being clustered around genes that are altered in cancer in a variety of different ways, providing the first glimpse that these sequences may be key to tumor development.”

ARTEMIS could “lead to new therapies, new diagnostics, and new screening approaches for cancer,” Velculescu noted.

Repeats of DNA Sequences Tough to Study

For some time technical limitations have hindered analysis of repetitive genomic sequences by scientists. 

“Genetic changes in repetitive sequences are a hallmark of cancer and other diseases, but characterizing these has been challenging using standard sequencing approaches,” the study authors wrote in their Science Translational Medicine paper.

“We developed a de novo k-mer (short sequences of DNA)-finding approach called ARTEMIS to identify repeat elements from whole-genome sequencing,” the researchers wrote.

The scientists put ARTEMIS to the test in laboratory experiments.

The first analysis involved 1,280 types of repeating genetic elements “in both normal and tumor tissues from 525 cancer patients” who participated in the Pan-Cancer Analysis of Whole Genomes (PCAWG), according to Technology Networks, which noted these findings:

  • A median of 807 altered elements were found in each tumor.
  • About two-thirds (820) had not “previously been found altered in human cancer.”

Second, the researchers explored “genomewide repeat element changes that were predictive of cancer,” by using machine learning to give each sample an ARTEMIS score, according to the Johns Hopkins news release. 

The scoring detected “525 PCAWG participants’ tumors from the healthy tissues with a high performance” overall Area Under the Curve (AUC) score of 0.96 (perfect score being 1.0) “across all cancer types analyzed,” the Johns Hopkins’ release states.

Liquid Biopsy Deployed

The scientists then used liquid biopsies to determine ARTEMIS’ ability to noninvasively diagnose cancer. Researchers used blood samples from:

Results, according to Johns Hopkins:

  • ARTEMIS classified patients with lung cancer with an AUC of 0.82.
  • ARTEMIS detected people with liver cancer, as compared to others with cirrhosis or viral hepatitis, with a score of AUC 0.87.

Finally, the scientists used their “ARTEMIS blood test” to find the origin of tumors in patients with cancer. They reported their technique was 78% accurate in discovering tumor tissue sources among 12 tumor types.

“These analyses reveal widespread changes in repeat landscapes of human cancers and provide an approach for their detection and characterization that could benefit early detection and disease monitoring of patients with cancer,” the researchers wrote in Science Translational Medicine.

Large Clinical Trials Planned

Velculescu said more research is planned, including larger clinical trials.

“While still at an early stage, this research demonstrates how some cancers could be diagnosed earlier by detecting tumor-specific changes in cells collected from blood samples,” Hattie Brooks, PhD, Research Information Manager, Cancer Research UK (CRUK), told Financial Times.

Should ARTEMIS prove to be a viable, non-invasive blood test for cancer, it could provide pathologists and clinical laboratories with new biomarkers and the opportunity to work with oncologists to promptly diagnosis cancer and monitor patients’ response to treatment.

—Donna Marie Pocius

Related Information:

“Junk DNA” No More: Johns Hopkins Investigators Develop Method of Identifying Cancers from Repeat Elements of Genetic Code

Genomewide Repeat Landscapes in Cancer and Cell-Free DNA

AI Detects Cancer VIA DNA Repeats in Liquid Biopsies

Genetic “Dark Matter” Could Help Monitor Cancer

AI Explores “Dark Genome” to Shed Light on Cancer Growth

Patient Rights Group Says Too Many Hospitals Are Not Complying with CMS Price Transparency Rules

Only about a third of the hospitals surveyed are in full compliance with giving public access to prices, the watchdog group contends, but the AHA disputes its methodology

It’s been almost four years since the Centers for Medicare and Medicaid Services (CMS) enacted its Hospital Price Transparency rule which requires hospitals—including their medical laboratories—to make their prices available and easily accessible to the public. But according to a 2024 report from PatientRightsAdvocate.org (PRA), just 34.5% of reviewed hospitals are fully compliant with the transparency rule. That’s a slight decrease from the 36% compliance rate the PRA listed in its 2023 report, the watchdog group stated in a blog post.

Released on Feb. 29, this was the group’s sixth semi-annual hospital price transparency report since the CMS rule took effect in 2021.

The rule “requires hospitals to post all prices online, easily accessible and searchable, in the form of (i) a single machine-readable standard charges file for all items, services, and drugs by all payers and all plans, the de-identified minimum and maximum negotiated rates, and all discounted cash prices, as well as (ii) prices for the 300 most common shoppable services either as a consumer-friendly standard charges display listing actual prices or, alternatively, as a price estimator tool,” the report states.

The required viewable prices are to be for, among others, medical imaging, clinical laboratory testing, and outpatient procedures such as a colonoscopies, etc.

“With full transparency, consumers can benefit from competition to make informed decisions, protect from overcharges, billing errors, and fraud, and lower their costs,” the report states. “Employer and union plans can use pricing and claims data to improve their plan designs and direct members to lower cost, high-quality facilities. However, continued noncompliance impedes this ability.”

At any time, the US Department of Justice (DOJ) could decide to file charges against a hospital or a clinical laboratory for not posting their prices on their websites in compliance with the federal rule. Such an action by DOJ officials would be to specifically put the entire industry on notice that there will be consequences for non-compliance.

The PRA’s report provides hospitals and clinical laboratories with a reminder that consumer watchdogs are also monitoring compliance.

“Our comprehensive study of 2,000 hospitals indicates nearly two-thirds (65.5%) of hospitals reviewed continue failing to fully comply with the rule, yet the Centers for Medicare and Medicaid Services (CMS) has only fined fourteen hospitals for noncompliance out of the thousands found to not be meeting all of the rule’s requirements. When hospitals don’t post their prices, they can charge whatever they want,” wrote PRA Founder and Chairman Cynthia Fisher (above) in a letter to President Biden. Hospital medical laboratories are also required to post their prices for tests. (Photo copyright: PatientRightsAdvocate.org.)

Increasing Penalties for Non-compliance

In a March 18 Health Affairs blog post on price transparency, two healthcare policy experts—David Muhlestein, PhD, JD, Chief Research Officer at Leavitt Partners, Washington, DC, and Adjunct Assistant Professor of The Dartmouth Institute (TDI) at the Geisel School of Medicine at Dartmouth College; and Yuvraj Pathak, PhD, Associate Director at West Health—argued that CMS should increase penalties for non-compliance, so the dollar amounts are greater than the cost of compliance.

To compile their report, PRA analysts examined the websites of 2,000 US hospitals between September 3, 2023, and January 13, 2023, and found that 1,311, or 65.5%, were not in full compliance, mostly due to “missing or significantly incomplete pricing data,” the report states.

More than 6,000 licensed hospitals operate in the US, the report notes. The group said it focused on hospitals owned by the largest US health systems.

Among the notable findings:

  • The 2023 report found that 98% of Kaiser Permanente’s 42 hospitals were in full compliance with the rule, but in the 2024 study, none were compliant because the hospitals began posting multiple files instead of a single file.
  • In total, 103 hospitals rated as noncompliant in the previous report were found to be compliant in the new analysis. Conversely, 135 hospitals previously rated as compliant were listed as noncompliant in the 2024 report.

The report lauded three hospitals for posting “exemplary files” that were “easily accessible, downloadable, machine-readable, and including all negotiated rates by payer and plan.” Those were Cape Cod Hospital in Hyannis, Mass.; Christus Santa Rosa Medical Center in San Antonio; and UW Health University Hospital in Madison, Wis.

In its discussion of the findings, PRA called on CMS to step up enforcement of the pricing transparency rule. The group also wants the government to close what it describes as the “estimator tool loophole,” which allows hospitals to list non-binding price estimates and price ranges instead of concrete prices.

“Price estimator tools do not achieve the goals of price transparency policy and fundamentally undermine the intent of the regulations,” the PRA’s report contends.

AHA Pushes Back on PRA Assessment

The American Hospital Association (AHA) took issue with PRA’s methodology, as Dark Daily reported in “CMS Proposes New Amendments to Federal Hospital Price Transparency Rule That May Affect Clinical Laboratories and Pathology Groups.”

In response to the 2023 PRA report, AHA Group Vice President for Public Policy Molly Smith issued the following statement, “Once again, Patient Rights Advocate has put out a report that blatantly misconstrues, ignores, and mischaracterizes hospitals’ compliance with federal price transparency regulations. The AHA has repeatedly debunked point-by-point Patient Rights Advocate’s intentionally misleading ‘reports’ on price transparency.”

Citing CMS data, Smith said that as of 2022, 70% of US hospitals had complied with two key federal rules:

  • One requiring hospitals to post machine-readable files with pricing information.
  • The other mandating a list of prices for at least 300 “shoppable” services.

More than 80% of hospitals had complied with at least one of the rules, she contended in an AHA press release.

Speaking to the New Orleans Times-Picayune, PRA Founder and Chairman Cynthia Fisher said her group performs a more in-depth study of pricing data compared with CMS.

“They did not do a comprehensive review,” she told the publication. “We do a deep dive for full compliance.”

The PRA study came on the heels of a January report from Turquoise Health that offered a rosier assessment of hospital compliance, albeit with different criteria. According to the Turquoise report, as of Dec. 15, 2023:

  • 90.7% of 6,357 US hospitals had posted machine-readable files,
  • 83.1% posted information about negotiated rates, and
  • 77.3% posted cash rates.

The Turquoise Health end-to-end price transparency platform uses a 5-point system to rate the quality of hospitals’ machine-readable files and said that more than 50% scored five stars. Clinical laboratory managers and pathologists may find it timely to review their lab organization’s compliance with this federal price transparency rule.

—Stephen Beale

Related Information:

Just 34.5% of Reviewed Hospitals Fully Compliant with Federally-Mandated Price Transparency Rule

Sixth Semi-Annual Hospital Price Transparency Compliance Report

Improving Hospital Compliance with Price Transparency Rules

Only Half of LA Hospitals Publish Prices as Required by Law, Hindering Patient Choice

34.5% of Hospitals Complying with Price Transparency Rule, Report Says

Little Progress Made with Hospital Price Transparency Compliance

CMS Releases Tool to Validate Price Transparency File Compliance

Hospital Price Transparency Compliance Dips: Report

Hospitals Backslide on Price Transparency Test

Moving into 2024: State of Price Transparency

Hospitals Finally Reached Widespread Price Transparency Compliance in 2023

More Hospitals, Payers Compliant with Price Transparency Laws

Clinical Trial Shows New Laboratory Developed Blood Test 83% Effective at Detecting Colorectal Cancer

Accurate blood-based clinical laboratory testing for cancer promises to encourage more people to undergo early screening for deadly diseases

One holy grail in diagnostics is to develop less-invasive specimen types when screening or testing for different cancers. This is the motivation behind the creation of a new assay for colorectal (colon) cancer that uses a blood sample and that could be offered by clinical laboratories. The data on this assay and its performance was featured in a recent issue of the New England Journal of Medicine(NEJM).

The company developing this new test recognized that more than 50,000 people will die in 2024 from colon cancer, according to the American Cancer Society. That’s primarily because people do not like colonoscopies even though the procedure can detect cancer in its early stages. Similarly, patients tend to find collecting their own fecal samples for colon cancer screening tests to be unpleasant.

But the clinical laboratory blood test for cancer screening developed by Guardant Health may make diagnosing the deadly disease less invasive and save lives. The test “detects 83% of people with colorectal cancer with specificity of 90%,” a company press release noted.

“Early detection could prevent more than 90% of colorectal cancer-related deaths, yet more than one third of the screening-eligible population is not up to date with screening despite multiple available tests. A blood-based test has the potential to improve screening adherence, detect colorectal cancer earlier, and reduce colorectal cancer-related mortality,” the study authors wrote in the NEJM.

As noted above, this is the latest example of test developers working to develop clinical laboratory tests that are less invasive for patients, while equaling or exceeding the sensitivity and specificity of existing diagnostic assays for certain health conditions.

“I do think having a blood draw versus undergoing an invasive test will reach more people, My hope is that with more tools we can reach more people,” Barbara H. Jung, MD (above), President of the American Gastroenterological Association, told NPR. Clinical laboratory blood tests for cancer may encourage people who do not like colonoscopies to get regular screening. (Photo copyright: American Gastroenterology Association.)

Developing the Shield Blood Test

Colorectal cancer is the “third most common cancer among men and women in the US,” according to the American Gastrological Association (AGA). And yet, millions of people do not get regular screening for the disease.

To prove their Shield blood test, Guardant Health, a precision oncology company based in Redwood City, Calif., enrolled more than 20,000 patients between the ages of 45-84 from across the US in a prospective, multi-site registrational study called ECLIPSE (Evaluation of ctDNA LUNAR Assay In an Average Patient Screening Episode).

“We assessed the performance characteristics of a cell-free DNA (cfDNA) blood-based test in a population eligible for colorectal cancer screening. The coprimary outcomes were sensitivity for colorectal cancer and specificity for advanced neoplasia (colorectal cancer or advanced precancerous lesions) relative to screening colonoscopy. The secondary outcome was sensitivity to detect advanced precancerous lesions,” the study authors wrote in the NEJM.

In March, Guardant completed clinical trials of its Shield blood test for detecting colorectal cancer (CRC) in men and women. According to the company press release, the test demonstrated:

  • 83% sensitivity in detecting individuals with CRC.
  • 88% sensitivity in detecting pathology-confirmed Stages I-III.

Additionally, the Shield test showed sensitivity by stage of:

  • 65% for pathology-confirmed Stage I,
  • 55% for clinical Stage I,
  • 100% for Stage II, and
  • 100% for Stage III.

“The results of the study are a promising step toward developing more convenient tools to detect colorectal cancer early while it is more easily treated,” said molecular biologist and gastroenterologist William M. Grady, MD, Medical Director, Gastrointestinal Cancer Prevention Program at Fred Hutchinson Cancer Center and corresponding author of the ECLIPSE study in the press release. “The test, which has an accuracy rate for colon cancer detection similar to stool tests used for early detection of cancer, could offer an alternative for patients who may otherwise decline current screening options.”

Are Colonoscopies Still Needed?

“More than three out of four Americans who die from colorectal cancer are not up to date with their recommended screening, highlighting the need for a more convenient and less invasive screening method that can overcome barriers associated with traditional options,” Daniel Chung, MD, gastroenterologist at Massachusetts General Hospital and Professor of Medicine at Harvard Medical School, said in the Guardant press release.

Barbara H. Jung, MD, President of the American Gastroenterological Association, says that even if Guardant’s Shield test makes it to the public the “dreaded colonoscopy” will still be needed because the procedure is used to locate and test polyps. “And when you find those you can also remove them, which in turn prevents the cancer from forming,” she told NPR.

There is hope that less invasive clinical laboratory testing will encourage more individuals to get screened for cancer earlier and regularly, and that the shift will result in a reduction in cancer rates.

“Colorectal cancer is highly treatable if caught in the early stages,” said Chris Evans, President of the Colon Cancer Coalition, in the Guardant press release.

Guardant Health’s ECLIPSE study is a prime example of the push clinical laboratory test developers are making to create user-friendly test options that make it easier for patients to follow through with regular screening for early detection of diseases. It echoes a larger effort in the medical community to think outside the box and come up with creative solutions to reach wider audiences in the name of prevention.

—Kristin Althea O’Connor

Related Information:

Guardant Health ECLIPSE Study Data Demonstrating Efficacy of Shield Blood-based Test for Colorectal Cancer Screening to be Published in The New England Journal of Medicine

A Cell-free DNA Blood-Based Test for Colorectal Cancer Screening

Guardant Health Announces Positive Results from Pivotal ECLIPSE Study Evaluating a Blood Test for the Detection of Colorectal Cancer

A Simple Blood Test Can Detect Colorectal Cancer Early, Study Finds

Key Statistics for Colorectal Cancer

Colorectal Cancer Facts and Statistics

Cancer Stat Facts: Colorectal Cancer

;