News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Canada’s Early Response to COVID-19 Garnered Praise, But Critical Shortages of Clinical Lab Tests and Delays in Test Results Brought Criticism of the Government’s Actions. Sound Familiar?

Though coronavirus infections were detected nearly simultaneously in both Canada and the US, total cases and total deaths vary dramatically leading experts to question how differences in healthcare systems might have contributed

Can clinical laboratories in the United States learn from Canada’s response to the COVID-19 pandemic? While our northern neighbor won praise for its early response to the coronavirus, since then Canada has faced criticism over a lack of access to SARS-CoV-2 testing and long wait times for test results—criticism levied at the United States’ response to the outbreak as well.

In “Canada Shows How Easy Virus Testing Can Be,” Foreign Policy reported that Canada was more prepared to mount a successful response to COVID-19 because it systematically improved its pandemic-response preparedness and testing capacity after the 2003 SARS coronavirus (SARS-CoV-1) outbreak.

“Provincial laboratories put the infrastructure in place that would allow them to run their own testing and validation without help from the federal government,” Foreign Policy wrote. “At the same time, the federally run National Microbiology Laboratory in Winnipeg expanded its own capacity to support those efforts.”

However, Canada’s pandemic response has not been criticism free. In “Health Minister Says Test Result Wait Times ‘Not Acceptable’ As Ontario Confirms 25 New COVID-19 Cases,” CBC News reported in late March about COVID-19 testing shortages and four-day wait times for test results that were “not acceptable,” particularly in Ontario, where people with mild symptoms were being refused testing and sent home unless they worked in high-risk settings.

In “Why It’s So Difficult to Get Tested for COVID-19 in Canada,” CBC News suggested that Canada’s test rationing was due to a laboratory-supply shortage, a problem which The New York Timesreports still has not been overcome in the US more than six months into the pandemic.

Government Bureaucracy’s Effect on Response to COVID-19

In “Canada’s Coronavirus Response Has Not Been Perfect. But It’s Done Far Better than the US,” The Washington Post reported that the initial exposure to the virus by the US and Canada was similar. Both the US and Canada have extensive ties to Europe and China, resulting in the two countries identifying their first cases of COVID-19 within a week of one another in January. Since then, however, the progression of the disease diverged dramatically in the two nations.

To date, the US has experienced 7,361,611 total cases with 209,808 total deaths, placing it in the number one spot globally on Worldometers’ COVID-19 tracking site. By contrast, Canada is in 26th place, with 155,301 total cases and 9,278 total deaths. However, to date the US has conducted 105,401,706 total clinical laboratory tests, as opposed to Canada’s 7,220,108 total tests. This might account for the disparity in total cases, but what accounts for the huge difference in total US deaths due to COVID-19 compared to Canada?

A Fraser Institute blog post authored by Steven Globerman, PhD, Resident Scholar and Addington Chair in Measurement at the Institute and Professor Emeritus at Western Washington University, titled, “US COVID Experience Highlights Risks of Centralized Management of Healthcare,” blamed the US’ “top-down, centralized approach to testing” for the “testing fiasco” that marked the US’ initial slow response to the pandemic. Globerman maintained the Centers for Disease Control and Prevention’s insistence on producing its own COVID-19 diagnostic test, rather than using a proven German-produced test, was the first of several missteps by the US.

Steven Globerman, PhD
“While there has been much criticism of the decentralized private insurance industry in the US, the major shortcomings in testing that characterize the US experience during the current pandemic seem to be the result of the government healthcare bureaucracy,” wrote Steven Globerman, PhD, (above), Resident Scholar and Addington Chair in Measurement at the Fraser Institute and Professor Emeritus at Western Washington University. (Photo copyright: Fraser Institute.)

Globerman also noted the problems were compounded by the US government’s low initial Medicare payments to private laboratories for COVID-19 tests. “Medicare is reputed to have paid about half the price it pays for a flu test, even though the coronavirus test is substantially more expensive to produce. The price forced labs to take losses on the test, blocking many labs from scaling up production to expand the nation’s testing capacity.

“Only after major lab organizations made public pleas for increased Medicare reimbursement, and long backlogs emerged for testing and reporting test results, did Medicare agree to double its payments for coronavirus tests,” Globerman wrote.

Could National Differences in Healthcare Systems Be to Blame for Disparate COVID-19 Outcomes?

In “Canada Succeeded on Coronavirus Where America Failed. Why?” Canadian public health experts told Vox differences in the two countries’ political leadership, public health funding, and healthcare systems are to blame for the US experiencing a worse coronavirus outbreak than Canada.

Is that true? Sally C. Pipes, CEO, and Thomas W. Smith Fellow in Health Care Policy at the Pacific Research Institute, a former resident of Canada and an ardent critic of single-payer healthcare, argued that Canada’s healthcare system is plagued by long waits for elective procedures, equipment shortages, and limited access to cutting-edge drugs and therapies.

In “The Canadian Health-Care Scare,” Pipes wrote, “Our northern neighbors wait months for routine care and lack access to the latest life-saving medications and technology. Importing this system would lead to widespread misery,” adding, “Is a six-month wait for a knee replacement—the median in Canada last year—reasonable, when it keeps someone in pain and unable to work? One study puts the total cost of waiting for joint-replacement surgery after taking into account lost wages and additional tests and scans at almost $20,000. It’s no wonder that more than 323,000 Canadians left the country to seek care abroad in 2017.”

A Fraser Institute study of wait times in Canada for medically-necessary treatments underscores Pipes’ claims. According to the study, the median wait time—from general practitioner referral to treatment—across 12 medical specialties was 20.9 weeks in 2019, the second highest recorded by the Institute. If this is the case, how did Canada earn praise for its early COVID-19 response?

It’s unclear what lessons American clinical laboratories can glean from Canada’s response to COVID-19. Nevertheless, lab managers should closely watch their counterparts in other nations around the world. The coronavirus does not respect borders or care about disparities in healthcare systems.

—Andrea Downing Peck

Related Information:

The Canadian Health-Care Scare

Waiting Your Turn: Waiting Times for Healthcare in Canada, 2019 Report

Worldometers COVID-19 Coronavirus Pandemic Tracking

Canada Succeeded on Coronavirus Where America Failed. Why?

Coronavirus Test Results Are Still Delayed

U.S. Doctor in Canada: Medicare for All would Have Made America’s COVID Response Much Better

Canada’s Coronavirus Response Has Not Been Perfect. But It’s Done Far Better than the U.S.

Why It’s so Difficult to Get Tested for COVID-19 in Canada

Health Minister Says Test Result Wait Times ‘Not Acceptable’ as Ontario Confirms 25 New COVID-19 Cases

Canada Shows How Easy Virus Testing Can Be

CDC, HHS Create National Wastewater Surveillance System to Help Monitor and Track Spread of COVID-19

Though not a replacement for clinical laboratory testing, the CDC says the surveillance system will help slow spread of COVID-19 in vulnerable communities

Clinical laboratory testing for COVID-19 is receiving an ally. In mid-August, the Centers for Disease Control and Prevention (CDC) and the US Department of Health and Human Services (HHS) announced they were initiating a National Wastewater Surveillance System (NWSS) in response to the COVID-19 pandemic. 

In collaboration with other federal agencies, the NWSS will work with state, local, territorial, and tribal health departments to collect data on wastewater (aka, sewage) samples throughout the United States.

The goal of the NWSS is to detect SARS-CoV-2, the coronavirus that causes COVID-19, before it spreads by detecting traces of it in local sewer systems. The level of the virus detected in wastewater can be a leading indicator of a worsening outbreak in a community, according to a CDC statement

“Quantitative SARS-CoV-2 measurements in untreated sewage can provide information on changes in total COVID-19 infection in the community contributing to that wastewater treatment plant,” noted the CDC.

People infected with the coronavirus discard traces of it—whether they are symptomatic or asymptomatic—and levels of the virus in untreated sewage can provide scientists with information about the degree of outbreak in specific areas.

The NWSS will not include or monitor homes that use septic tanks or entities with decentralized systems that treat their own waste, such as hospitals, universities, and prisons. 

Not a Replacement for Clinical Laboratory Testing

The CDC stressed that sewage testing is not meant to replace clinical laboratory testing, but it can be a valuable tool in communities where COVID-19 tests are underutilized or unavailable. Wastewater testing, CDC noted in its statement, could have an enormous reach as 80% of households in the US are connected to a municipal sewage system. 

The CDC is not actively taking samples from wastewater, but relying on local partners to take samples, test them, and enter data into the NWSS portal for the purpose of summarizing and interpreting for public health action.

The agency predicts that participation in a national database will ensure data comparability across separate jurisdictions. 

Could Testing Raw Sewage Be More Effective than Contact Tracing for Tracking COVID-19 Outbreaks?

A Yale University study published in Nature Biotechnology, titled, “Measurement of SARS-CoV-2 RNA in Wastewater Tracks Community Infection Dynamics,” detected SARS-CoV-2 concentrations in sewage sludge in  New Haven, Conn., over a 10-week period earlier this year. The results of the study “show the utility of viral RNA monitoring in municipal wastewater for SARS-CoV-2 infection surveillance at a population-wide level,” the study authors noted.

The published study states that “SARS-CoV-2 RNA was detected throughout the more than 10-week study and, when adjusted for time lags, tracked the rise and fall of cases seen in SARS-CoV-2 clinical test results and local COVID-19 hospital admissions. Relative to these indicators, SARS-CoV-2 RNA concentrations in sludge were 0–2 [days] ahead of SARS-CoV-2 positive test results by date of specimen collection, 0–2 [days] ahead of the percentage of positive tests by date of specimen collection, 1–4 [days]  ahead of local hospital admissions and 6–8 [days] ahead of SARS-CoV-2 positive test results by reporting date.”

The Yale researchers concluded, “Our results demonstrate that measurement of SARS-CoV-2 RNA concentrations in primary sludge provides an approach to estimate changes in COVID-19 prevalence on a population level. Sludge results were not a leading indicator compared to positive test results or percentage of positive tests by date of specimen collection. However, they led hospitalizations by 1–4 [days] and test results by report date by ~1 week. Thus, in communities where test reporting is delayed, sludge results, if analyzed and reported on the same day as sampling, can provide substantial advance notice of infection dynamics.”

Jordan Peccia, Jr., PhD
Jordan Peccia, Jr., PhD (above), Professor of Chemical and Environmental Engineering at the Yale School of Engineering and Applied Science, and study author, told NBC News, “There’s still a lot more to do. We’re one of the earlier groups to have developed a robust relationship between wastewater and coronavirus cases, but this is just a first step.” He added, “It doesn’t replace contact tracing. [But] if we know a little bit ahead of time, we can raise the alarm.” (Photo copyright: Yale University.)

Sewage Testing for COVID-19 Around the World

Sewage testing can provide data to complement other collected information about COVID-19 and steer public health decision-making. However, the CDC notes that “it is not possible to reliably and accurately predict the number of infected individuals in a community based on sewage testing” and that “more data on fecal shedding by infected individuals over the course of disease are needed to better understand the limits of detection.” 

Nevertheless, some experts have leaned heavily on sewage sample testing for their conclusions about the origination of the coronavirus. In August, Dark Daily reported on a theory based on finding remnants of SARS-CoV-2 in sewage systems that suggested the virus may not have originated in Wuhan, China. Analysis of sewage samples in Italy, Spain, and Brazil indicated the virus was present in those countries before the disease was known to exist outside of China. The controversy over these findings has motivated virologists to expand wastewater testing.

The creation of the NWSS by the CDC validates growing interest in new methods of testing for infectious disease. Lower cost, faster response time, more automation of genetic sequencing, and improved analytical software has enabled this type of testing to become a useful tool. It would be wise for clinical laboratory managers to monitor the expanded use of new testing technologies for infectious diseases. 

—JP Schlingman

Related Information:

CDC to Start Surveying Nation’s Wastewater

National Wastewater Surveillance System (NWSS): A New Public Health Tool to Understand COVID-19 Spread in a Community

The CDC Wants State and Local Sewage Systems Tested for Coronavirus

CDC Developing Sewage Surveillance System for COVID-19

CDC Will Survey Wastewater for COVID-19 Spread

‘Sewer Sludge’ Detects Coronavirus Outbreaks Days Faster than Contact Tracing, Study Finds

Measurement of SARS-CoV-2 RNA in Wastewater Tracks Community Infection Dynamics

Studies Finding Remnants of SARS-CoV-2 in Sewage Suggest COVID-19 May Not Have Originated at Wuhan Market, Some Scientists Dispute the Findings

Clinical Laboratories in Hospitals Continue to Experience Reductions in Test Orders as Emergency Department Visits for Common Conditions Slowly Climb Back to Pre-Pandemic Levels

Multiple recent studies reveal a substantial number of patients continue to delay needed healthcare in the months since the onset of the SARS-CoV-2 outbreak

Based on an analysis of hospital emergency department (ED) usage, federal researchers concluded that patients continue to be cautious when visiting healthcare providers, including clinical laboratories, and that people are altering how they seek and utilize emergency care due to the COVID-19 pandemic. This not only reduces the number of typical test orders from the ER to the hospital lab, but also reduces the source of inpatient admissions.

The study, titled, “Impact of the COVID-19 Pandemic on Emergency Department Visits—United States, January 1, 2019–May 30, 2020,” found that ED visits declined 42% during the early stages of the COVID-19 pandemic. It was conducted by the federal Center for Disease Control and Prevention’s National Syndromic Surveillance Program (NSSP) and published in the CDC’s Morbidity and Mortality Weekly Report (MMWR).

Between March 29 and April 25 of this year, facilities the CDC examined recorded 1.2 million visits to EDs, compared to 2.1 million visits between March 31 and April 27 of last year. The steepest decrease in patient demographics was for individuals under the age of 14, women, and people living in the Northeast region.

The CDC’s data showed that 12% of ED visits were for children in pre-pandemic 2019, which dropped to 6% during the 2020 pandemic period. The CDC included ED visits from hospitals in 47 states (excluding Hawaii, South Dakota, and Wyoming) and captured information from approximately 73% of ED visits in the US.

Delaying Healthcare Visits Worsens Medical Conditions, Reduces Revenues

ED visits are an important referral source for inpatient admissions. Fewer patients in EDs means lost revenue for hospitals. However, one positive aspect of the waning number of ED visits is that it may be keeping patients with non-emergency situations away from emergency departments, thus reducing the overuse of costly ED visits. But healthcare professionals are concerned that individuals also may be avoiding or delaying care when needed, which could worsen medical situations and outcomes. 

“We saw people, with COVID-19 and without, coming into the ED who were very ill,” Vik Reddy, MD, Chief Medical Officer at Wellstar Kennestone Hospital and Wellstar Windy Hill Hospital in the Atlanta area, told Modern Healthcare. He noted that some patients delayed care for critical non-COVID-19 illnesses. “The good news is that we’re seeing that trend reverse this time around. It was scary in March when we knew that people weren’t coming into the ED for heart attacks.”

The NSSP’s analysis concluded that the report’s findings were subject to at least four limitations:

  • The number of hospitals reporting to NSSP changes over time as facilities are added or closed. For example, 3,173 hospitals reported data in April of 2019, while 3,467 reported data in April 2020.
  • Diagnostic categories rely on the use of specific codes, which were missing in 20% of the ED visits reported.
  • NSSP coverage is not uniform across or within all the participating states.
  • The analysis is limited only to ED visits and does not take into account patients who did not go to an ED, but instead received treatment in other healthcare environments, such as urgent care clinics. 
Map analysis of smartphone location data of hospital traffic in 2020
The graphics above are taken from a Washington Post article which reported that the newspaper’s analysis of smartphone location data of hospital traffic in 2020 showed the “drop” in hospital usage had turned into “a crash,” compared to the same two months last year, and that, “As in many other industries, those lost visits represented a widespread financial crisis for hospitals and other healthcare providers, even in places the novel coronavirus hardly touched.” (Graphics copyright: The Washington Post.)

Additional Studies Show Patients Avoiding Hospital EDs, Delaying Care

Other sources also are reporting similar findings regarding consumer attitudes towards seeking medical care during the COVID-19 pandemic. A PricewaterhouseCoopers survey released in May found that about 45% of 2,500 consumers surveyed plan to forgo their annual physical in 2020, due to the pandemic, Modern Healthcare reported.

In addition, an Optum Consumer Pulse Survey released in May found that nearly 20% of 700 surveyed individuals stated they were likely to avoid hospital EDs even if they were showing signs of a heart attack or appendicitis. Another 40% stated they were likely to avoid the ED if they had a cut that required stitches.

In “Americans Are Delaying Medical Care, and It’s Devastating Health-Care Providers,” The Washington Post analyzed hospital use during the pandemic based on smartphone tracking data. WaPo’s report found a significant drop in patients seeking in-person healthcare with many areas across the country reporting a 50% reduction in patients when compared to last year.

The article also states that almost 94 million people have delayed medical care due to the COVID-19 pandemic, and that 66 million of those individuals needed medical care unrelated to the virus but did not receive it.

These studies and others are showing a pattern. The COVID-19 pandemic has changed when and where patients access healthcare, and if the trend continues, it could have a long-term impact on clinical laboratories. Since fewer people are seeking medical care, fewer laboratory tests are being ordered and performed, which means less work and revenue for the nations’ hospital and independent clinical labs.

—JP Schlingman

Related Information:

Emergency Department Visits Continue to Lag

Impact of the COVID-19 Pandemic on Emergency Department Visits—United States, January 1, 2019-May 30, 2020

COVID-19 Caused Hospital ED Visits to Dive More than 40%

Learning from the Decrease in US Emergency Department Visits in Response to the Coronavirus Disease 2019 Pandemic

With Emergency Visits Down 42%, US Hospitals Reeling from COVID-19

Trends in Emergency Department Visits and Hospital Admissions in Health Care Systems in 5 States in the First Months of the COVID-19 Pandemic in the US

How Patients Feel About Returning to Care

Americans are Delaying Medical Care, and It’s Devastating Healthcare Providers

CMS Proposes a New Rule That Would Shift Many Procedures from High-Cost Inpatient Healthcare Settings to Lower-Cost Outpatient Ambulatory Surgical Centers

If the proposed rule becomes final, it may shift some inpatient medical laboratory testing away from hospital labs and to independent clinical laboratories

Medical laboratories in hospitals and health systems already feel the pinch of less test orders originating from their own emergency departments (ED). Now, more tests associated with inpatient care might also shift away from hospital labs due to a new proposed rule from the federal Centers for Medicaid and Medicare Services (CMS) that would move 1,740 specific procedures from inpatient care settings to outpatient ambulatory surgical centers (ACS).

Further, the proposed rule would completely phase out the “inpatient only” (IPO) list of services over a three-year transitional period, with total elimination of the IPO list by Calendar Year (CY) 2024.

If finalized as written, the rule (CMS-1736-P) would have a negative impact on the finances of hospitals laboratories as more patients get their care in outpatient settings instead of their local hospitals.

Conversely, hospital outreach labs that service ambulatory surgical centers and other outpatient settings could have an opportunity to pick up more medical laboratory test referrals.

The proposed rule, titled, “Medicare Program: Hospital Outpatient Prospective Payment and Ambulatory Surgical Center Payment Systems and Quality Reporting Programs; New Categories for Hospital Outpatient Department Prior Authorization Process; Clinical Laboratory Fee Schedule: Laboratory Date of Service Policy; Overall Hospital Quality Star Rating Methodology; and Physician-Owned Hospitals,” was published in the Federal Register on August 12, 2020, and is open for comments until 10/05/2020.

Its summary reads: “This proposed rule would revise the Medicare hospital outpatient prospective payment system (OPPS) and the Medicare ambulatory surgical center (ASC) payment system for Calendar Year (CY) 2021 based on our continuing experience with these systems.

“In this proposed rule, we describe the proposed changes to the amounts and factors used to determine the payment rates for Medicare services paid under the OPPS and those paid under the ASC payment system.

“Also, this proposed rule would update and refine the requirements for the Hospital Outpatient Quality Reporting (OQR) Program and the ASC Quality Reporting (ASCQR) Program. In addition, this proposed rule would establish and update the Overall Hospital Quality Star Rating beginning with the CY 2021; remove certain restrictions on the expansion of physician-owned hospitals that qualify as ‘high Medicaid facilities,’ and clarify that certain beds are counted toward a hospital’s baseline number of operating rooms, procedure rooms, and beds; and add two new service categories to the OPD [Outpatient Department] Prior Authorization Process.”

Moving from Highest Cost Settings to Lower Cost Settings

In the big picture, these changes can save Medicare money. By shifting procedures for Medicare patients from the highest cost settings—hospital inpatient—to lower cost settings, such as outpatient ambulatory surgical centers, and by eliminating the inpatient-only list, physicians have more leeway to determine for themselves whether a patient needs to be hospitalized for any given procedure.

In “Do Hospitals Have a Target on their Back?” healthcare coding and reimbursement consultant, Terry Fletcher, an editorial board member with ICD10monitor, wrote, “Last year, CMS proposed removing certain services from the inpatient-only list and making them available on an outpatient basis, which it said would help lower costs.

“According to the proposal, ambulatory surgical centers would get a payment increase of 2.6%, and CMS estimated total payments to them for 2021 will be about $5.45 billion, an increase of $160 million from this year,” she added.

Fewer Referrals for Inpatient Lab, More for Hospital Outreach Labs

The impact of the proposed rule is predictable—price shopping will ensue, which is what Medicare wants. Thus, with the removal of the inpatient-only procedure list, the clinical laboratories of hospitals and health systems will likely see a reduction in inpatient test orders. But clinical laboratories participating in hospital outreach programs may see an increase in test orders, as doctors transition to more outpatient procedures.

This seemingly simple shift may be more complicated than it appears, however, for both patients and labs. “In general, any routine test is going to be more expensive at a hospital,” Jean Pinder, founder and CEO of ClearHealthCosts, told Cleveland.com.

There may be other concerns as well. Convenience, insurance coverage, and physician recommendations often influence patient decisions about clinical laboratories.

Compares prices for common clinical laboratory and imaging tests charged
The chart above, taken from the article by Cleveland.com, “compares prices for common clinical laboratory and imaging tests charged by an independent lab and local hospitals. These are charges that a person would pay without insurance reimbursements. Some University Hospitals prices in the chart differ from those on its website because some prices reflect inpatient, hospital-based services. Many factors can affect [a patient’s] final out-of-pocket costs, including health insurance coverage and individual aspects of your medical treatment.” (Graphic and caption copyright: Cleveland.com.)

Change Is the Only Constant

The entire healthcare industry is undergoing change that is unlikely to end any time soon. Clinical laboratory managers who stay aware of trends in the industry and remain informed on regulatory changes, and who look for opportunities as the business landscape evolves, will have the best chance for guiding their labs to success.

That would certainly be true if CMS is able to publish a final rule that shifts a large number of procedures away from inpatient care and categorizes them as outpatient procedures.

Dava Stewart

Related Information:

CMS Proposed Rule (CMS-1736-P) Medicare Program

Do Hospitals Have a Target on their Back?

PAMA Price Reporting Update: Insights to Help Prepare to Meet the Requirement

UCSF and Stanford Researchers Investigate Why Some Infected with COVID-19 Are Asymptomatic, While Others Become Severely Ill or Die

Might clinical laboratories soon be called on to conduct mass testing to find people who show little or no symptoms even though they are infected with the coronavirus?    

Clinical laboratory managers understand that as demand for COVID-19 testing exceeds supplies, what testing is done is generally performed on symptomatic patients. And yet, it is the asymptomatic individuals—those who are shown to be infected with the SARS-CoV-2 coronavirus, but who experience no symptoms of the illness—who may hold the key to creating effective treatments and vaccinations.

So, as the COVID-19 pandemic persists, scientists are asking why some people who are infected remain asymptomatic, while others die. Why do some patients get severely ill and others do not? Researchers at the University of California San Francisco (UCSF) and Stanford University School of Medicine (Stanford Medicine) are attempting to answer these questions as they investigate viral transmission, masking, immunity, and more.

And pressure is increasing on researchers to find the answer. According to Monica Gandhi, MD, MPH, an infectious disease specialist and Professor of Medicine at UCSF, millions of people may be asymptomatic and unknowingly spreading the virus. Gandhi is also Associate Division Chief (Clinical Operations/Education) of the Division of HIV, Infectious Diseases, and Global Medicine at UCSF’s Zuckerberg San Francisco General Hospital and Trauma Center.

“If we did a mass testing campaign on 300 million Americans right now, I think the rate of asymptomatic infection would be somewhere between 50% and 80% of cases,” she told UCSF Magazine.

On a smaller scale, her statement was borne out. In a study conducted in San Francisco’s Mission District during the first six weeks of the city’s shelter-in-place order, UCSF researchers conducted SARS-CoV-2 reverse transcription-PCR and antibody (Abbott ARCHITECT IgG) testing on 3,000 people. Approximately 53% tested positive for COVID-19 but had no symptoms such as fever, cough, and muscle aches, according to data reported by Carina Marquez, MD, UCSF Assistant Professor of Medicine and co-author of the study, in The Mercury News.

While their study undergoes peer-review, the researchers published their findings on the preprint server medRxiv, titled, “SARS-CoV-2 Community Transmission During Shelter-in-Place in San Francisco.”

Pandemic Control’s Biggest Challenge: Asymptomatic People

In an editorial in the New England Journal of Medicine (NEJM), Gandhi wrote that transmission of the virus by asymptomatic people is the “Achilles heel of COVID-19 pandemic control.”

In her article, Gandhi compared SARS-CoV-2, the coronavirus that causes COVID-19, to SARS-CoV-1, the coronavirus that caused the 2003 SARS epidemic. One difference lies in how the virus sheds. In the case of SARS-CoV-2, that takes place in the upper respiratory tract, but with SARS-CoV-1, it takes place in the lower tract. In the latter, symptoms are more likely to be detected, Gandhi explained. Thus, asymptomatic carriers of the coronavirus may go undetected.

Viral loads with SARS-CoV-1, which are associated with symptom onset, peak a median of five days later than viral loads with SARS-CoV-2, which makes symptom-based detection of infection more effective in the case of SARS-CoV-1,” Gandhi wrote. “With influenza, persons with asymptomatic disease generally have lower quantitative viral loads in secretions from the upper respiratory tract than from the lower respiratory tract and a shorter duration of viral shedding than persons with symptoms, which decreases the risk of transmission from paucisymptomatic persons.”

Rick Wright of Redwood City, CA
Rick Wright (above), an insurance broker in Redwood City, Calif., was infected with the COVID-19 coronavirus while aboard a Diamond Princess Cruise. He underwent 40 days of isolation, and though he consistently tested positive for the coronavirus, he experienced no symptoms of the illness. “I never felt sick. Not a cough, wheezing, headache. Absolutely nothing,” he told Mercury News. (Photo copyright: The Mercury News.)

Stanford Studies Immune Responses in COVID-19 Patients

Meanwhile, scientists at the Stanford University School of Medicine were on their own quest to find out why COVID-19 causes severe disease in some people and mild symptoms in others.

“One of the great mysteries of COVID-19 infections has been that some people develop severe disease, while others seem to recover quickly. Now, we have some insight into why that happens,” Bali Pulendran, PhD, Stanford Professor of Pathology, Microbiology, and Immunology and Senior Author of the study in a Stanford Medicine news release.

The study, published in Science, titled, “Systems Biological Assessment of Immunity to Mild Versus Severe COVID-19 Infection in Humans,” was based on analysis of 76 patients with COVID-19 and 69 healthy people from Hong Kong and Atlanta. The researchers pointed to flailing immune systems and “three molecular suspects” in the blood of COVID-19 patients they studied.

The Stanford research suggested that three molecules—EN-RAGE, TNFSF14, and oncostatin-M—“correlated with disease and increased bacterial products in human plasma” of COVID-19 patients. 

“Our multiplex analysis of plasma cytokines revealed enhanced levels of several proinflammatory cytokines and a strong association of the inflammatory mediators EN-RAGE, TNFSF14, and OSM with clinical severity of the disease,” the scientists wrote in Science.

Pulendran hypothesized that the molecules originated in patients’ lungs, which was the infection site. 

“These findings reveal how the immune system goes awry during coronavirus infections, leading to severe disease and point to potential therapeutic targets,” Pulendran said in the news release, adding, “These three molecules and their receptors could represent attractive therapeutic targets in combating COVID-19.”

Clinical Laboratories May Do More Testing of Asymptomatic People

The research continues. In a televised news conference, President Trump said COVID-19 testing plays an important role in “preventing transmission of the virus.” Clearly this is true and learning why some people who are infected experience little or no symptoms may be key to defeating COVID-19.

Thus, as the nation reopens, clinical laboratories may want to find ways to offer COVID-19 testing beyond hospitalized symptomatic patients and people who show up at independent labs with doctors’ orders. As supplies permit, laboratory managers may want to partner with providers in their communities to identify people who are asymptomatic and appear to be well, but who may be transmitting the coronavirus. 

—Donna Marie Pocius

Related Information:

We Thought It Was Just a Respiratory Virus—We Were Wrong

Coronavirus: Why Don’t People Get Sick Despite Being Infected?

Asymptomatic Transmission, the Achilles’ Heel of Current Strategies to Control COVID-19

Study Reveals Immune System-Deviations in Severe COVID-19 Cases, a Stanford Study Shows

Why Do Some Get Sick and Others Don’t? Study May Unravel Mystery

Systems Biological Assessment of Immunity to Mild Versus Severe COVID-19 Infection in Humans

New Research Suggests Clinical Laboratory Blood Tests Could Fill A Void in Alzheimer’s Disease Diagnoses

Studies presented at the Alzheimer’s Association International Conference point to the p-tau217 protein as an especially useful biomarker

Researchers disclosed a potentially useful biomarker for Alzheimer’s Disease at a major conference this summer. The good news for clinical laboratories is that the biomarker is found in blood. If further research confirms these early findings, medical laboratories could one day have a diagnostic test for this condition.

That possibility emerged from the Alzheimer’s Association International Conference (AAIC), which was held online July 27-31. Researchers presented findings from multiple studies that suggested blood/plasma levels of a protein known as phospho-tau217 (p-tau217) can indicate brain anomalies associated with Alzheimer’s.“Changes in brain proteins amyloid and tau, and their formation into clumps known as plaques and tangles, respectively, are defining physical features of Alzheimer’s disease in the brain,” states an AAIC press release. “Buildup of tau tangles is thought to correlate closely with cognitive decline. In these newly reported results, blood/plasma levels of p-tau217, one of the forms of tau found in tangles, also seem to correlate closely with buildup of amyloid.”

At present, “there is no single diagnostic test that can determine if a person has Alzheimer’s disease,” the association states on its website. Clinicians will typically review a patient’s medical history and conduct tests to evaluate memory and other everyday thinking skills. That may help determine that an individual has dementia, but not necessarily that Alzheimer’s is the cause.

“Currently, the brain changes that occur before Alzheimer’s dementia symptoms appear can only be reliably assessed by positron-emission tomography (PET) scans, and from measuring amyloid and tau proteins in [cerebrospinal] fluid (CSF),” the association states. “These methods are expensive and invasive. And, too often, they are unavailable because they are not covered by insurance or difficult to access, or both.”

In the AAIC press release, Alzheimer’s Association Chief Science Officer Maria C. Carrillo, PhD, said that a clinical laboratory blood test “would fill an urgent need for simple, inexpensive, non-invasive and easily available diagnostic tools for Alzheimer’s.

“New testing technologies could also support drug development in many ways,” she added. “For example, by helping identify the right people for clinical trials, and by tracking the impact of therapies being tested. The possibility of early detection and being able to intervene with a treatment before significant damage to the brain from Alzheimer’s disease would be game changing for individuals, families, and our healthcare system.”

However, she cautioned, “these are early results, and we do not yet know how long it will be until these tests are available for clinical use. They need to be tested in long-term, large-scale studies, such as Alzheimer’s clinical trials.”

Eli Lilly Clinical Laboratory Alzheimer’s Test

In one study presented at the conference, titled, “Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders,” researchers evaluated an experimental p-tau217 medical laboratory test developed by Eli Lilly. They published their research in JAMA Network.

The study, led by Oskar Hansson, MD, of Lund University in Sweden, included 1,402 participants. About half of these were enrolled in BioFINDER-2, an ongoing dementia study in Sweden. In this group, researchers were most interested in the test’s ability to distinguish Alzheimer’s from other neurodegenerative disorders that cause dementia.

Diagnostic accuracy was between 89% and 98%, the researchers reported, which was similar to the performance of PET imaging and CSF tests. P-tau217 was more accurate than magnetic resonance imaging (MRI) as well as other biomarkers, such as p-tau181.

Oskar-Hansson-PhD-Lund-University-400w@72ppi
“Today the majority of individuals with Alzheimer’s disease around the world do not get a timely diagnosis, which results in suboptimal symptomatic treatment and care,” Oskar Hansson, MD, said in an Eli Lilly news release. “With rising prevalence of Alzheimer’s disease, more patients will be evaluated in primary care and other clinics where CSF and PET biomarkers are not available. Blood-based biomarkers, like plasma p-tau217, together with digital tools for checking memory performance, such as smartphone-based apps, can considerably improve the diagnostic work-up of Alzheimer’s disease patients in such clinics.” (Photo copyright: Alzheimer’s Fund.)

Another cohort consisted of 81 participants in the Brain and Body Donation Program at Banner Sun Health Research Institute in Sun City, Ariz. In this program, elderly volunteers submit to periodic clinical assessments and agree to donate their organs and tissue for study after they die.

Here, the researchers’ primary goal was to determine the test’s ability to distinguish between individuals with and without Alzheimer’s. Researchers ran the p-tau217 test on plasma samples collected within 2.9 years of death and compared the results to postmortem examinations of the brain tissue. Accuracy was 89% in individuals with amyloid plaques and tangles, and 98% in individuals with plaques and more extensive tangles.

The third cohort consisted of 622 members of a large extended family in Colombia whose members share a genetic mutation that makes them susceptible to early-onset Alzheimer’s, The New York Times reported. Among the members, 365 were carriers of the mutation. In this group, levels of plasma p-tau217 increased by age, and “a significant difference from noncarriers was seen at age 24.9 years,” the researchers wrote in Jama Network. That’s about 20 years before the median age when mild cognitive impairment typically begins to appear in carriers.

Other Alzheimer Biomarker Studies Presented at AAIC

Suzanne Schindler, MD, PhD, a neurologist and instructor in the Department of Neurology at the Washington University School of Medicine (WUSM) in St. Louis, presented results of an Alzheimer’s Disease (AD) study that used mass spectrometry to analyze amyloid and p-tau variants in blood samples collected from participants. The researchers compared these with CSF and PET results and found that some of the of p-tau isoforms, especially p-tau217, had a strong concordance.

“These findings indicate that blood plasma Aβ and p-tau measures are highly precise biomarkers of brain amyloidosis, tauopathy, and can identify stages of clinical and preclinical AD,” stated an AAIC press release on the studies.

The WUSM researches launched the effort to develop and validate Alzheimer’s blood biomarkers called the Study to Evaluate Amyloid in Blood and Imaging Related to Dementia (SEABIRD) in April 2019. It runs through August 2023 and will seek to enroll more than 1,100 participants in the St. Louis area.

Another study presented at the conference compared the performance of p-tau217 and p-tau181 in distinguishing between Alzheimer’s and Frontotemporal Lobar Degeneration (FTLD), another condition that causes dementia. Study author Elisabeth Thijssen, MSc, of the UC San Francisco Memory and Aging Center reported that both biomarkers could be useful in differential diagnosis, but that p-tau217 was “potentially superior” for predicting a tau positive PET scan result.

For decades, physicians have wanted a diagnostic test for Alzheimer’s Disease that could identify this condition early in its development. This would allow the patient and the family to make important decisions before the onset of severe symptoms. Such a clinical laboratory test would be ordered frequently and thus would be a new source of revenue for medical laboratories.

—Stephen Beale

Related Information:

How is Alzheimer’s Disease Diagnosed?

Alzheimer’s Diagnosis and Treatment

Diagnosing Alzheimer’s: How Alzheimer’s is Diagnosed

New Alzheimer’s Disease Blood Test Could Enable Early Diagnosis and Advance Understanding of How Disease Impacts Those Living with It

Lilly’s p-tau217 Blood Test Shows High Accuracy in Diagnosis of Alzheimer’s Disease in Data Published in JAMA

P-Tau217 May Detect Alzheimer Disease, Brain Amyloidosis, Tauopathy

New Blood Test Shows Great Promise in The Diagnosis of Alzheimer’s Disease

‘Amazing, Isn’t It?’ Long-Sought Blood Test for Alzheimer’s in Reach

Scientists Get Closer to Blood Test for Alzheimer’s Disease

Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders

;