News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

UK Researchers Create Analytical Algorithm That Identifies Patients with Advanced Liver Disease by Analyzing Routine Clinical Laboratory Blood Test Results

By mining results of unrelated blood tests, the CIRRUS algorithm can inform doctors and patients earlier than usual of liver disease

For years Dark Daily and its sister publication The Dark Report have predicted that the same type of analytical software used on Wall Street to analyze bundles of debt, such as car loans, mortgages, and installment loans, would eventually find application in healthcare and clinical laboratory medicine. Now, researchers at the University of Southampton in England have developed just such an analytical tool.

The UK researchers call their algorithm CIRRUS, which stands for CIRRhosis Using Standard tests. It can, they say, accurately predict if a patient has cirrhosis of the liver at a much earlier stage than usual and produce information that is clinically actionable, using results from several common, routinely-ordered medical laboratory tests.

The University of Southampton scientists published their findings in BMJ Open.

Currently, the leading edge for this in clinical laboratory medicine is analysis of digital pathology images using image analysis tools and artificial intelligence (AI). However, CIRRUS is an example that analytical software is advancing in its ability to mine data from a number of clinically-unrelated lab tests on a patient and identify a health condition that might otherwise remain unknown.

The UK researchers designed the CIRRUS algorithm using routine clinical laboratory blood tests often requested in general practice to identify individuals at risk of advanced liver disease. These tests include:

Reversing Liver Disease through Lifestyle Changes

“More than 80% of liver cirrhosis deaths are linked to alcohol or obesity and are potentially preventable,” noted Nick Sheron, MD, FRCP, Head of Population Hepatology at University of Southampton, and lead author of the study, in a press release. “However, the process of developing liver cirrhosis is silent and often completely unsuspected by GPs [general practitioners]. In 90% of these patients, the liver blood test that is performed is normal, and so liver disease is often excluded.

“This new CIRRUS algorithm can find a fingerprint for cirrhosis in the common blood tests done routinely by GPs,” he continued. “In most cases the data needed to find these patients already exists and we could give patients the information they need to change their lifestyle. Even at this late stage, if people address the cause by stopping drinking alcohol or reducing their weight, the liver can still recover.”

Mining Clinical Laboratory Blood Test Results

To perform the study, the research team analyzed data on blood test results for nearly 600,000 patients. Unlike most diagnostic liver algorithms, the CIRRUS model was created using a dataset comprised of patients from both primary and secondary care without the main intent of preselecting for liver disease. This renders it better suited for detecting liver disease outside a secondary care hepatology environment.

“Whilst we are all preoccupied with the coronavirus pandemic we must not lose sight of other potentially preventable causes of death and serious illness,” said Michael Moore, BM, BS, MRCP, FRCGP, Professor of Primary Health Care Research and Head of Academic Unit Primary Care and Population Sciences at University of Southampton, in the press release. Professor Moore co-authored the CIRRUS study.

“This test using routine blood test data available, gives us the opportunity to pick up serious liver disease earlier, which might prevent future emergency admission to hospital and serious ill health,” he said.

Cirrhosis micrograph showing scaring of liver tissue
Cirrhosis (shown above in a trichrome stained micrograph) is a condition in which the liver is scarred and permanently damaged. As the condition progresses, more scar tissue replaces healthy liver tissue. This accumulated scar tissue prevents the liver from doing its primary job of regulating chemical levels in the blood and excreting bile, a substance which helps eliminate toxins from the body and breaks down fats during digestion. As cirrhosis worsens, the liver begins to fail. (Photo copyright: Wikipedia.)

According to the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), cirrhosis is most common in adults ages 45 to 54 and about 1 in 400 adults in the US live with the disease. However, the actual number may be much higher as many people are not aware they have cirrhosis, because they do not experience symptoms until the liver is badly damaged. 

The NIDDK reports complications from cirrhosis include:

  • Portal Hypertension, a condition where scar tissue partially blocks the normal flow of blood through the liver,
  • Infections,
  • Liver Cancer,
  • Liver Failure,
  • Bone diseases, such as osteoporosis,
  • Gallstones,
  • Bile duct issues,
  • Malabsorption and malnutrition,
  • Bruising and bleeding easily,
  • Sensitivity to medicines,
  • Insulin resistance, and
  • Type 2 diabetes.

“Liver cirrhosis is a silent killer. The tests used most by GPs are not picking up the right people and too many people are dying preventable deaths. We looked at half a million anonymous records and the data we needed to run CIRRUS was already there in 96% of the people who went on to have a first liver admission,” stated Sheron in the press release. “With just a small change in the way we handle this data it should be possible to intervene in time to prevent many of these unnecessary deaths.”

“Alcohol-related liver diseases are far and away the most significant cause of alcohol-specific deaths, yet currently the vast majority of people find out that their liver is diseased way too late,” said Richard Piper, PhD, Chief Executive of Alcohol Change UK, a British charity and campaign group dedicated to reducing harm caused by alcohol abuse. “What is needed is a reliable means of alerting doctors and their patients to potential liver disease as early as possible. The CIRRUS process shows real promise, and we want to see it further developed, tested and implemented, to help save hundreds of thousands, if not millions, of lives.”

CIRRUS is a true milestone in the development of computer-assisted healthcare diagnostics. It will need more research, but the University of Southampton study shows that analytical software tools can mine clinical laboratory test results that were ordered for unrelated diagnostics and identify existing health conditions that might otherwise remain hidden to the patient’s physicians.

—JP Schlingman

Related Information:

Routine Blood Tests Could Be Key to Stopping the Silent Killer of Liver Disease

Can Routine Blood Tests be Modelled to Detect Advanced Liver Disease in the Community: Model Derivation and Validation Using UK Primary and Secondary Care Data

New Algorithm Can Predict Advanced Liver Disease

Routine Blood Tests Contain ‘Hidden Fingerprint’ Indicating Liver Cirrhosis

University of British Columbia Clinical Laboratory Proficiency Testing Program Adds COVID-19 Quality Assessments, Endows Chair

COVID-19 pandemic has brought many non-traditional medical laboratory participants into UBC’s CMPT proficiency testing program

When Canada’s British Columbia Center for Disease Control (BCCDC) saw the increasing demand for of COVID-19 tests and responsibilities headed its way, it reached out to a well-regarded proficiency testing program for help. The public health agency turned to the University of British Columbia’s (UBC) Clinical Microbiology Proficiency Testing (CMPT) Program.

Since the early 1980s, UBC’s CMPT program, led by medical microbiologist Michael Noble, MD, has provided external quality assessment (EQA) for clinical microbiology and water testing laboratories. This includes providing biological samples related to:

But COVID-19 changed everything.

“Typical of every jurisdiction in North America and probably around the world, BCCDC got swamped beyond swamped,” said Noble, the Clinical Microbiology Proficiency Testing (CMPT) program’s first and current Chair, in an exclusive interview with Dark Daily. “The increase was 10-fold, and they were unable to provide all the services they wanted to do. And since I was already running a proficiency testing program across the province, they asked if I would provide that service for COVID-19 for laboratories that were doing the testing.”

Michael Noble, MD of UBC sits in his laboratory
Michael Noble, MD (above), is Professor Emeritus (active) in UBC’s Department of Pathology and Laboratory Medicine and Chair of the Program Office for Laboratory Quality Management (POLQM). He began his career as a medical microbiologist but soon focused on laboratory quality management. Within the Department of Pathology and Laboratory Medicine, Noble co-developed the Clinical Microbiology Proficiency Testing (CMPT) program in 1983, a program he still chairs but will soon pass on to a new leader. (Photo copyright: University of British Columbia.)

CMPT’s Proficiency Testing Serves Labs Worldwide

UBC’s CMPT external quality assessment (EQA) program serves all medical laboratories in British Columbia, as well as other labs in Canada, Europe, South America, and the Caribbean. Just over 200 laboratories currently participate in the program. More labs participated in past years, before lab consolidation affected CMPT and other programs as well, Noble said.

CMPT’s proficiency testing ensures that participant laboratories that have been provided with simulated samples can perform tests at the “level of quality and competence required,” notes UBC’s CMPT website.

“Samples are complex, highly realistic, and clinically relevant. CMPT samples contain host elements as well as targeted pathogens,” Noble explained on his blog, “Making Medical Laboratory Quality Relevant.”

COVID-19 Brings Non-Traditional ‘Laboratories’ to CMPT’s Proficiency Testing Program

UBC’s proficiency testing for SARS-CoV-2, the coronavirus that causes the COVID-19 infection, differs from other CMPT programs. That’s due to new participants that entered the laboratory testing program during the COVID-19 pandemic that are performing COVID-19 testing in non-traditional locations, Noble stated.

“In our proficiency programs, we had mainly been dealing with traditional clinical laboratories,” Noble explained. “But now, we find people doing COVID-19 testing—even though defined as medical laboratories—who are working in airports, or in tourism, or the movie industry, or forestry. They may never have worked in an actual clinical laboratory. So, it’s a very different style of proficiency testing. There has been a lot of handholding, teleconferences, discussions, and one-on-ones with that group,” Noble said.

UBC’s COVID-19 Proficiency Testing Program for PCR and rapid antigen tests recently began serving public and private facilities. Three samples per shipment are being released by UBC every two months.

Participant laboratories receive viral material that “simulates typical samples.” They need to demonstrate proficiency by performing the test and reporting it as positive, negative, or inconclusive.

“Our product is derived from a pure culture of a single strain of SARS-CoV-2, and it appears to be effective for all targets,” Noble stated.

Detecting COVID-19 by Gargling and Rinsing

UBC’s program typically offers simulated sampling for detection of SARS-CoV-2 in nasopharyngeal swabs. However, the BC Center for Disease Control’s (BCCDC) mouth rinse and gargle sample collection for diagnosis of COVID-19 also is available and widely used in Canada, Noble said.

In fact, a Vancouver-based study published in the Journal of Clinical Microbiology, titled, “Self-Collected Saline Gargle Samples as an Alternative to Health Care Worker-Collected Nasopharyngeal Swabs for COVID-19 Diagnosis in Outpatients,” found mouth rinse testing just as effective as nose swab samples in detection of the novel coronavirus, the Vancouver Sun reported.

Qualitology is Imperative to Medical Laboratories

In his career, Noble transitioned from medical microbiology to qualitology, which he describes as “the study of quality in the medical laboratory.”

In stressing the importance of laboratory quality testing, Noble describes the possibility of laboratory testing going awry and leading to a microbiological public health emergency.

“What happens if there’s a stool sample, and someone misses the presence of Campylobacteriosis in the stool? What happens if that’s part of a foodborne disease and there’s an outbreak in the city and samples are being missed? How many people will be impacted as a result of that error?” he asked.

University of British Columbia Endows a Chair for Laboratory Quality Management

Noble says UBC’s Program Office for Laboratory Quality Management (POLQM) has involved organizations worldwide and certified more than 500 people.

“The impact they have over their laboratories has been huge. Maybe that would have happened without us. But we were a part of that. And our impact is not one laboratory or one city or one province but widespread, and that’s a real and enriching experience to have,” he said.

But now it is time for him to move on. Noble secured (through UBC), a benefactor to establish the endowed Chair for Laboratory Quality Management. The family of the late Donald B. Rix, MD, a Canadian pathologist and philanthropist, gave $1.5 million (matched by the university) to create the Associate Professor (Grant Tenure) Donald B. Rix Professorship in Laboratory Quality at UBC, Department of Pathology and Laboratory Medicine.

Long-serving pathologists and medical laboratory professionals may remember that Rix was the founder and chair of MDS Metro Laboratory Services (now known as LifeLabs Medical Laboratory Services). It grew into the largest private medical laboratory in Western Canada.

Referring to this endowed new Chair for Laboratory Quality Management, Noble said, “I think this is the first named position of laboratory quality in North America.” UBC has commenced reviewing applications for the position, which is expected to be effective in January 2022. Pathologists and clinical laboratory scientists with appropriate qualifications and interest in this position should contact Dr. Noble’s office at the University of British Columbia Faculty of Medicine.

—Donna Marie Pocius

Related Information:

Clinical Microbiology Proficiency Testing Program 2020

Self-Collected Saline Gargle Samples as an Alternative to Healthcare Worker-Collected Nasopharyngeal Swabs for COVID-19 Diagnosis in Outpatients

COVID-19 Mouth Rinse Test Gets Same Results as Nose Swab: BC StudyClinical Laboratory Scientist in British Columbia Gets Recognition for Identifying the Province’s First Case of COVID-19

Virginia Commonwealth University Scientists Combine dPCR and High-Speed Microscopic Imaging to Reduce Cost of Diagnosing Cancers

VCU scientists used the technique to measure mutations associated with acute myeloid leukemia, potentially offering an attractive alternative to DNA sequencing

More accurate but less-costly cancer diagnostics are the Holy Grail of cancer research. Now, research scientists at Virginia Commonwealth University (VCU) say they have developed a clinical laboratory diagnostic technique that could be far cheaper and more capable than standard DNA sequencing in diagnosing some diseases. Their method combines digital polymerase chain reaction (dPCR) technology with high-speed atomic force microscopy (HS-AFM) to generate nanoscale-resolution images of DNA.

The technique allows the researchers to measure polymorphisms—variations in gene lengths—that are associated with many cancers and neurological diseases. The VCU scientists say the new technique costs less than $1 to scan each dPCR reaction.

The researchers used the technique to measure and quantify polymorphisms associated with mutations in the FLT3 gene. Cancer researchers have linked these mutations, known as internal tandem duplications (ITDs), to a poor prognosis of acute myeloid leukemia (AML) and a more aggressive form of the disease, Nature Leukemia noted in “Targeting FLT3 Mutations in AML: Review of Current Knowledge and Evidence.”

“We chose to focus on FLT3 mutations because they are difficult to [diagnose], and the standard assay is limited in capability,” said physicist Jason Reed, PhD, Assistant Professor in the Virginia Commonwealth University Department of Physics, in a VCU press release.

Reed is an expert in nanotechnology as it relates to biology and medicine. He led a team that included other researchers in VCU’s physics department as well as physicians from VCU Massey Cancer Center and the Department of Internal Medicine at VCU School of Medicine.

Jason Reed, PhD with Andrey Mikheikin, PhD, on left and Sean Koebley, PhD, on right in a press release from Virginia Commonwealth University (VCU)
“The technology needed to detect DNA sequence rearrangements is expensive and limited in availability, yet medicine increasingly relies on the information it provides to accurately diagnose and treat cancers and many other diseases,” said Jason Reed, PhD (above center, with Andrey Mikheikin, PhD, on left and Sean Koebley, PhD, on right), in a press release from Virginia Commonwealth University (VCU). “We’ve developed a system that combines a routine laboratory process with an inexpensive yet powerful atomic microscope that provides many benefits over standard DNA sequencing for this application, at a fraction of the cost.” (Photo copyright: Virginia Commonwealth University.)

Validating the Clinical Laboratory Test

The physicists worked with two VCU physicians—hematologist/oncologist Amir Toor, MD, and hematopathologist Alden Chesney, MD—to compare the imaging technique to the LeukoStrat CDx FLT3 Mutation Assay, which they described as the “current gold standard test” for diagnosing FLT3 gene mutations.

The researchers said their technique matched the results of the LeukoStrat test in diagnosing the mutations. But unlike that test, the new technique also can measure variant allele frequency (VAL). This “can show whether the mutation is inherited and allows the detection of mutations that could potentially be missed by the current test,” states the VCU press release.

The VCU researchers published their findings in ACS Nano, a journal of the American Chemical Society (ACS), titled, “Digital Polymerase Chain Reaction Paired with High-Speed Atomic Force Microscopy for Quantitation and Length Analysis of DNA Length Polymorphisms.” They also presented their findings at the annual meetings of the Association of Molecular Pathology (AMP) and American Society of Hematology (ASH).

“We plan to continue developing and testing this technology in other diseases involving DNA structural mutations,” Reed said. “We hope it can be a powerful and cost-effective tool for doctors around the world treating cancer and other devastating diseases driven by DNA mutations.”

How the New Diagnostic Technique Works

Sean Koebley, PhD, Postdoctoral Fellow at Virginia Commonwealth University and another member of the VCU research team, described the new diagnostic technique in a video produced for the ASH and AMP meetings.

“In our approach we first used digital PCR, in which a mixed sample is diluted to less than one target molecule per aliquot and the aliquots are amplified to yield homogeneous populations of amplicons,” he said. “Then, we deposited each population onto an atomically-flat partitioned surface.”

The VCU researchers “scanned each partition with high-speed atomic force microscopy, in which an extremely sharp tip is rastered across the surface, returning a 3D map of the surface with nanoscale resolution,” he said. “We wrote code that traced the length of each imaged DNA molecule, and the distribution of lengths was used to determine whether the aliquot was a wild type [unmutated] or variant.”

In Diagnostics World, Reed said the method “doesn’t really have any more complexity than a PCR assay itself. It can easily be done by most lab technicians.”

Earlier Research

A VCU press release from 2017 noted that Reed’s research team had developed technology that uses optical lasers (similar to those in a DVD player) to accelerate the scanning. The researchers previously published a study about the technique in Nature Communications, and a patent is currently pending.

“DNA sequencing is a powerful tool, but it is still quite expensive and has several technological and functional limitations that make it difficult to map large areas of the genome efficiently and accurately,” Reed said in the 2017 VCU press release. “Our approach bridges the gap between DNA sequencing and other physical mapping techniques that lack resolution. It can be used as a stand-alone method or it can complement DNA sequencing by reducing complexity and error when piecing together the small bits of genome analyzed during the sequencing process.”

Using CRISPR technology, the team also developed what they described as a “chemical barcoding solution,” placing markers on DNA molecules to identify genetic mutations.

New DNA Clinical Laboratory Testing?

Cancer diagnostics are constantly evolving and improving. It is not clear how long it will be before VCU’s new technique will reach clinical laboratories that perform DNA testing, if at all. But VCU’s new technique is intriguing, and should it prove viable for clinical diagnostic use it could revolutionize cancer diagnosis. It is a development worth watching.

—Stephen Beale

Related Information:

VCU Technology Could Upend DNA Sequencing for Diagnosing Certain DNA Mutations

A Team Led by a VCU Physicist Has Developed a Revolutionary Imaging Technique to Map DNA Mutations

Low-Cost Approach to Detecting DNA Rearrangement Mutations

Targeting FLT3 Mutations in AML: Review of Current Knowledge and Evidence

System, Method, Computer-Accessible Medium and Apparatus for DNA Mapping

Digital Polymerase Chain Reaction Paired with High-Speed Atomic Force Microscopy for Quantitation and Length Analysis of DNA Length Polymorphisms

Internal Tandem Duplications of the FLT3 Gene Are Present in Leukemia Stem Cells

Consumer Genetic Testing Company 23andMe to Merge with Sir Richard Branson’s VG Acquisition Corp. and Go Public

The merger is expected to boost investment in 23andMe’s consumer health and therapeutics businesses

After years of spectacular growth, the popularity of direct-to-consumer (DTC) genetic testing is beginning to wane. Nevertheless, opportunities still exist in the DTC genetic testing market for visionaries with funds to invest.

One such visionary is billionaire Richard Branson, founder of the multinational venture capital conglomerate Virgin Group (VG). Branson’s VG Acquisition Corp. (NYSE:VGAC), a special purpose acquisition company (SPAC), announced it is merging with 23andMe of Sunnyvale, Calif., to create a publicly-traded company with the New York Stock Exchange ticker symbol ME.  

In a VG press release, Branson states his reason for the merger. “Of the hundreds of companies we reviewed for our SPAC, 23andMe stands head and shoulders above the rest,” he said. “As an early investor, I have seen 23andMe develop into a company with enormous growth potential. Driven by [CEO Anne Wojcicki’s] vision to empower consumers, and with our support, I’m excited to see 23andMe make a positive difference to many more people’s lives.”

According to a 23andMe press release, the deal values the company at approximately $3.5 billion and will net the consumer genetics and research company as much as $759 million in additional cash. Wojcicki and Branson each invested $25 million themselves as part of the $250 million fund to take the company public.

CEO Anne Wojcicki headshot
“As a fellow industry disruptor as well as an early investor in 23andMe, we are thrilled to partner with Sir Richard Branson and VG Acquisition Corp. as we approach the next phase of our business, which will create new opportunities to revolutionize personalized healthcare and medicine,” 23andMe co-founder and CEO Anne Wojcicki (above) said in the press release. “We have always believed that healthcare needs to be driven by the consumer, and we have a huge opportunity to help personalize the entire experience at scale, allowing individuals to be more proactive about their health and wellness. Through a genetics-based approach, we fundamentally believe we can transform the continuum of healthcare.” (Photo copyright: Inc. magazine.)

Participation in Research Key to Future of DTC Genetics Testing

Though DTC genetic testing kit sales have slowed in recent years for both 23andMe and rival Ancestry, Wojcicki believes the company’s database of 10 million customers—with 80% of customers agreeing to participate in research—is the key to its future.

“We have always seen health as a much bigger opportunity” than genealogy, Wojcicki told The Wall Street Journal (WSJ).

According to the WSJ, 23andMe customers fill out more than 30,000 surveys each day on health and related issues. With that information, the company has determined its database includes 1.7 million people with high cholesterol, nearly 1.6 million with depression and 539,000 with Type 2 diabetes, information that is highly valued by medical researchers and those running clinical trials.

Personalizing Healthcare through DTC Genetic Testing

Wojcicki expects the merger will propel the consumer DNA-testing company into personalized medicine and therapeutics. “We have always believed that healthcare needs to be driven by the consumer, and we have a huge opportunity to help personalize the entire experience at scale, allowing individuals to be more proactive about their health and wellness,” Wojcicki said in a statement. “Through a genetics-based approach, we fundamentally believe we can transform the continuum of healthcare.”

In August 2020, the US Food and Drug Administration “granted 23andMe a 510(k) clearance for a pharmacogenetics report on two medications—Clopidogrel, prescribed for certain heart conditions, and Citalopram, which is prescribed for depression,” 23andMe announced in a blog post.

“This impactful pharmacogenetics information can now be delivered without the need for confirmatory testing, a testament to the clinical validity of 23andMe results,” said Kathy Hibbs, 23andMe Chief Legal and Regulatory Officer, in the blog post. “23andMe remains the only company with direct-to-consumer pharmacogenetic reports cleared by the FDA.”

23andMe’s trove of genetic data already has netted it a partnership with GlaxoSmithKline (GSK). According to a GSK press release, in 2018, the two companies signed a four-year research and development agreement. The collaboration targets novel medicines and potential cures using human genetics as the basis for discovery.

COVID-19 Boosts 23andMe’s Sales

During a joint interview with Branson in Bloomberg News about the merger, Wojcicki said, “COVID-19 has really opened up doors.” Now more than ever, she said, people are interested in preventative healthcare. “I’ve had this dream since 2003 that genetics would revolutionize healthcare and that’s really the era I see we can now usher in,” she added.

As 23andMe pushes further into personalized therapeutics, clinical laboratories and pathology groups would be wise to watch and see if this new entrant accelerates healthcare’s shift to the precision medicine model of personalized care.

—Andrea Downing Peck

Related Information:

23andMe to Merge with Virgin Group’s VG Acquisition Corp. to Become Publicly Traded Company Set to Revolutionize Personalized Healthcare and Therapeutic Development through Human Genetics

23andMe Go Public with Richard Branson Backed SPAC

GSK and 23andMe Sign Agreement to Leverage Genetic Insights for the Development of Novel Medicines

23andMe Lays Off 100 People, CEO Anne Wojcicki Explains Why

FDA Grants 23andMe Clearance to Offer Interpretive Drug Information for Two Medications

Fears over DNA Privacy as 23andMe Plans to Go Public in Deal with Richard Branson

23andMe to Go Public as $2.5 Billion Company via Branson Merger

Common DNA Testing Method Using SNP Chips Struggles to Find Rare Variants Associated with BRCA Test, UK Researchers Find

Results of the UK study confirm for clinical laboratory professionals the importance of fully understanding the design and function of SNP chips they may be using in their labs

Here is another example of a long-established clinical laboratory test that—upon new evidence—turns out to be not as accurate as once thought. According to research conducted at the University of Exeter in Devon, UK, Single-nucleotide polymorphism (SNP) chips (aka, SNP microarrays)—technology commonly used in commercial genetic testing—is inadequate at detecting rare gene variants that can increase breast cancer risk.  

A news release announcing the results of the large-scale study states, “A technology that is widely used by commercial genetic testing companies is ‘extremely unreliable’ in detecting very rare variants, meaning results suggesting individuals carry rare disease-causing genetic variants are usually wrong.”

Why is this a significant finding for clinical laboratories? Because medical laboratories performing genetic tests that use SNP chips should be aware that rare genetic variants—which are clinically relevant to a patient’s case—may not be detected and/or reported by the tests they are running.

UK Researchers Find ‘Shockingly High False Positives’

The objective of the Exeter study published in British Medical Journal (BMJ), titled, “Use of SNP Chips to Detect Rare Pathogenic Variants: Retrospective, Population Based Diagnostic Evaluation,” was “To determine whether the sensitivity and specificity of SNP chips are adequate for detecting rare pathogenic variants in a clinically unselected population.”

The conclusion reached by the Exeter researchers, the BMJ study states, is that “SNP chips are extremely unreliable for genotyping very rare pathogenic variants and should not be used to guide health decisions without validation.”  

Leigh Jackson, PhD, Lecturer in Genomic Medicine at University of Exeter and co-author of the BMJ study, said in the news release, “The number of false positives on rare genetic variants produced by SNP chips was shockingly high. To be clear: a very rare, disease-causing variant detected using [an] SNP chip is more likely to be wrong than right.” 

Caroline Wright, PhD, Professor in Genomic Medicine at the University of Exeter Medical School
In the news release, Caroline Wright, PhD (above), Professor in Genomic Medicine at the University of Exeter Medical School and senior author of the BMJ study, said, “SNP chips are fantastic at detecting common genetic variants, yet we have to recognize that tests that perform well in one scenario are not necessarily applicable to others.” She added, “We’ve confirmed that SNP chips are extremely poor at detecting very rare disease-causing genetic variants, often giving false positive results that can have profound clinical impact. These false results had been used to schedule invasive medical procedures that were both unnecessary and unwarranted.” (Photo copyright: University of Exeter.)

Large-Scale Study Taps UK Biobank Data

The Exeter researchers were concerned about cases of unnecessary invasive medical procedures being scheduled by women after learning of rare genetic variations in BRCA1 (breast cancer type 1) and BRCA2 (breast cancer 2) tests.

“The inherent technical limitation of SNP chips for correctly detecting rare genetic variants is further exacerbated when the variants themselves are linked to very rare diseases. As with any diagnostic test, the positive predictive value for low prevalence conditions will necessarily be low in most individuals. For pathogenic BRCA variants in the UK Biobank, the SNP chips had an extremely low positive predictive value (1-17%) when compared with sequencing. Were these results to be fed back to individuals, the clinical implications would be profound. Women with a positive BRCA result face a lifetime of additional screening and potentially prophylactic surgery that is unwarranted in the case of a false positive result,” they wrote.

Using UK Biobank data from 49,908 participants (55% were female), the researchers compared next-generation sequencing (NGS) to SNP chip genotyping. They found that SNP chips—which test genetic variation at hundreds-of-thousands of specific locations across the genome—performed well when compared to NGS for common variants, such as those related to type 2 diabetes and ancestry assessment, the study noted.

“Because SNP chips are such a widely used and high-performing assay for common genetic variants, we were also surprised that the differing performance of SNP chips for detecting rare variants was not well appreciated in the wider research or medical communities. Luckily, we had recently received both SNP chip and genome-wide DNA sequencing data on 50,000 individuals through the UK Biobank—a population cohort of adult volunteers from across the UK. This large dataset allowed us to systematically investigate the performance of SNP chips across millions of genetic variants with a wide range of frequencies, down to those present in fewer than 1 in 50,000 individuals,” wrote Wright and Associate Professor of Bioinformatics and Human Genetics at Exeter, Michael Weedon, PhD, in a BMJ blog post.

The Exeter researchers also analyzed data from a small group of people in the Personal Genome Project who had both SNP genotyping and sequencing information available. They focused their analysis on rare pathogenic variants in BRCA1 and BRCA2 genes.

The researchers found:

  • The rarer the variant, the less reliable the test result. For example, for “very rare variants” in less than one in 100,000 people, 84% found by SNP chips were false positives.
  • Low positive predictive values of about 16% for very rare variants in the UK Biobank.
  • Nearly all (20 of 21) customers of commercial genetic testing had at least one false positive rare disease-causing variant incorrectly genotyped.
  • SNP chips detect common genetic variants “extremely well.”

Advantages and Capabilities of SNP Chips

Compared to next-gen genetic sequencing, SNP chips are less costly. The chips use “grids of hundreds of thousands of beads that react to specific gene variants by glowing in different colors,” New Scientist explained.

Common variants of BRCA1 and BRCA2 can be found using SNP chips with 99% accuracy, New Scientist reported based on study data.

However, when the task is to find thousands of rare variants in BRCA1 and BRCA2 genes, SNP chips do not fare so well.

“It is just not the right technology for the job when it comes to rare variants. They’re excellent for the common variants that are present in lots of people. But the rarer the variant is, the less likely they are to be able to correctly detect it,” Wright told CNN.

SNP chips can’t detect all variants because they struggle to cluster needed data, the Exeter researchers explained.

“SNP chips perform poorly for genotyping rare genetic variants owing to their reliance on data clustering. Clustering data from multiple individuals with similar genotypes works very well when variants are common,” the researchers wrote. “Clustering becomes more difficult as the number of people with a particular genotype decreases.”

Clinical laboratories Using SNP Chips

The researchers at Exeter unveiled important information that pathologists and medical laboratory professionals will want to understand and monitor. Cancer patients with rare genetic variants may not be diagnosed accurately because SNP chips were not designed to identify specific genetic variants. Those patients may need additional testing to validate diagnoses and prevent harm.

—Donna Marie Pocius

Related Information:

Large-scale Study Finds Genetic Testing Technology Falsely Detects Very Rare Variants

Use of SNP Chips to Detect Rare Pathogenic Variants: Retrospective, Population-Based Diagnostic Evaluation

The Home DNA Kits “Falsely Warning of High Risk of Cancer”: DIY Genetic Tests are “Extremely Unreliable” at Detecting Rare Genetic Variants, Major New Study Warns

SNP Chips Perform Poorly for Detecting Rare Genetic Variants

Chip-based DNA Testing Wrong More than Right for Very Rare Variants

Common Genetic Tests Often Wrong When Identifying Rare Disease-Causing Variants Such as BRCA1and BRCA2, Study Says

Apple’s $10 Million Grant Helps COPAN Diagnostics Increase Production of COVID-19 Sample Collection and Transport Products by 4,000%

This is one more example of how Silicon Valley companies are lining up collaborations with in vitro diagnostics companies to gain a foothold in the clinical laboratory marketplace

For years, Apple, Google, and other Silicon Valley companies have taken progressive steps to become more engaged in healthcare. One recent example of a Silicon Valley company willing to invest in clinical laboratory testing came last year in the form of a $10 million grant Apple (NASDAQ:AAPL) made to COPAN Diagnostics of Murrieta, Calif., to increase the speed and production of the company’s COVID-19 sample collection and transport products.

The interesting aspect of this collaboration was that Apple’s primary role was to help COPAN:

  • streamline workflow and speed of throughput,
  • help with the incoming supply chain, and
  • help develop outgoing supply chain solutions—along with some capital investment.

From the start of the pandemic in the winter of 2020, SARS-CoV-2 sample collection kits were one of many items that were in short supply here in the United States. To help address those shortfalls, teams at Apple, COPAN, and multiple other companies across the US worked to improve the work processes, automation, and machinery COPAN uses in its manufacturing and production sites. This collaboration increased production by nearly 4,000%  between April 2020 and February 2021, an Apple news release reported.

Jeff Williams  Apple’s Chief Operating Officer in a blue shirt on a stage
In the news release, Jeff Williams (above), Apple’s Chief Operating Officer, said, “We are proud our Advanced Manufacturing Fund is supporting companies like COPAN who are playing a critical role in the fight against COVID-19 and assisting healthcare professionals and communities across the country. This collaboration helped produce, ship, and deliver millions of sample collection kits to hospitals from coast to coast—and we believe it is this unique combination of American manufacturing and innovation that will help us emerge from this crisis and build a safer world for us all.” (Photo copyright: Apple Insider.)

Healthcare Has Long Been a Target for Big Tech

Investment in different sectors of the US healthcare system by one of the Big Tech companies is not unusual. Apple, Google, Amazon, and Microsoft have looked for ways to expand their respective footholds in the healthcare marketplace for years.

In “How the ‘Big 4’ Tech Companies Are Leading Healthcare Innovation”—published a full year before the COVID-19 pandemic began—Healthcare Weekly noted that, “At a high level, each of the ‘Big 4’ tech companies are leveraging their own core business strengths to reinvent healthcare by developing and collaborating on new tools for patients, care providers, and insurers that will position them for healthcare domination.”

In 2017, Apple announced the launch of the Advanced Manufacturing Fund, saying that the $1 billion fund was a way to give back to communities through job creation. “By doing that, we can be the ripple in the pond. Because if we can create many manufacturing jobs around, those manufacturing jobs create more jobs around them because you have a service industry that builds up around them,” Apple’s CEO Tim Cook told CNBC at that time.

In 2018, Apple boosted the fund from $1 billion to $5 billion, the Mac Observer reported.

Apple’s $10 million investment enabled COPAN Diagnostics to expand into a new facility as well as hire 250 new employees. “We are proud our Advanced Manufacturing Fund is supporting companies like COPAN who are playing a critical role in the fight against COVID-19 and assisting healthcare professionals and communities across the country,” Williams said in the news release.

COPAN and the On-Going Need for COVID-19 Test Kits

COPAN Diagnostics was founded in 1979 in Mantua, Italy, and is now a global force in the manufacture of many sample collection and transport products such as instruments, automation, swabs, pipettes, and, of course, SARS-CoV-2 sample collection and transport kits. At the time of Apple’s investment, COPAN was producing sample collection and transport products at its Murrieta, Calif., facility. But demand for these products far outweighed the supply.

In an interview, Norman Sharples, CEO of COPAN Diagnostics and head of operations for North and South America, said he was hoping to increase production in the earliest days of the pandemic when Jeff Williams, COO at Apple, contacted him regarding the Advanced Manufacturing Fund. Along with the $10 million grant, Williams offered experts in engineering and sourcing to help COPAN increase production, the San Diego Union-Tribune reported.

The result was a new manufacturing facility in Carlsbad, Calif., which increased COPAN’S production of its sample collection and transport products used in SARS-CoV-2 testing by nearly 4,000%.

“From taking the keys to the building to actually getting the California department for public inspection, which allows us to go live and sell the product, that was just over 30 days, which is an incredible campaign that Apple helped us with,” Sharples told the San Diego Union-Tribune, adding, “It wasn’t just the funding. It was [the experts from Apple] applying their know-how and expertise to tilt this up very fast.”

Even as COVID-19 vaccines roll out, demand for SARS-CoV-2 tests—along with the necessary specimen collection and transport supplies—will likely continue. As the economy reopens, workers return to offices, and students return to in-person schools, precautionary screening for COVID-19 will remain necessary. “I think demand is going to flatten a little bit, but in any case, the baseline is going to be high because of surveillance,” Sharples said. “The back-to-work programs will drive more surveillance.”

Pandemic Increases Big Tech’s Dominance in Healthcare

Where many businesses and entire industries struggled with the pandemic, Big Tech apparently did not. In late October 2020, CBS News reported, “America’s largest technology companies are thriving despite the economy’s woes, according to earnings posted by Google-parent Alphabet, Amazon, Apple, Facebook, and Twitter on Thursday.”

Along with growing profits, Big Tech companies also consolidated their dominance. “As the pandemic made us even more dependent on digital technology, it has made the systemic importance and enormous power of the tech giants even more apparent,” according to an article in SciencesPo, titled, “Is the COVID-19 Pandemic a Victory for Big Tech?

Might Big Tech Investments Target Clinical Laboratory Testing?

There’s no reason to believe that the big technology companies will slow their investment in healthcare anytime soon, and that investment may benefit clinical laboratories. In fact, in “11 Recent Big Tech Partnerships in Healthcare,” Becker’s Hospital Review listed several technology companies that will likely affect pathology laboratories.

Big Tech investment in genetic testing, artificial intelligence, telehealth, and other technologies may alter how clinical laboratories operate and revolutionize the healthcare industry. 

—Dava Stewart

Related Information:

Apple’s Advanced Manufacturing Fund Helps COPAN Diagnostics Ship Millions of COVID-19 Test Kits

Apple Awards $10 Million from Advanced Manufacturing Fund to COPAN Diagnostics

Apple Helps Develop COVID-19 Test Kits; Boosted Output by 4,000%

How the “Big 4” Tech Companies Are Leading Healthcare Innovation

Apple Just Promised to Give US Manufacturing a $1 Billion Boost

With Apple’s Help, COPAN Diagnostics Ships Millions of COVID Sample Collection

Kits from New Carlsbad Factory

Big Tech Companies, Fully Recovered from Pandemic, Report Record Earnings

Is the COVID-19 Pandemic a Victory for Big Tech?

11 Recent Big Tech Partnerships in Healthcare

;