News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Sarasota Memorial Health Care Implements Specimen Processing Automation in Its Microbiology Laboratory During Early Days of the COVID-19 Pandemic

While working to increase turn-around-times for STAT tests, Florida’s first coronavirus patient arrived, requiring SMH’s clinical laboratory team to adapt its plans

Despite the COVID-19 pandemic, the clinical laboratory team at 839-bed Sarasota Memorial Hospital, part of the Sarasota Memorial Health Care System (SMH) in Sarasota, Fla., not only implemented a new automated microbiology system, it also installed a new mass spectrometry analyzer, along with new instruments to support large volumes of SARS-CoV-2 testing.

How SMH’s microbiology laboratory team accomplished this while shelter-in-place directives in Florida caused many patients to stop visiting emergency departments and physicians’ offices—and as hospitals and medical laboratory facilities restricted access to staff and essential personnel—provides useful lessons for pathologists and clinical laboratory managers.

Bad Timing for a Pandemic

“The early weeks of the pandemic hit just as we were beginning the phased installation of our COPAN WASPLab microbiology automation this summer,” said Harold Vore, MS, MT(ASCP), Director of Laboratory Services at SMH, in an exclusive interview with Dark Daily’s sister publication, The Dark Report (TDR), for an article titled, “Sarasota Hospital Lab Reduces Number of Hemolyzed Specimens: Lean Improvement Project Saves $3.5 Million.”

“Florida reported its first positive SARS-CoV-2 infection on March 2, marking the beginning of an outbreak that continues today,” he noted, adding, “This created the need to support the hospital in identifying infected patients in Sarasota County by having the microbiology lab acquire and set up more instruments. Also, the micro lab needed space for a new mass spectrometry analyzer to speed up pathogen identification this year.

In the same TDR interview, Olevia Fulkert, Microbiology Technical Supervisor at SMH said the microbiology lab had to reconfigure its layout to be prepared for the new COPAN system. “Our team had to arrange space for these new instruments, while protecting the space needed for the microbiology automation.”

WASPLab
“The WASPLab (above) literally went right into the middle of the busiest area of our lab,” said SMH’s Director of Laboratory Services, Harold Vore, MS, MT. “That’s the room we call COVID central, because that’s where we process all SARS-CoV-2 specimens.” SMH’s medical laboratory team began this implementation in the early months of the COVID-19 pandemic and relied on Lean processes to accomplish its goals. (Photo copyright: Sarasota Memorial Health Care System.)

Return of the ‘Snowbirds’

In August, SMH’s microbiology laboratory staff was busy validating the WASPLab instruments so the lab would be ready to process patient specimens when Florida’s snowbirds—out-of-state residents who arrive for the winter—return to Sarasota.

Vore knew several elements would be required for SMH’s microbiology automation project to succeed:

  • He had to assure the microbiology lab’s staff that adding automation would not cause any loss of jobs.
  • Timing of the implementation was critical, because lab test volume rises in the winter when tourists and part-time residents return.
  • Lean methods would be important because lab staff was familiar with them and they would help the vendor to arrange the physical layout and workflow to optimize productivity, reduce errors, and decrease turnaround times.
  • Vore needed documentation that showed automating the microbiology lab met and exceeded the return-on-investment projections he and his lab team used to persuade health system administrators of its value.

According to Vore, to date the installation has gone smoothly. “The staff in the microbiology lab has been phenomenal,” he commented. “They have continued to do what they always do, while at the same time we’re installing this large new system right in their midst.

“And they did not complain. In fact, they were eager to make progress in improving production,” he continued. “That attitude is common among our laboratory staff, because we saw the same thing happen when we automated our core lab.”

Increasing Microbiology Lab Capacity without Increasing Staff

Vore estimates automation will expand SMH’s microbiology laboratory capacity by up to 40%. “We measure that 40% in terms of the number of plates our techs can read per day with the WASPLab versus how we did it manually with our existing staff,” he explained. “We may still need to increase some staff. But even without adding staff, we thought we could move the peg further down the road in terms of throughput and improve our turnaround time too.

“We cannot make bacteria grow any faster and yet our specimen volume continues to increase,” he noted. “That makes automating microbiology the right strategy. Also, if we hadn’t automated the core lab starting in 2015, we might not have been able to handle the increased volume that we saw last year and this year’s additional surge in COVID-19 tests.”

How Lean Helped with the Implementation

Workflow in microbiology has traditionally been mostly manual. Therefore, combining Lean and automation can generate substantial benefits for a lab. “By definition, the design of the WASPLab is Lean,” Vore explained. “By that I mean the person who touches each specimen the least wins. That’s why the WASPLab is designed the way it is. Once we load a specimen in the front end, theoretically, no one needs to touch those plates until the testing is complete.”

“That’s the ideal we’re trying to reach,” he added. “At the moment, we still need to pull the plates to, as we say, ‘pick them.’ But we just introduced a way to improve that part of the process.

Adding Mass Spectrometry

“Along with the microbiology automation, we now read specimens digitally and we tell the machine to take a certain plate off so we can spot it,” Vore continued. “To speed up that process, we got some additional funding and bought a mass spec analyzer that uses MALDI-TOF to identify pathogens. Now we get the boost from the WASPLab, and we also use mass spec to cut six hours off our first read,” Vore added.

“The WASPLab and the mass spec give us higher quality incubation and better harvest of pathogens. Once we spot the plate, the mass spec can identify the pathogen in about two minutes,” he said.

“After going live with the mass spectrometry in August, we’ve made huge progress versus the normal process, where we would plate the specimen manually under a hood and then put the specimen in the incubator and pull it out to read 24 hours later,” he said.

“That whole step-by-step process to identify the pathogen could take 48 hours,” he continued. “But now we can move to a 24-hour, seven-day-a-week operation, where we can do first-in-first-out of pathogens in about 18 hours. That cuts six hours off the time to do the first plate read. Then we can spot it and get a result from the mass spec in two minutes. The impact for patient care can be tremendous.

“In a recent case, for example, we had to identify a specimen from an infant and used the mass spec to identify salmonella in two minutes,” Vore noted. “Normally that would take at least a day or more. That’s what I mean about making tremendous impact on patient care by using automation in microbiology.”

Clearly, this would be a challenging project for any medical laboratory to complete during the best of times, let alone during the early months of the COVID-19 pandemic. But through determination, the use of Lean, and a positive approach, SMH’s microbiology lab team implemented the first WASPLab in the state of Florida. And it will improve SMH’s ability to care for patients for years to come.

—Joe Burns

Related Information:

Sarasota Hospital Lab Reduces Number of Hemolyzed Specimens

Using Lean-Six Sigma to Reduce Hemolysis in the Emergency Care Center in a Collaborative Quality Improvement Project with the Hospital Laboratory

How We Reduced Hemolyzed Specimens Throughout Our Hospital and What We Do to Sustain Those Gains

Sarasota Memorial Hospital Laboratory Techs Talk Automation

Mount Sinai Researchers Find That Antibodies Produced in Response to COVID-19 May Provide Long-term Immunity Against the Coronavirus

ELISA tests at Icahn School of Medicine contradict earlier studies which found that antibodies developed to combat the SARS-CoV-2 coronavirus are short-lived

Medical laboratories at the forefront of the COVID-19 pandemic will be intrigued to learn that antibodies produced by the body to combat the coronavirus infection may actually provide long-term immunity, contrary to previous studies that found otherwise.

A recent study from the Icahn School of Medicine at Mount Sinai found that the protection may be more robust than previously believed. This may surprise many clinical laboratory scientists and clinical pathologists. Since the outbreak of the pandemic, multiple studies have been published with conflicting findings about the strength of the immune response to SARS-CoV-2 and the length of immunity provided after an infection.

In a Mount Sinai news release, however, Florian Krammer, PhD, microbiologist and Professor of Vaccinology in the Department of Microbiology at the Icahn School of Medicine at Mount Sinai, and a senior author of the paper, said, “While some reports have come out saying antibodies to this virus go away quickly, we have found just the opposite—that more than 90% of people who were mildly or moderately ill produce an antibody response strong enough to neutralize the virus, and the response is maintained for many months.”

The researchers published the findings of their study—which was based on an internally-developed antibody test—in Science.

The study concludes, “Although this cannot provide conclusive evidence that these antibody responses protect from reinfection, we believe it is very likely that they will decrease the odds ratio of reinfection and may attenuate disease in the case of breakthrough infection. We believe it is imperative to swiftly perform studies to investigate and establish a correlate of protection from infection with SARS-CoV-2.”

Florian Krammer, PhD
Florian Krammer, PhD (above), runs the Krammer Laboratory in the Department of Microbiology at the Icahn School of Medicine at Mount Sinai in New York. He noted that the longevity and neutralizing effects of antibody response are “critically important to enabling us to effectively monitor seroprevalence in communities, and to determining the duration and levels of antibody that protect us from reinfection.” Antibody response, he added, is also “essential for effective vaccine development.” (Photo copyright: Icahn School of Medicine at Mount Sinai.)

Details of the Icahn School of Medicine Study

The study arose from an effort by Mount Sinai to identify potential donors for a convalescent plasma therapy program. Beginning in late March, the health system used an enzyme-linked immunosorbent assay (ELISA) to screen thousands of individuals for presence of antibodies to the spike protein in the SARS-CoV-2 virus. The virus uses the spike protein to bind to a receptor in host cells, the researchers noted, making it “the main, and potentially only target for neutralizing antibodies.”

Screened patients either had confirmed cases of COVID-19, as determined by a polymerase chain reaction (PCR) test, or suspected cases, “defined as being told by a physician that symptoms may be related to SARS-CoV-2 or exposure to someone with confirmed SARS-CoV-2 infection,” the researchers wrote. The Mount Sinai health system also offered the test to employees.

Samples from each person were diluted in five discrete titers (concentrations) ranging from 1:80 to 1:2880, and each was tested for detectable presence of the antibodies. This allowed the researchers to categorize the samples as low, moderate, or high:

  • Low titers: 1:80 or 1:160
  • Moderate titers: 1:320
  • High titers: 1:960 or >1:2880

Between the start of the program and early October, the health system screened 72,401 people, of whom 30,082 tested positive for at least the lowest levels of antibodies. Among those who tested positive, a large majority fell into the moderate or high categories:

  • 1:80: 690 (2.29%)
  • 1:160: 1453 (4.83%)
  • 1:320: 6765 (22.49%)
  • 1:960: 9564 (31.79%)
  • 1:2880: 11610 (38.60%)

The researchers also wanted to see whether the antibodies offered actual protection against the virus. So, they selected 120 samples and ran a quantitative microneutralization assay. In the lowest of the three categories, 50% of the samples showed neutralizing activity. That rose to 90% in the moderate category and 100% in the high category.

Finally, to determine how long protection might last, the researchers recalled 121 plasma donors for additional tests at two different points during the study. The researchers reported a slight drop in antibody levels about three months after onset of symptoms, and then a larger drop after five months. But antibodies were still present in most samples.

“It is still unclear if infection with SARS-CoV-2 in humans protects from reinfection and for how long,” the researchers wrote. “We know from work with common human coronaviruses that neutralizing antibodies are induced, and these antibodies can last for years and provide protection from reinfection or attenuate disease, even if individuals get reinfected.”

Previous ‘Conflicting’ Research

As previously noted, other studies raised doubts about the longevity of the antibodies produced by the body’s immune system. For example, the Mount Sinai researchers cited a study from China published in Nature Medicine that looked at the immune responses of 37 symptomatic patients and an equal number of asymptomatic individuals with laboratory-confirmed cases of the COVID-19 disease. In the latter group, 40% had no detectable levels of IgG antibodies after eight weeks.

The study also found a decrease in neutralizing antibodies in 30 of the asymptomatic individuals (81.1%) and 23 of the symptomatic individuals (62.2%) over the same period.

However, the Mount Sinai researchers pointed out that the antibody test in the Chinese study targeted a different protein. “The same paper also reported relatively stable (slightly declining) neutralizing antibody titers, which shows much higher concordance with our present findings,” they wrote. “Thus, the stability of the antibody response over time may also depend on the target antigen.”

A different study from England saw a 26% decline in antibodies over three months, CNN reported. That study, conducted by Imperial College London and Ipsos MORI, a market research firm, was based on responses from more than 365,000 randomly selected people who had self-administered a lateral flow antibody test.

But the seemingly conflicting studies from New York and the UK may not be contradictory, CNN reported. “People’s bodies produce an army of immune compounds in response to an infection and some are overwhelming at first, dying off quickly, while others build up more slowly. Measurements that show a waning antibody response in the first months after infection might be measuring this first wave—but there’s a second team building its forces in the background.”

In the same CNN report, Ania Wajnberg, MD, Director of Clinical Antibody Testing at Mount Sinai Hospital and co-author of the Icahn Mount Sinai study, said, “The serum antibody titer we measured in individuals initially were likely produced by plasmablasts—cells that act as first responders to an invading virus and come together to produce initial bouts of antibodies whose strength soon wanes.”

She added, “The sustained antibody levels that we subsequently observed are likely produced by long-lived plasma cells in the bone marrow. This is similar to what we see in other viruses and likely means they are here to stay. We will continue to follow this group over time to see if these levels remain stable as we suspect and hope they will.”

Does this mean that most people who get infected with the COVID-19 coronavirus will retain an immunity to the disease? Maybe. In the Icahn Mount Sanai study, Florian Kramer wrote, “More than 90% of people who were mildly or moderately ill produce an antibody response strong enough to neutralize the virus, and the response is maintained for many months.”

Thus, clinical laboratories engaged in serological testing may be asked to perform follow-up antibody tests to see if we do indeed create long-term immunity to COVID-19. Further, pathologists and medical laboratory scientists will want to follow future studies published in peer-reviewed journals to see if the findings of the Mount Sinai study are replicated at other sites.

—Stephen Beale

Related Information:

Most People Mount a Strong Antibody Response to SARS-CoV-2 That Does Not Decline Rapidly

Robust Neutralizing Antibodies to SARS-CoV-2 Infection Persist for Months

In Study of 30,000 Mild-To-Moderate COVID-19 Patients, Antibody Responses Can Persist for Five Months

Immunity to Coronavirus Lingers for Months, Study Finds

British Study Shows Evidence of Waning Immunity to COVID-19

Costco Begins Selling an At-Home Self-Collection COVID-19 Test Kit; One of 12 Kits That Have Received FDA Emergency Use Authorization

It’s the latest example of how the ongoing SARS-CoV-2 pandemic is making it possible for new competitors to enter the clinical laboratory marketplace

In response to increasing demand for COVID-19 testing, warehouse retailer Costco (NASDAQ:COST) is seizing the opportunity to sell at-home saliva self-collection test kits to its customers. It makes Costco the latest company to enter the market for SARS-CoV-2 testing and compete against clinical laboratories.

And these non-invasive tests—which are as simple as spitting saliva into a container and mailing it to a medical laboratory—may be more effective at detecting the SARS-CoV-2 coronavirus than uncomfortable nasal swabs. 

Costco is selling its COVID-19 Saliva PCR Test Kit for $129.99 ($139.99 with video observation). Included in the price is a self-collection device, a biohazard bag, a sticker for personal data, and a box for shipping the saliva to a medical laboratory.

The test is actually P23 Labs’ TaqPath SARS-CoV-2 assay and will be administered by Azova, a digital health services provider. P23 says their test has a 98% sensitivity and 99% specificity, according to Business Insider.

The Costco P23 test kit  from Thermo Fisher Scientific
The Costco P23 test kit above, “uses parts from Thermo Fisher Scientific and works with collection kits made by testing companies Everlywell and OraSure Technologies, according to the FDA and a P23 spokesperson,” Business Insider reported. “Samples are tested in [P23’s] lab in Little Rock, Arkansas.” (Photo copyright: Costco.)

Saliva-Collection Kits Gain Popularity and FDA Emergency Use Authorizations

P23 Labs’ assay is one of 12 COVID-19 home tests that have received US Food and Drug Administration (FDA) Emergency Use Authorization (EUA). Three of which use saliva specimens.

The FDA’s EUA authorization summary for the P23 assay states it is “for use with saliva specimens that are self-collected at home or in a healthcare setting with or without the supervision and/or assistance of [a healthcare provider (HCP)], by individuals using the P23 At-Home COVID-19 Test Collection Kit, when determined to be appropriate by an HCP based on the results of a COVID-19 medical questionnaire. This test is also for use with nasal swab specimens that are self-collected at home or in a healthcare setting with or without the supervision and/or assistance of an HCP by individuals.”

In a news release announcing the first diagnostic test using saliva specimens, oncologist and FDA Commissioner Stephen Hahn, MD, said that “Authorizing additional diagnostic tests with the option of at-home sample collection will continue to increase patient access to testing for COVID-19. This (saliva sample collection) provides an additional option for the easy, safe, and convenient collection of samples required for testing without traveling to a doctor’s office, hospital, or testing site.” That test was manufactured by Clinical Genomics laboratory of Rutgers New Jersey Medical School.

Below is a list from Business Insider for at-home self-collection SARS-CoV-2 coronavirus tests that have received an FDA EUA. Most can be ordered online, and prices range from $109 to $149, which may be covered by insurance depending on the health plan.

Saliva coronavirus home tests:

Nasal swab coronavirus home tests:

Yale Study Indicates Saliva Tests Have Greater Detection Sensitivity over Swab

Should consumers choose COVID-19 saliva tests over nasal cavity swab tests? Maybe.

A study led by the Yale School of Public Health found and “conducted at Yale New Haven Hospital with 44 inpatients and 98 health care workers—found that saliva samples taken from just inside the mouth provided greater detection sensitivity and consistency throughout the course of an infection than the broadly recommended nasopharyngeal (NP) approach. The study also concluded that there was less variability in results with the self-sample collection of saliva,” states a Yale University news release.

In, “Saliva Is More Sensitive for SARS-CoV-2 Detection in COVID-19 Patients than Nasopharyngeal Swabs,” published on the preprint server medRxiv, Yale researchers also noted a saliva test—as compared to a test using a nasal swab—is less invasive and more likely to be reliably self-administered. However, they remain cautious about jumping to saliva as a specimen versus nasal swabs.

Anne Wyllie, PhD
Anne Wyllie, PhD, Associate Research Scientist at Yale School of Public Health, told Time magazine, “Saliva itself is a newer diagnostic method, and a lot of people don’t know how to work with it, are scared to work with it, or not sure how to work with it. Just because a protocol is working with swabs doesn’t mean the same protocol will work with saliva.” Nevertheless, public demand for less invasive COVID-19 testing means clinical laboratories may soon be receiving more requests for processing saliva over nasal swabs. (Photo copyright: Yale University.)

Yale received FDA EUA for SalivaDirect, a real-time quantitative polymerase chain reaction (RT-qPCR) for detection of SARS-CoV-2. However, SalivaDirect is not an “at-home” test. It requires saliva samples to be self-collected into a sterile container in the presence of a healthcare professional, and is being provided by Yale to clinical laboratories as an “open source” protocol, the FDA said in a news release.

“We are trying to work with smaller local labs that want to get up and running to support schools, community groups, universities, and colleges,” Wyllie told Time.

In “Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2,” published in the New England Journal of Medicine (NEJM), Wyllie and others suggest saliva can be just as effective in detecting the coronavirus that causes COVID-19. In their study, COVID-19 patients who were tested by healthcare workers using nasopharyngeal swabs were then asked to collect their own saliva samples.

The researchers found that “Collection of saliva samples by patients themselves negates the need for direct interaction between healthcare workers and patients. This interaction is a source of major testing bottlenecks and presents a risk of nosocomial infection. Collection of saliva samples by patients themselves also alleviates demands for supplies of swabs and personal protective equipment. Given the growing need for testing, our findings provide support for the potential of saliva specimens in the diagnosis of SARS-CoV-2 infection.”

The Yale scientists used primer sequences identified by the Centers for Disease Control and Prevention to detect the coronavirus. They found more SARS-CoV-2 RNA in saliva specimens than in the nasopharyngeal swab specimens. Also, 81% of saliva samples were positive one to five days after diagnosis, as compared to 71% of the nasopharyngeal swab specimens. 

“The findings suggest saliva specimens and nasopharyngeal swab specimens have at least similar sensitivity in the detection of SARS-CoV-2 during the course of hospitalization,” the researchers wrote in their NEJM paper.

The increasing popularity of at-home COVID-19 testing—along with studies showing that results improve when specimens are self-collected—suggest that medical laboratory managers should closely monitor the rise of COVID-19 home tests, as well as progress being made in saliva for diagnosing the SARS-CoV-2 coronavirus.

Further, it might be a smart strategy for clinical laboratories with the capability to perform this testing to approach retailers in their region and establish relationships where retailers sell the collection kits, and the lab performs the test and reports the results.

Since patients pay cash for the SARS-CoV-2 tests at the time they purchase the kits, clinical labs are guaranteed payment for the tests without the need to submit claims to consumers’ insurance companies. That’s another benefit to these types of arrangements.

—Donna Marie Pocius

Related Information:

Costco Sells At-Home COVID-19 Tests Using Saliva Samples

EUA for the P23 Labs TaqPath SARS-CoV—2 Assay

FDA Authorizes First Diagnostics Test Using Home Collection Saliva

There are 12 Coronavirus Tests You Can from Home: How They Work and How to Get One

Saliva Samples Preferable to Deep Nasal Swabs Testing for COVID-19

Saliva is More Sensitive for SARS-CoV-2 Detection in COVID-19 Patients Than Nasopharyngeal Swabs

FDA Issues Emergency Use Authorization Yale School of Public Health

COVID-19 Saliva Spit Test

Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2

Travel Restrictions Spur Four US Airlines to Get Into COVID-19 Testing, But Will Clinical Laboratories Get this Testing Business?

United Airlines creates pilot program for on-site rapid PCR tests, as other airlines facilitate at-home specimen collection for rapid coronavirus testing

Four US airlines attempting to recover lost business due to the COVID-19 pandemic are partnering with developers of rapid RT-PCR (reverse transcription polymerase chain reaction) tests to facilitate testing of passengers either at airports before they board their flights, at drive-through testing sites, or at-home in advance of scheduled travel.

This would be a great opportunity for clinical laboratories to gain business, but few details are known about how these airlines are selecting providers for the COVID-19 tests that will be part of their programs.

The deals come amid calls from the International Air Transport Association (IATA) “for the development and deployment of rapid, accurate, affordable, easy-to-operate, scalable and systematic COVID-19 testing for all passengers before departure as an alternative to quarantine measures” in many countries, states an IATA press release.

“The key to restoring the freedom of mobility across borders is systematic COVID-19 testing of all travelers before departure,” said Alexandre de Juniac, IATA Director General and CEO, in the IATA press release. “This will give governments the confidence to open their borders without complicated risk models that see constant changes in the rules imposed on travel.”

From a clinical laboratory testing perspective, the requirement for passengers to be tested prior to travel may contribute to two changes in the lab testing marketplace:

  • Consumers may become accustomed to buying home collection kits for COVID-19 and sending specimens to clinical laboratories. This could have the added benefit of helping consumers become comfortable doing this for other diagnostic tests as well.
  • Pursuit of profit from manufacturing COVID-19 tests that utilize consumer-collected specimens may increase competition in this market and would likely increase the number of at-home specimen collection products that are easier and more convenient to use.

US carriers offering the COVID-19 tests include United Airlines, American Airlines, Hawaiian Airlines, and JetBlue.

United Airlines

United is providing on-site testing through pilot programs at San Francisco International Airport (SFO) and Newark Liberty International Airport (EWR). At SFO, passengers are tested before taking flights to Hawaii. At EWR, they are tested prior to boarding a thrice-weekly flight to London Heathrow.

“We believe the ability to provide fast, same-day COVID-19 testing will play a vital role in safely reopening travel around the world and navigating quarantines and travel restrictions, particularly to key international destinations like London,” said Toby Enqvist, United’s Chief Customer Officer, in a press release.

United began offering testing at SFO on Oct. 15. According to “COVID-19 Testing for United Travelers,” the San Francisco to Hawaii passengers have two options:

  • A $105 drive-through test administered two or three days prior to flights by Color, a San Francisco Bay area health technology company.

The airline says a negative test ensures that travelers can bypass Hawaii’s mandatory quarantine requirements in Lihue, Maui, and Honolulu. For the Newark-to-London flights, United plans to run a pilot rapid testing program from Nov. 16 to Dec. 11. for passengers boarding Flight 14, departing at 7:15 p.m. Mondays, Wednesdays, and Fridays. Premise Health will administer the testing, which will be free to passengers. Those who choose not to be tested will be placed on other flights.

American Airlines testing passengers for COVID-19
A United Airlines flight attendant (above) receives an RT-PCR test for COVID-19 prior to boarding. If the flying public embraces preflight coronavirus testing, including at-home specimen collection kits, clinical laboratories may see a spike in requests for test processing. (Photo copyright: The Washington Post.)

American Airlines

American is offering COVID-19 testing for passengers scheduled on flights to Hawaii, Latin America, and the Caribbean, according to a press release. For the most part, these are at-home specimen collection RT-PCR tests provided by healthcare testing services company PrivaPath Diagnostics, Inc. (d.b.a., LetsGetChecked). Customers receive their results within 24 to 72 hours after the lab receives the samples.

On flights from Dallas Fort Worth International Airport to Hawaii and Costa Rica, passengers have the option of on-site rapid testing at the airport or in-person testing at CareNow urgent care facilities in North Texas.

As with the United flights to Hawaii, the testing program allows passengers to bypass quarantine requirements at their destinations. Customers pay $119 for the LetsGetChecked at-home specimen-collection kit and subsequent RT-PCR testing.

“Our initial preflight testing has performed remarkably well, including terrific customer feedback about the ease and availability of testing options,” American Airlines President Robert Isom said in the press release.

Hawaiian Airlines and JetBlue

In separate press releases, Hawaiian Airlines and JetBlue announced partnerships with Vault Health to offer at-home saliva tests to passengers. After receiving the at-home specimen collection kit, customers can connect through Zoom video conferencing with a Vault Health supervisor who ensures the sample is collected properly.

Hawaiian Airlines also offers drive-through testing at SFO and Los Angeles International Airport through a partnership with Worksite Labs. Passengers pay $90 to receive test results within 36 hours or $150 for express service on the day of travel. Worksite uses a Droplet Digital PCR shallow nasal swab test. The airline says it plans to expand this to other airports.

The Vault Health and Worksite Labs tests meet the state’s guidelines for exemption from the 14-day quarantine requirement, the airlines say.

Impact on Medical Laboratories

Airlines offering COVID-19 testing to their passengers may trigger both an opportunity and a change in the clinical laboratory testing marketplace. First, there is a business opportunity for labs to provide rapid molecular SARS-COV-2 tests to airlines.

Second, if consumers begin using at-home specimen collection kits in greater numbers as part of their air travel requirements, might this make them more comfortable doing self-collection for other types of clinical laboratory tests? A shift in consumer willingness to collect their own medical laboratory specimens—accompanied by ongoing innovations in diagnostic technologies, may eventually reduce the need for medical labs to operate extensive networks of patient service centers.

Of course, such a scenario is years away. But airline COVID-19 testing programs are just one of the progressive steps that can help make that possibility into a reality.

—Stephen Beale

Related Information:

These U.S. Airlines Are Offering Pre-Flight Covid-19 Testing—for a Price

United Airlines Launches World’s First Free Transatlantic COVID-19 Testing Pilot

American Airlines Takes First Steps to Open International Markets to Travel with Preflight COVID-19 Testing

American Airlines Adds Costa Rica to Preflight COVID-19 Testing Program

McKinsey and Company Says the COVID-19 Pandemic is Accelerating Six Critical Trends in Healthcare, at Least One Which Would Benefit Anatomic Pathologists

Clinical laboratory and pathology groups that support ambulatory and virtual care, and urgent care and retail clinics may experience growth

Global management consulting company McKinsey and Company’s report, “The Great Acceleration In Healthcare: Six Trends to Heed,” identifies six trends in healthcare that are accelerating due to the global COVID-19 pandemic.

Clinical laboratory managers and pathology practice administrators should consider how these trends may affect their business and patients when planning for the future.

The McKinsey graphic six trends that are likely to shape post-COVID-19 healthcare
The McKinsey graphic above illustrates the “six trends that are likely to shape post-COVID-19 healthcare.” Clinical laboratories that support health networks struggling with any of these challenges should take steps to prepare for anticipated changes to healthcare delivery. (Graphic copyright: McKinsey and Company.)

1: Healthcare Reform

McKinsey identified three areas where the coronavirus pandemic may impact healthcare reform:

  • “COVID-19-era waivers that could become permanent.
  • “Actions that may be taken to strengthen the healthcare system to deal with pandemics.
  • “Reforms to address the COVID-19-induced crisis.”

McKinsey reports that “the Centers for Medicare and Medicaid Services has introduced more than 190 waivers since the beginning of March 2020.” These waivers can affect all aspects of healthcare, from clinical practice to reimbursement. Some of them, according to McKinsey, are “only relevant during the crisis (for example, the waiver of intensive care unit death reporting). A retrospective assessment of others (for example, expansion of telehealth access) could reveal beneficial innovation worth preserving.”

Several areas that McKinsey says are clearly ripe for reform include improving the resiliency of the healthcare system and the way the system is funded.

Public sector budgets are generally kept strictly separate, each with its own rules and policies that dictate operations. But in his article, “After COVID-19—Thinking Differently About Running the Health Care System,” published in JAMA Health Network, Stuart M. Butler, PhD, Senior Fellow in Economic Studies at the Brookings Institution, wrote, “The intensity of the COVID-19 pandemic … is forcing jurisdictions all across the country to find ways to be nimble so that multiple agencies can work together.”

Thus, McKinsey recommends, “Given the substantial shifts in relative market positioning among industry players that prior reforms have created, leaders would do well to plan ahead now.”

2: Better Access to Healthcare Services

Some people who develop COVID-19 are at far greater risk of hospitalization and death than others, including those who have:

  • Chronic health conditions, including obesity.
  • Mental and behavioral health challenges, such as substance abuse.
  • Unmet social needs, such as food or housing insecurity.
  • Poor access to healthcare.

McKinsey wrote that these “intersecting health and social conditions,” combined with certain races that have higher risk for severe complications, including Black, Indian, and Hispanic/Latino Americans, “correlated with poorer health outcomes.”

Value-based healthcare, telehealth, and greater attention to the social determinants of health may help address some of these issues, McKinsey notes, but the pandemic has shined a spotlight on how lack of care increases risk for certain populations during a public health crisis.

3: Era of Exponential Improvement Unleashed

Some of the trends that appear to be accelerating as a result of the pandemic are good news. McKinsey cites several benefits, including:

  • Improved understanding of patients.
  • Delivery of more convenient and individualized care.
  • $350-$410 billion in annual revenue by 2025.

Through telehealth and other types of virtual care enabled by digital technology, “intuitive healthcare ecosystems” may arise and offer a more integrated experience for patients and their caregivers, McKinsey notes.

“While the pace of change in healthcare has lagged other industries in the past, potential for rapid improvement may accelerate due to COVID-19. An example is the exponential uptake of digitally enabled, virtual care,” McKinsey wrote. “Our analysis … showed that health systems, primary care, and behavioral health practices are reporting increases of more than 50–175 times in telehealth visits, and the potential market size for virtual care could reach around $250 billion.”

McKinsey and Co. report digital enabled virtual care graph
The graphic above is taken from the McKinsey and Co. report, which noted, “Proliferation of digitally enabled, virtual care could further contribute to the rise of personalized and intuitive healthcare ecosystems [that] have the potential to deliver an integrated experience to consumers, enhance productivity of providers, engage both formal and informal caregivers, and improve outcomes while lowering cost.” (Graphic copyright: McKinsey and Company.)

4: The Big Squeeze

The pandemic has caused an enormous outflow of cash from the healthcare system, and some experts don’t expect an injection of funding until 2022. “This outflow is expected to be primarily driven by coverage shifts out of employer-sponsored insurance and possible coverage reductions by employers as well as Medicaid rate pressures from states,” McKinsey states.

“We estimate that COVID-19 could depress healthcare industry earnings by between $35 billion and $75 billion compared with baseline expectations,” McKinsey predicted, adding, “Select high-growth segments will remain attractive (for example, virtual care, home health, software and platforms, specialty pharmacy) and will disproportionally drive growth. These high-growth areas are expected to increase more than 10% over the next five years, while other segments may stagnate or decline altogether.”

5: Fragmented, Integrated, Consolidated Care Delivery

McKinsey says, “The shift of care out of hospitals is not new but has been accelerated by COVID-19.” Rather than the hospital being the center of care delivery, patients are increasingly choosing to receive care at a range of sites across many healthcare ecosystems that are connected digitally and through analytics.

Early in the course of the pandemic, visits to ambulatory care facilities dropped nearly 60% by early April. But by mid-May, those visits were beginning to rebound.

In, “The Impact of the COVID-19 Pandemic on Outpatient Visits: A Rebound Emerges,” the Commonwealth Fund reported that “the relative decline in visits remains largest among surgical and procedural specialties and pediatrics” but is “smaller in other specialties, such as adult primary care and behavioral health.”

virtual care and outpatient options show more potential revenue growth through 2022 graph
The McKinsey graphic above shows how “virtual care and outpatient options show more potential revenue growth through 2022.” Clinical laboratories that support those healthcare settings, especially ambulatory surgery, behavioral health, and retail clinics, should experience similar growth. (Graphic copyright: McKinsey and Company.)

6: Adoption of Next-Generation Managed Care Is Accelerating

How will COVID-19 affect the managed care industry? McKinsey says the “next generation” of managed care might use Medicare Advantage as a model.

“Payers pursuing the next generation of managed care model (through deep integration with care delivery) demonstrate better financial performance, capturing an additional 50 basis points of earnings before interest, taxes, depreciation, and amortization above expectation,” McKinsey noted, adding, “Employers and payers could consider fundamentally rethinking how employer-sponsored health coverage is structured. Learning from Medicare Advantage could provide inspiration for such a reimagination.”

What Should Clinical Laboratory Managers Do?

The McKinsey article concludes by stating, “While the challenges are numerous, leaders who seize the mindset that “disruptive change provides an opportunity to separate yourself from the pack” will build organizations meaningfully stronger than the ones they ran going into the crisis.”

The McKinsey article authors recommend that healthcare organizations take several proactive steps, including:

  • Launch a plan-ahead team.
  • Question your role and your future business model.
  • Prepare to transform your business.
  • Reimagine your organization to make faster decisions.
  • Take action to drive health equity.

Though the McKinsey and Company article covered healthcare in general, many of the authors’ observations and recommendations can apply to clinical laboratories and pathology groups as well and may be valuable in future planning.

—Dava Stewart

Related Information:

The Great Acceleration in Healthcare: 6 Trends to Heed:

After COVID-19—Thinking Differently About Running the Health Care System:

The Next Wave of Healthcare Innovation: The Evolution of Ecosystems

The Impact of the COVID-19 Pandemic on Outpatient Visits: A Rebound Emerges

As Primary Care Providers and Health Insurers Embrace Telehealth, How Will Clinical Laboratories Provide Medical Lab Testing Services?

Three Federal Agencies Warn Healthcare Providers of Pending Ransomware Attacks; Clinical Laboratories Advised to Assess Their Cyberdefenses

Sophisticated cyberattacks have already hit hospitals and healthcare networks in Oregon, California, New York, Vermont, and other states

Attention medical laboratory managers and pathology group administrators: It’s time to ramp up your cyberdefenses. The FBI, the federal Department of Health and Human Services (HHS), and the federal Cybersecurity and Infrastructure Security Agency (CISA) issued a joint advisory (AA20-302A) warning US hospitals, clinical laboratories, and other healthcare providers to prepare for impending ransomware attacks, in which cybercriminals use malware, known as ransomware, to encrypt files on victims’ computers and demand payment to restore access.

The joint advisory, titled, “Ransomware Activity Targeting the Healthcare and Public Health Sector,” states, “CISA, FBI, and HHS have credible information of an increased and imminent cybercrime threat to US hospitals and healthcare providers.” It includes technical details about the threat—which uses a type of ransomware known as Ryuk—and suggests best practices for preventing and handling attacks.

In his KrebsOnSecurity blog post, titled, “FBI, DHS, HHS Warn of Imminent, Credible Ransomware Threat Against U.S. Hospitals,” former Washington Post reporter, Brian Krebs, wrote, “On Monday, Oct. 26, KrebsOnSecurity began following up on a tip from a reliable source that an aggressive Russian cybercriminal gang known for deploying ransomware was preparing to disrupt information technology systems at hundreds of hospitals, clinics, and medical care facilities across the United States. Today, officials from the FBI and the US Department of Homeland Security hastily assembled a conference call with healthcare industry executives warning about an ‘imminent cybercrime threat to US hospitals and healthcare providers.’”

Krebs went on to reported that the threat is linked to a notorious cybercriminal gang known as UNC1878, which planned to launch the attacks against 400 healthcare facilities.

Clinical Labs, Pathology Groups at Risk Because of the Patient Data They Keep

Hackers initially gain access to organizations’ computer systems through phishing campaigns, in which users receive emails “that contain either links to malicious websites that host the malware or attachments with the malware,” the advisory states. Krebs noted that the attacks are “often unique to each victim, including everything from the Microsoft Windows executable files that get dropped on the infected hosts to the so-called ‘command and control’ servers used to transmit data between and among compromised systems.”

Charles Carmakal, SVP and Chief Technology Officer of cybersecurity firm Mandiant told Reuters, “UNC1878 is one of the most brazen, heartless, and disruptive threat actors I’ve observed over my career,” adding, “Multiple hospitals have already been significantly impacted by Ryuk ransomware and their networks have been taken offline.”

John Riggi (above), senior cybersecurity adviser to the American Hospital Association (AHA), told the AP, “We are most concerned with ransomware attacks which have the potential to disrupt patient care operations and risk patient safety. We believe any cyberattack against any hospital or health system is a threat-to-life crime and should be responded to and pursued as such by the government.” Hospital-based medical laboratories and independent clinical laboratories that interface with hospital networks should be assess their vulnerability to cyberattacks and take appropriate steps to protect their patients’ data. (Photo copyright: American Hospital Association.)

Multiple Healthcare Provider Networks Under Attack

Hospitals in Oregon, California, and New York have already been hit by the attacks, Reuters reported. “We can still watch vitals and getting imaging done, but all results are being communicated via paper only,” a doctor at one facility told Reuters, which reported that “staff could see historic records but not update those files.”

Some of the hospitals that have reportedly experienced cyberattacks include:

In October, the Associated Press (AP) reported that a recent cyberattack disrupted computer systems at six hospitals in the University of Vermont (UVM) Health Network. The FBI would not comment on whether that attack involved ransomware, however, it forced the UVM Medical Center to shut down its computer system and reschedule elective procedures.

Threat intelligence analyst Allan Liska of US cybersecurity firm Recorded Future told Reuters, “This appears to have been a coordinated attack designed to disrupt hospitals specifically all around the country.”

He added, “While multiple ransomware attacks against healthcare providers each week have been commonplace, this is the first time we have seen six hospitals targeted in the same day by the same ransomware actor.”

An earlier ransomware attack in September targeted 250 healthcare facilities operated by Universal Health Services Inc. (UHS). A clinician at one facility reported “a high-anxiety scramble” where “medical staff could not easily see clinical laboratory results, imaging scans, medication lists, and other critical pieces of information doctors rely on to make decisions,” AP reported.

Outside of the US, a similar ransomware attack in October at a hospital in Düsseldorf, Germany, prompted a homicide investigation by German authorities after the death of a patient being transferred to another facility was linked to the attack, the BBC reported.

CISA, FBI, HHS, Advise Against Paying Ransoms

To deal with the ransomware attacks, CISA, FBI, and HHS advise against paying ransoms. “Payment does not guarantee files will be recovered,” the advisory states. “It may also embolden adversaries to target additional organizations, encourage other criminal actors to engage in the distribution of ransomware, and/or fund illicit activities.” The federal agencies advise organizations to take preventive measures and adopt plans for coping with attacks.

The advisory suggests:

  • Training programs for employees, including raising awareness about ransomware and phishing scams. Organizations should “ensure that employees know who to contact when they see suspicious activity or when they believe they have been a victim of a cyberattack.”
  • Regular backups of data and software. These should be “maintained offline or in separated networks as many ransomware variants attempt to find and delete any accessible backups.” Personnel should also test the backups.
  • Continuity plans in case information systems are not accessible. For example, organizations should maintain “hard copies of digital information that would be required for critical patient healthcare.”

Evaluating Continuity and Capability

The federal agencies also advise healthcare facilities to join cybersecurity organizations, such as the Health Information Sharing and Analysis Center (H-ISAC).

“Without planning, provision, and implementation of continuity principles, organizations may be unable to continue operations,” the advisory states. “Evaluating continuity and capability will help identify continuity gaps. Through identifying and addressing these gaps, organizations can establish a viable continuity program that will help keep them functioning during cyberattacks or other emergencies.”

Dark Daily Publisher and Editor-in-Chief, Robert Michel, suggests that clinical laboratories and anatomic pathology groups should have their cyberdefenses assessed by security experts. “This is particularly true because the technologies and methods used by hackers change rapidly,” he said, “and if their laboratory information systems have not been assessed in the past year, then this proactive assessment could be the best insurance against an expensive ransomware attack a lab can purchase.”

—Stephen Beale

Related Information:

Ransomware Activity Targeting the Healthcare and Public Health Sector

FBI, DHS, HHS Warn of Imminent, Credible Ransomware Threat Against U.S. Hospitals

Hackers Hit Hospitals in Disruptive Ransomware Attack

Several Hospitals Targeted in New Wave of Ransomware Attacks

Hospitals Hit with Ransomware Attacks as FBI Warns of Escalating Threat to Healthcare

Ransomware Attacks on Hospitals Could Soon Surge, FBI Warns

Building Wave of Ransomware Attacks Strike U.S. Hospitals

Oregon Hospital Shuts Down Computer System After Ransomware Attack

Three St. Lawrence County Hospitals Hit by Ransomware

‘Unusual Network Activity’ at Ridgeview Medical Center

Brooklyn and Vermont Hospitals Are Latest Ryuk Ransomware Victims

;