News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Scientists at UT Health San Antonio Discover New Biomarker for Diabetic Kidney Disease

Biomarker may lead to clinical laboratory testing that enables clinical pathologists and urologists to diagnose risk for diabetic kidney failure years before it occurs

Clinical laboratories working with nephrologists and urologists to diagnose patients experiencing urinary system difficulties know that albumin (excessive protein found in the urine) is a common biomarker used in clinical laboratory testing for kidney disease. But patients with diabetes generally have low protein in their urine due to that disease. Thus, it is difficult to diagnose early stage kidney failure in diabetic patients.

But now, researchers at the University of Texas Health Science Center at San Antonio (UT Health San Antonio) have discovered a biomarker called adenine (also found in the urine) which, they say, offers the ability to diagnose diabetic patients at risk of kidney failure significantly earlier than other biomarkers.

A UT Health San Antonio news release states, “Urine levels of adenine, a metabolite produced in the kidney, are predictive and a causative biomarker of looming progressive kidney failure in patients with diabetes, a finding that could lead to earlier diagnosis and intervention.”

The study’s senior author Kumar Sharma, MD, professor and Chief of Nephrology at UT Health San Antonio, said, “The finding paves the way for clinic testing to determine—five to 10 years before kidney failure—that a patient is at risk.”

The UT Health scientists published their research in the Journal of Clinical Investigation (JCI) titled, “Endogenous Adenine Mediates Kidney Injury in Diabetic Models and Predicts Diabetic Kidney Disease in Patients.”

“The study is remarkable as it could pave the way to precision medicine for diabetic kidney disease at an early stage of the disease,” said study lead Kumar Sharma, MD (above), professor and Chief of Nephrology at UT Health San Antonio, in a news release. This would be a boon to clinical laboratories and pathology groups that work with urologists to diagnose and treat diabetic patients who are at-risk for kidney failure. (Photo copyright: UT Health San Antonio.)

Completing the UT Health Study

Sharma and his team worked for five years to discover that the adenine molecule was damaging kidney tissue, News4SA reported. The research required the team to develop new methods for viewing small molecules known as metabolites.

“UT Health San Antonio is one of few centers in the US perfecting a technique called spatial metabolomics on kidney biopsies from human patients,” the news release notes. The kidney biopsies were obtained through the Kidney Precision Medicine Project (KPMP) and were gathered from various US academic centers.

“It’s a very difficult technique, and it took us several years to develop a method where we combine high resolution of the geography of the kidney with mass spectrometry analysis to look at the metabolites,” Sharma said.

Testing by the UT Health team unearthed “endogenous adenine around scarred blood vessels in the kidney and around tubular-shaped kidney cells that were being destroyed. Endogenous substances are those that naturally occur in the body,” the news release notes.

Findings Could Affect Diabetic Care

UT Health San Diego’s study findings could allow for early intervention and change the way diabetes care is managed, Sharma said.

“The study results are significant because until now, the most important marker for kidney disease has been protein (or albumin) in the urine. Up to half of diabetes patients who develop kidney failure never have much protein in their urine. As 90% of patients with diabetes (more than 37 million patients in the US) remain at increased risk despite low levels of albumin in their urine, this study has widespread consequences. It is the first study to identify these patients at an early stage by measuring this new causative marker in the urine,” the UT Health news release states.

“We’re hoping that by identifying patients early in their course, and with new therapies targeting adenine and kidney scarring, we can block kidney disease or extend the life of the kidney much longer,” Sharma said.

Getting Ahead of Kidney Disease

Though many patients recognize their risk for kidney disease, those who do not have protein in their urine may not take the risk seriously enough, Sharma noted.

“They could be feeling a false sense of security that there is no kidney disease occurring in their body, but in fact, in many cases it is progressing, and they often don’t find out until the kidney disease is pretty far advanced. And at that time, it is much harder to protect the kidneys and prevent dialysis,” he said in the new release.

“Once a patient needs dialysis, he or she must have a fistula or catheter placed and go on a dialysis machine three times a week, four hours at a time to clean the blood,” the news release states.

“The death rate is very high, especially in patients with diabetes,” Sharma added. “There is about 40% mortality within five years in patients with diabetes and kidney failure.”

Though measuring adenine in urine is a challenge, Sharma and his team developed a method that can be performed at UT Health San Antonio on at-risk patients with a doctor’s order. The test results go back to the patient’s doctor.

“The test is being approved for clinical use and right now it is an experimental test, but we expect it to be available for all patients in the near future.” Sharma told News4SA.

“What we’re hoping is that by identifying patients early in their course, and with new therapies targeting adenine and kidney scarring, we can block kidney disease or extend the life of the kidney much longer,” Sharma said in the news release.

And so, thanks to the UT Health researchers, pathologists and clinical laboratories may soon see a new diagnostic test biomarker that will help urologists identify diabetic patients at-risk for kidney failure years earlier than previously possible.

—Kristin Althea O’Connor

Related Information:

Endogenous Adenine Mediates Kidney Injury in Diabetic Models and Predicts Diabetic Kidney Disease in Patients

Metabolite in Urine Predicts Diabetic Kidney Failure 5-10 Years Early; Oral Therapeutic Drug Shows Promise in Mice

Revolutionizing Diabetes Care: UT Health San Antonio’s Breakthrough in Predicting Kidney Failure

UT Health San Antonio Discovers Molecule Predicting Kidney Failure in Diabetics

Rice University Researchers Develop ‘Molecular Jackhammer’ That Kills Cancer Cells

Research could lead to similar treatments for other diseases, as well as creating a demand for a new line of oncology tests for clinical labs and pathology groups

Cancer treatment has come a long way in the past decades, and it seems poised to take another leap forward thanks to research being conducted at Rice University in Houston. Molecular scientists there have developed what they call a “molecular jackhammer” that uses special molecules and near-infrared light to attack and kill cancer cells.

The technique has been effective in research settings. Should it be cleared for use in patient care, it could change the way doctors treat cancer patients while giving clinical laboratories a new diagnostic tool that could guide treatment decisions.      

The researchers “found that the atoms of a small dye molecule used for medical imaging can vibrate in unison—forming what is known as a plasmon [a quantum of plasma oscillation]—when stimulated by near-infrared light, causing the cell membrane of cancerous cells to rupture,” a Rice University news release noted.

The small dye molecule is called aminocyanine, a type of fluorescent synthetic dye that is already in use in medical imaging.

“These molecules are simple dyes that people have been using for a long time,” said physical chemistry scientist Ciceron Ayala-Orozco, PhD, the researcher who led the study, in the news release. “They’re biocompatible, stable in water, and very good at attaching themselves to the fatty outer lining of cells. But even though they were being used for imaging, people did not know how to activate these as plasmons.” 

The Rice University scientists published their findings in the journal Nature Chemistry titled, “Molecular Jackhammers Eradicate Cancer Cells by Vibronic-Driven Action.”

“The method had a 99% efficiency against lab cultures of human melanoma cells, and half of the mice with melanoma tumors became cancer-free after treatment,” according to the Rice University news release.

“I spent approximately four years working with these ideas on using molecular forces and what is called blue-light activated molecular motors,” Ciceron Ayala-Orozco, PhD (above), told Oncology Times. “At some point, I connected the dots that what I wanted to do is use a simple molecule, not necessarily a motor, that absorbs NIR light in similar ways as plasmonic nanoparticles do and go deeper into the tissue. When activated, we found that the molecules vibrate even faster than our minds can imagine and serve as a force to break the cancer cells apart.” Once approved for use treating cancer patients, clinical laboratories working with oncologists may play a key role in diagnosing candidates for the new treatment. (Photo copyright: Rice University.)

How the Technique Works

Nuclei of the aminocyanine molecules oscillate in sync when exposed to near-infrared radiation and pummel the surface of the cancer cell. These blows are so powerful they rupture the cell’s membrane sufficiently enough to destroy it. 

“The speed of this type of therapy can completely kill the cancer much faster than, say, photodynamic therapy,” Ayala-Orozco noted. “The mechanical action through the molecular jackhammer is immediate, within a few minutes.”

One advantage to near-infrared light is that it can infiltrate deeper into the body than visible light and access organs and bones without damaging tissue. 

“Near-infrared light can go as deep as 10 centimeters (four inches) into the human body as opposed to only half a centimeter (0.2 inches), the depth of penetration for visible light, which we used to activate the nanodrills,” said James Tour, PhD, T. T. and W. F. Chao Professor of Chemistry, Professor of Materials Science and NanoEngineering at Rice University, in the news release. “It is a huge advance.”

The molecular plasmons identified by the team had a near-symmetrical structure. The plasmons have an arm on one side that does not contribute to the motion, but rather anchors the molecule to the lipid bilayer of the cell membrane. The scientists had to prove that the motion could not be categorized as a form of either photodynamic or photothermal therapy

“What needs to be highlighted is that we’ve discovered another explanation for how these molecules can work,” Ayala-Orozco said in the Rice news release. “This is the first time a molecular plasmon is utilized in this way to excite the whole molecule and to actually produce mechanical action used to achieve a particular goal—in this case, tearing apart cancer cells’ membrane.

“This study is about a different way to treat cancer using mechanical forces at the molecular scale,” he added. 

New Ways to Treat Cancer

The likelihood of cancer cells developing a resistance to these molecular jackhammers is extremely low, which renders them a safer and more cost effective method for inducing cancer cell death. 

“The whole difference about this is because it’s a mechanical action, it’s not relying on some chemical effect,” Tour told KOMO News. “It’s highly unlikely that the cell will be able to battle against this. Once it’s cell-associated, the cell is toast once it gets hit by light. Only if a cell could prevent a scalpel from being able to cut it in half, could it prevent this.

“It will kill all sorts of cell types. With our other mechanical action molecules, we’ve demonstrated that they kill bacteria; we’ve demonstrated that they kill fungi. If a person has lost the ability to move a limb, if you can stimulate the muscle with light, that would be quite advantageous. Cancer is just the beginning,” he added.

“From the medical point of view, when this technique is available, it will be beneficial and less expensive than methods such as photothermal therapy, photodynamics, radio-radiation, and chemotherapy,” said Jorge Seminario, PhD, Professor in the Artie McFerrin Department of Chemical Engineering at Texas A&M University in a news release.

Researchers from Texas A&M University and the University of Texas-MD Anderson Cancer Center participated in the study. 

“This is one of the very few theoretical-experimental approaches of this nature. Usually, research in the fields related to medicine does not use first principles quantum-chemistry techniques like those used in the present work, despite the strong benefit of knowing what the electrons and nuclei of all atoms are doing in molecules or materials of interest,” Seminario noted.

“It’s really a tremendous advance. What this is going to do is open up a whole new mode of treatment for medicine,” Tour said. “It’s just like when radiation came in [and] when immunotherapy came in. This is a whole new modality. And when a new modality comes in, so much begins to open up.

“Hopefully, this is going to change medicine in a big way,” he added.

More research and clinical studies are needed before this new technology is ready for patient care. Clinical laboratories and anatomic pathology groups will likely be involved identifying patients who would be good candidates for the new treatment. These molecular jackhammers could be a useful tool in the future fight against cancer, which is ranked second (after heart disease) as the most common cause of death in the US.

—JP Schlingman

Related Information:

New Molecular Jackhammer Technique Achieves 99% Cancer Treatment Success in Labs

Scientists Destroy 99% of Cancer Cells in the Lab Using Vibrating Molecules

Molecular Jackhammers Drill Pathway to Killing Cancer Cells   

Molecular Jackhammers Eradicate Cancer Cells by Vibronic-driven Action

Molecular Jackhammers’ “Good Vibrations” Eradicate Cancer Cells

Molecular Jackhammers’ Non-Invasive Approach to Destroy Cancer Cells

Private Equity Firm General Catalyst to Buy Integrated Delivery Network Summa Health as Testing Ground for New Venture

Switching from non-profit to for-profit may affect how clinical laboratories operate in the new healthcare system

Shifting away from fee-for-service payment models and towards value-based healthcare is the goal of many non-profit hospital systems. One such transformation is underway at Summa Health, one of the largest integrated delivery networks (IDNs) in Ohio. On January 17, venture capital firm General Catalyst announced that its subsidiary—Health Assurance Transformation Corporation (HATCo)—had entered into an agreement to purchase Summa Health.

“HATCo’s investment into Summa Health will drive not only near-term benefit to the organization and the patients it serves but also sustainable, long-term transformation through a true shift to value-based care and access to new revenue streams, resources, innovations, and technologies,” states a General Catalyst news release penned by Marc Harrison, MD, CEO of HATCo.

Harrison was formerly President and CEO of Intermountain Healthcare, a 33 hospital not-for-profit IDN in Salt Lake City, Utah. This is a noteworthy fact because Intermountain Health has a national reputation as an innovative multi-hospital health system. Some observers believe that Harrison’s involvement signals that General Catalyst believes it has a care model that can deliver better patient care in a profitable manner.

“Under its new structure, Summa will become a for-profit organization, and General Catalyst says it will introduce new tech-enabled solutions that aim to make care more accessible and affordable,” CNBCreported.

“This is the first time that anybody has done anything quite like this,” Harrison told CNBC. “There are many digital health solutions that are out there as point solutions. This is the first holistic transformation of a health system to a thoughtful combination of digital and in-person care.”

“Our intent is to build on and augment the system’s considerable strengths. First and foremost, we share Summa Health’s commitment to serving all members of the community,” wrote HATCo CEO Marc Harrison, MD (above), in a news release. “The Summa Health team also shares our belief that achieving healthcare transformation will require a shift to value-based care … Together, we intend to demonstrate that a model that is better for patients can also be good for business, creating a blueprint for other health systems to effectively serve all people in their communities.” How this shift will affect Summa’s clinical laboratories remains to be seen. (Photo copyright: General Catalyst.)

Betting on Healthcare

In 2023, General Catalyst, an American venture capital firm headquartered in Cambridge, Mass., unveiled its Health Assurance Transformation Corporation (HATCo) and began shopping for a health system to buy.

HATCo has 20 healthcare systems in a network that spans 43 states and four countries, according to Healthcare Dive. The company’s news release states it has been focused on three areas since its start-up:

  • Helping its partners on their “transformation journeys.”
  • Using technology to build an “interoperability model.”
  • Planning to “acquire and operate a health system for the long-term.”

“The goal of the purchase is for the health system to act as a proving ground for General Catalyst to test ways to improve hospital operations and patient care, without risk aversion or cash shortfalls, management said,” Healthcare Dive reported.

Thus, the firm’s announcement to purchase a health system last October “sent shockwaves through the healthcare industry” according to Healthcare Dive.

“At its core, General Catalyst’s long-term Health Assurance thesis is that value-based care not only is good for patients, but also can be a successful business model if deployed with innovative technology at meaningful scale. Its rationale for buying a health system is a belief that it can improve on the traditional model of not-for-profit health system governance and management by embedding new incentives,” wrote Christopher Kerns, CEO and co-founder of Washington, D.C-based research firm Union Healthcare Insight, in a blog post analysis.

General Catalyst’s HATCo may offer up “a profit motive, a longer time horizon, and a channel for dozens of innovative companies to demonstrate value,” he noted.

“The single biggest barrier to promising young healthcare companies is an inability to scale. Many of their innovations—in digital health, patient engagement, revenue cycle workflow, etc.—require willing health system partners who are famously conservative in their investments and service providers, and rarely take risks on newbies. The addition of Summa provides an open laboratory for those innovations,” Kerns added.

Is the Summa Health Deal Good for Healthcare?

Some in the industry were taken aback by General Catalyst’s announcement.   

“A lot of people feel like a PE (private equity) or venture capital company owning a hospital is kind of like asking Freddy Krueger to come babysit your kids. It just makes people a little nervous, and it doesn’t feel quite aligned with this concept of healthcare being a human right,” John Bass, CEO of Hashed Health, a Nashville, Tenn.-based healthcare venture studio, told CNBC.

Nevertheless, it’s a moot point. HATCo is moving forward with its purchase of Summa Health.

“For this bet to work, Summa will have to be a solid proving ground for [General Catalyst’s] portfolio companies. And that means either Summa itself will have to grow, or it will have to act as a force multiplier for its other value-based portfolio companies to justify the considerable capital expended. I have to say, that’s a tall order, but not an insane one,” said Kerns in the Union Healthcare Insight blog post.

Healthcare managers may find it interesting to follow HATCo and Summa Health on their planned journey. The results may speak for themselves. Either way, clinical laboratories and anatomic pathology group practices in HATCo’s health system may be in for some interesting changes.

—Donna Marie Pocius

Related Information:

Our Acquisition of Summa Health

Summa Health and General Catalyst’s HATCo Announce Plans for Acquisition That Will Transform the Future of Healthcare

General Catalyst to Acquire Ohio Nonprofit Summa Health

The Big Bet of General Catalyst and Summa Health

4 Takeaways on General Catalyst’s Plan to Acquire Summa Health

General Catalyst’s New Health System Company to Acquire Summa Health

Venture Capital’s Firm’s Plan to Buy Nonprofit Hospital System Has Ohio Community on Edge

Intermountain Posts $135M Operating Income

General Catalyst’s HATCo Plans to Purchase Ohio Healthcare System Summa Health

Summa Health Fields Concerns Over General Catalyst Acquisition

Summa Health Sold to General Catalyst’s Health Assurance

San Diego University Researchers Believe Bacteriophages May Be the Future of Eradicating Multi-Drug Resistant Superbugs

Clinical laboratories and microbiologists may soon have new powerful tools for fighting antimicrobial resistant bacteria that saves lives

Superbugs—microbes that have developed multidrug resistance—continue to cause problems for clinical laboratories and hospital antibiotic stewardship programs around the world. Now, scientists at San Diego State University (SDSU) believe that bacteriophages (phages) could provide a solution for dealing with multi-drug resistant superbugs.

Phages are miniscule, tripod-looking viruses that are genetically programmed to locate, attack, and eradicate a specific kind of pathogen. These microscopic creatures have saved lives and are being touted as a potential solution to superbugs, which are strains of bacteria, viruses, parasites, and fungi that are resistant to most antibiotics and other treatments utilized to counteract infections.

“These multi-drug-resistant superbugs can cause chronic infections in individuals for months to years to sometimes decades,” Dwayne Roach, PhD, Assistant Professor of Bacteriophages, Infectious Disease, and Immunology at SDSU told CNN. “It’s ridiculous just how virulent some of these bacteria get over time.”

Labs across the country are conducting research on phages in eradicating superbugs. Roach’s lab is currently probing the body’s immune response to phages and developing purification techniques to prepare phage samples for intravenous use in patients.

“There are a lot of approaches right now that are happening in parallel,” said Dwayne Roach, PhD (above), Assistant Professor of Bacteriophages, Infectious Disease, and Immunology at San Diego State University (SDSU), in a CNN interview. “Do we engineer phages? Do we make a phage cocktail, and then how big is the cocktail? Is it two phages or 12 phages? Should phages be inhaled, applied topically, or injected intravenously? There’s a lot of work underway on exactly how to best do this.” Clinical laboratories that test for bacterial infections may play a key role in diagnosis and treatment involving bacteriophages. (Photo copyright: San Diego State University.)

Building Libraries of Phages

When certain a bacterial species or its genotypes needs to be annihilated, a collection of phages can be created to attack it via methods that enter and weaken the bacterial cell. The bacteria will attempt to counter the intrusion by employing evasive actions, such as shedding outer skins to eliminate the docking ports utilized by the phages. These maneuvers can cause the bacteria to lose their antibiotic resistance, making them vulnerable to destruction. 

Some research labs are developing libraries of phages, accumulating strains found in nature in prime breeding grounds for bacteria to locate the correct phage for a particular infection. Other labs, however, are speeding up the process by producing phages in the lab.

“Rather than just sourcing new phages from the environment, we have a bioreactor that in real time creates billions upon billions of phages,” Anthony Maresso, PhD, Associate Professor at Baylor College of Medicine in Houston told CNN. “Most of those phages won’t be active against the drug-resistant bacteria, but at some point, there will be a rare variant that has been trained, so to speak, to attack the resistant bacteria, and we’ll add that to our arsenal. It’s a next-generation approach on phage libraries.”

Maresso and his team published their findings in the journal Clinical Infectious Diseases titled, “A Retrospective, Observational Study of 12 Cases of Expanded-Access Customized Phage Therapy: Production, Characteristics, and Clinical Outcomes.”

For the Baylor study, 12 patients were treated with phages customized to each individual’s unique bacterial profile. The antibiotic-resistant bacteria were exterminated in five of the patients, while several others showed improvement.

Clinical trials are currently being executed to test the effectiveness of phages against a variety of chronic health conditions, including:

Using a phage cocktail could be used to treat a superbug outbreak in real time, while preventing a patient from a future infection of the same superbug. 

“The issue is that when patients have infections with these drug-resistant bacteria, they can still carry that organism in or on their bodies even after treatment,” Maroya Walters, PhD, epidemiologist at the federal Centers for Disease Control and Prevention (CDC) told CNN.

“They don’t show any signs or symptoms of illness, but they can get infections again, and they can also transmit the bacteria to other people,” she added.

The colorized transmission electron micrograph above shows numerous phages attached to a bacterial cell wall. Phages are known for their unique structures, which resemble a cross between NASA’s Apollo lunar lander and an arthropod. (Caption and photo copyright: Berkeley Lab.)

More Studies are Needed

According to CDC data, more than 2.8 million antimicrobial-resistant (AMR) infections occur annually in the United States. More than 35,000 people in the country will die as a result of these infections.

In addition, AMR infections are a huge global threat, associated with nearly five million deaths worldwide in 2019. Resistant infections can be extremely difficult and sometimes impossible to treat.

“It’s estimated that by 2050, 10 million people per year—that’s one person every three seconds—is going to be dying from a superbug infection,” epidemiologist Steffanie Strathdee, PhD, Associate Dean of Global Health Services and co-director at the Center for Innovative Phage Applications and Therapeutics (IPATH) at the UC San Diego School of Medicine, told CNN.

The CDC’s 2019 report on bacteria and fungi antimicrobial resistant threats named five pathogens as urgent threats:

More research is needed before phages can be used clinically to treat superbugs. But if phages prove to be useful in fighting antibiotic-resistant bacteria, microbiologists and their clinical laboratories may soon have new tools to help protect patients from these deadly pathogens.

—JP Schlingman

Related Information:

Superbug Crisis Threatens to Kill 10 Million Per Year by 2050. Scientists May Have a Solution

About Antimicrobial Resistance

2019 AR Threats Report

Bacteriophage

Why Antibiotics Fail, and How We Can Do Better

A Retrospective, Observational Study of 12 Cases of Expanded-Access Customized Phage Therapy: Production, Characteristics, and Clinical Outcomes

Cataloging Nature’s Hidden Arsenal: Viruses That Infect Bacteria

UCSB Researchers Discover Superior Culture Medium for Bacterial Testing, along with New Insights into Antimicrobial Resistance

Perfect Storm of Clinical Lab and Pathology Practice Regulatory Changes to Be Featured in Discussions at 29th Annual Executive War College

Forces in play will directly impact the operations and financial stability of many of the nation’s clinical laboratories

With significant regulatory changes expected in the next 18 to 24 months, experts are predicting a “Perfect Storm” for managers of clinical laboratories and pathology practices.

Currently looming are changes to critical regulations in two regulatory areas that will affect hospitals and medical laboratories. One regulatory change is unfolding with the US Food and Drug Administration (FDA) and the other regulatory effort centers around efforts to update the Clinical Laboratory Improvement Amendments of 1988 (CLIA).

The major FDA changes involve the soon-to-be-published Final Rule on Laboratory Developed Tests (LDTs), which is currently causing its own individual storm within healthcare and will likely lead to lawsuits, according to the FDA Law Blog.

In a similar fashion—and being managed under the federal Centers for Medicare and Medicaid Services (CMS)—are the changes to CLIA rules that are expected to be the most significant since 2003.

The final element of the “Perfect Storm” of changes coming to the lab industry is the increased use by private payers of Z-Codes for genetic test claims.

In his general keynote, Robert L. Michel, Dark Daily’s Editor-in-Chief and creator of the 29th Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management, will set the stage by introducing a session titled, “Regulatory Trifecta Coming Soon to All Labs! Anticipating the Federal LDT Rule, Revisions to CLIA Regulations, and Private Payers’ Z-Code Policies for Genetic Claims.”

“There are an unprecedented set of regulatory challenges all smashing into each other and the time is now to start preparing for the coming storm,” says Robert L. Michel (above), Dark Daily’s Editor-in-Chief and creator of the 29th Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management, a national conference on lab management taking place April 30-May 1, 2024, at the Hyatt in New Orleans. (Photo copyright: The Dark Intelligence Group.)

Coming Trifecta of Disruptive Forces to Clinical Laboratory, Anatomic Pathology

The upcoming changes, Michel notes, have the potential to cause major disruptions at hospitals and clinical laboratories nationwide.

“Importantly, this perfect storm—which I like to describe as a Trifecta because these three disruptive forces that will affect how labs will conduct business—is not yet on the radar screen of most lab administrators, executives, and pathologists,” he says.

Because of that, several sessions at this year’s Executive War College conference, now in its 29th year, will offer information designed to give attendees a better understanding of how to manage what’s coming for their labs and anatomic pathology practices.

“This regulatory trifecta consists of three elements,” adds Michel, who is also Editor-in-Chief of Dark Daily’s sister publication The Dark Report, a business intelligence service for senior level executives in the clinical laboratory and pathology industry, as well in companies that offer solutions to labs and pathology groups.

According to Michel, that trifecta includes the following:

Element 1

FDA’s Draft LDT Rule

FDA’s LDT rule is currently the headline story in the lab industry. Speaking about this development and two other FDA initiatives involving diagnostics at the upcoming Executive War College will be pathologist Tim Stenzel, MD, PhD, former director of the FDA’s Office of In Vitro Diagnostics. It’s expected that the final rule on LDTs could be published by the end of April.

Stenzel will also discuss harmonization of ISO 13485 Medical Devices and the FDA’s recent memo on reclassifying most high-risk in vitro diagnostics to moderate-risk to ease the regulatory burden on companies seeking agency review of their diagnostic assays.

Element 2

CLIA Reforms and Updates

The second element is coming reforms and updates to the CLIA regulations, which Michel says will be the “most-significant changes to CLIA in more than two decades.” Speaking on this will be Reynolds Salerno, PhD, Acting Director, Center for Laboratory Systems and Response at the federal Centers for Disease Control and Prevention (CDC).

Salerno will also cover the CDC’s efforts to foster closer connections with clinical labs and their local public health laboratories, as well as the expanding menu of services for labs that his department now offers.

Element 3

Private Payer Use of Z-Codes for Test Claims

On the third development—increased use by private payers of Z-Codes for genetic test claims—the speaker will be pathologist Gabriel Bien-Willner, MD, PhD. He is the Medical Director of the MolDX program at Palmetto GBA, a Medicare Administrative Contractor (MAC). It is the MolDX program that oversees the issuance of Z-Codes for molecular and diagnostic tests.

UnitedHealthcare (UHC) was first to issue such a Z-Code policy last year, although it has delayed implementation several times. Other major payers are watching to see if UHC succeeds with this requirement, Michel says.

Other Critical Topics to be Covered at EWC

In addition to these need-to-know regulatory topics, Michel says that this year’s Executive War College will present almost 100 sessions and include 148 speakers. Some of the other topics on the agenda in New Orleans include the following and more:

  • Standardizing automation, analyzers, and tests across 25 lab sites.
  • Effective ways to attract, hire, and retain top-performing pathologists.
  • Leveraging your lab’s managed care contracts to increase covered tests.
  • Legal and compliance risks of artificial intelligence (AI) in clinical care.

“Our agenda is filled with the topics that are critically important to senior managers when it comes to managing their labs and anatomic pathology practices,” Michel notes.

“Every laboratory in the United States should recognize these three powerful developments are all in play at the same time and each will have direct impact on the clinical and financial performance of our nation’s labs,” Michel says. “For that reason, every lab should have one or more of their leadership team present at this year’s Executive War College to understand the implications of these developments.”

Visit here to learn more about the 29th Executive War College conference taking place in New Orleans.

—Bob Croce

Related Information:

One Step Closer to Final: The LDT Rule Arrives at OMB, Making a Lawsuit More Likely

FDA: CDRH Announces Intent to Initiate the Reclassification Process for Most High Risk IVDs

FDA Proposes Down-Classifying Most High-Risk IVDs

Z-codes Requirements for Molecular Diagnostic Testing

2024 Executive War College Agenda

Increased Testing Demands from Physicians is Putting New Zealand Clinical Laboratories Under Severe Stress

Following the loss of its histology accreditation, pressure on APS laboratory continues to mount

Government-run healthcare systems around the world often under-invest as demand grows and new healthcare technologies enter clinical practice. One such example is taking place in New Zealand, where public pathology and medical laboratory services are under extreme stress as physician test orders exceed the ability of the island nation’s clinical laboratories to keep up.

“The escalating pressure is complicating what was already a very difficult rescue job at one of the country’s busiest labs—Community Anatomic Pathology Services (APS),” RNZ reported. In 2023, APS lost its histology accreditation after it came to light that lab workers were not only exposed to toxic chemical levels at the facility, but that patients were waiting weeks for test results to return from the lab.

This follows a 2021 report from consultants PricewaterhouseCoopers (PwC) to the Auckland District Health Board in which New Zealand health authorities received warnings to improve pathology systems.

“The service is in crisis mode and, without urgent investment … there is a real risk that it will fail. The changes required are of such urgency that it is recommended that they be placed at the top of the agenda,” the report reads, RNZ reported.

“The size of New Zealand’s economy is restricting what our country spends on health. Health is already the second highest demand on the New Zealand tax dollar,” wrote Andrew Blair, CMInstD (above), then General Manager of Royston Hospital, Hastings, New Zealand, in an article he penned for Jpn Hosp, the journal of the Japan Hospital Association. “The tolerance of New Zealanders would be challenged if a government attempted to increase taxes further to meet the growing demands for expenditure on health, but at the same time the population’s expectations are increasing. This is the challenging situation we face today.” For New Zealand’s clinical laboratories, the demand for testing is increasing annually as the country’s population grows. (Photo copyright: Blair Consulting.)

Increased Demand on APS Leads to Problems

Established in 2015, APS tests thousands of anatomic and tissue samples yearly and is utilized by approximately a third of NZ’s population, according to RNZ.

The big story, however, is that from 2022 to 2023 utilization increased by a third. “The overall increasing demand is greater than the capacity of the service,” Te Whatu Ora (Health New Zealand), the country’s publicly-funded healthcare system, told RNZ.

As planned care increased, public hospitals started outsourcing operations to private surgical centers. A domino effect ensued when all of those samples then made their way to APS. There was an “increased volume of private surgery being carried out by 600 specialists in the region and 2,000 general practitioners, with up to 450 histology cases a day,” RNZ noted, adding, “The backlog has hit turnaround times for processing samples, which had been deteriorating.”

To make matters even more dire, working conditions at the country’s clinical labs is unfavorable and deteriorating, with short staffing, outdated workspaces and equipment, and exposure to dangerous chemicals.

In “New Zealand Clinical Laboratories to Undergo Health and Safety Checks after Workers Contract Typhoid, Others Exposed to Chemicals,” Dark Daily covered how Health New Zealand recently ordered health and safety checks at multiple clinical laboratories in 18 districts across the country. The action is the result of safety issues detected after procedural discrepancies were discovered in separate labs and follows months of strikes by NZ medical laboratory workers seeking fair pay and safe working conditions.

“Conditions got so bad from 2019-2021 that workers were exposed to cancer-causing formaldehyde in cramped workspaces, and flammable chemicals were stored unsafely,” RNZ reported.

While pay increases and safety improvements have provided some relief, the memory of past incidences coupled with increasing delays continue to undermine confidence in New Zealand’s laboratory industry.

Patients Also at Risk Due to Long Delays in Test Results

“We recognize the concern and impact any delayed results can cause referrers and their patients,” Health New Zealand said in a statement, RNZ reported.

Nevertheless, a 2023 article in The Conversation noted that, “38,000 New Zealanders had been waiting longer than the four-month target for being seen by a specialist for an initial assessment.”

These backlogs can be especially deadly for cancer patients. In “Pathology Lab Shortages in New Zealand Are One Cause in Long Delays in Melanoma Diagnoses,” Dark Daily detailed how patients awaiting melanoma diagnoses are experiencing delays upwards of one month due to long waits for test results.

However, according to plastic surgeon and Melanoma Network of New Zealand (MelNet) Chair Gary Duncan, MBChB, FRACS, when patients return to their doctors for test results, those results often have not come back from the medical laboratory. Therefore, the physician cannot discuss any issues, which causes the patient to have to make another appointment or receive a melanoma diagnosis over the telephone, RNZ reported.

“Slow pathology services are unfair to patients. Such delays could result in the spreading of the melanoma to other parts of the body and require major surgery under anesthetic,” dermatologist Louise Reiche, MBChB, FRACS, told RNZ. “Not only will they suffer an extensive surgical procedure, but it could also shorten their life.”

Improvements at APS Underway

Changes are currently underway that may decrease the long delays in test results at New Zealand’s labs. “A business case was being done to set up an electronic ordering system to cut down on manual processing errors,” RNZ reported.

Additionally, “the situation is much improved due to dispersal of work around [the] city and country for now. The teamwork around the region has been a veritable lifesaver,” a source familiar with the work told RNZ.

Construction of a new lab for APS is also allegedly in the works. However, to date no announcement has been made, according to RNZ.

Time will tell if New Zealand’s government can repair its pathology system. News stories showcasing damage caused by lengthy delays in clinical laboratory test results—and the ensuing patient harm due to rationed care in general—continue to reveal the weakness in government-run healthcare systems.

—Kristin Althea O’Connor

Related Information:

Private Healthcare Pushing Auckland Labs to the Brink

Te Whatu Ora Pathology Service Provider Loses Accreditation

NZ’s Health System Has Been Under Pressure for Decades. Reforms Need to Think Big and Long-Term to Be Effective

Meeting Increased Demand

Eight-Week Wait for Skin Cancer Test Results Risking Lives-Doctors

Pathology Lab Shortages in New Zealand Are One Cause in Long Delays in Melanoma Diagnoses

Te Whatu Ora Tight-Lipped on New Auckland Pathology Lab

;