LabX Media Group Acquires Dark Daily, The Dark Report, and Executive War College

Dark Daily will join an established family of laboratory resources that will provide in-depth information for clinical laboratory professionals

In a move that opens strong opportunities to grow its audience of clinical laboratory professionals, LabX Media Group has purchased Dark Daily from The Dark Intelligence Group (TDIG).

The deal also includes TDIG’s long-time business intelligence service The Dark Report and leading lab industry event Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management. LabX Media announced the news on March 13.

Robert Michel, founder of TDIG and editor-in-chief of The Dark Report, explained that the acquisition serves as step one to winding down his long career.

“First and most important, this starts my path toward retirement,” Michel said in the March 10 issue of The Dark Report. “I’ve served in the clinical laboratory industry for 34 years now. That’s one-third of a century!”

More Options Ahead for Dark Daily Readers

In purchasing the assets of TDIG, LabX Media Group adds to its powerhouse of resources for clinical laboratory leaders, including Today’s Clinical Lab, G2 Intelligence, and Lab Manager.

The deal will give readers of Dark Daily further options from which to get their laboratory science and operations information, as Today’s Clinical Lab provides free content in areas such as pathology and clinical laboratory technology.

Additionally, “The lab science coverage in Today’s Clinical Lab complements the business intelligence of The Dark Report, allowing LabX Media to offer a more comprehensive range of information for clinical lab professionals,” Today’s Clinical Lab wrote last week.         

“The good news for all the clients and long-time readers of The Dark Report is that LabX has both the capital and the specialized expertise required to keep The Dark Report, Dark Daily, and the Executive War College at the top of their games going forward,” said Robert Michel (above), founder of The Dark Intelligence Group, which sold its assets to LabX Media Group. (Photo copyright: LabX.)                 

Statement on LabX Purchase of The Dark Intelligence Group

In a statement about this transaction, LabX Media Group CEO Bob Kafato said: “We are excited to formally recognize these new additions to the LMG family. TDIG’s flagship publication, The Dark Report, has a 30-year track record of delivering timely business intelligence to the leaders of North America’s most successful clinical laboratories, genetic testing companies, and anatomic pathology groups. During these same 30 years, the Executive War College has become the biggest and the highest-profile laboratory management conference in North America.”

Michel will serve as an advisor to LabX Media Group to ensure a smooth transition while continuing to provide strategic consulting services to the lab industry.

Who is LabX Media Group?

LabX Media Group is a leading business-to-business science media company delivering award-winning editorial coverage, essential industry news, analysis, and insights for members of the scientific research and life science communities. LabX Media Group connects laboratory professionals with resources to help them make smarter buying decisions through powerful, market-leading brands.

In addition to the flagship LabX.com, the company includes The Scientist, Technology Networks, Drug Discovery News, IFLScience, and Discover Magazine. Collectively, these publications are an unmatched editorial platform and interactive community for the laboratory industry.

One interesting final fact: TDIG and LabX Media Group both were founded in 1995 and are celebrating their respective 30-year anniversaries, Michel noted.

—Scott Wallask

Related Information:

LabX Media Group Acquires The Dark Intelligence Group Inc, including The Dark Report and the Executive War College

The Dark Report Acquired by LabX Media Group

Digital Twins: A Remarkable New Development in Healthcare

Pathologists and clinical laboratories will play a key role in collecting the data needed to create a person’s digital twin

Digital twins is a promising new technology that is making a big impact in healthcare. This development is significant because clinical laboratory test results will be among the most important sets of data to go into the creation of a patient’s “digital twin.”

A digital twin is defined by IBM as “a virtual representation of an object or system designed to reflect a physical object accurately. It spans the object’s lifecycle, is updated from real-time data, and uses simulation, machine learning, and reasoning to help make decisions.”

“We define a digital twin for healthcare as a virtual representation of a person which allows dynamic simulation of potential treatment strategy, monitoring and prediction of health trajectory, and early intervention and prevention, based on multi-scale modeling of multi-modal data such as clinical, genetic, molecular, environmental, and social factors, etc.,” wrote the authors of a review article published in NPJ Digital Medicine titled, “Digital Twins for Health: A Scoping Review.”

“The concept of digital twin for health (DT4H) holds great promise to revolutionize the entire healthcare system, including management and delivery, disease treatment and prevention, and health well-being maintenance, ultimately improving human life,” wrote study lead Eva Katsoulakis, MD (above), clinical informaticist and radiation oncologist at Tampa General Hospital in Florida, et al, in a review article she and her team published in NPJ Digital Medicine. Clinical laboratory test data will be a key element in the creation of a patient’s digital twin. (Photo copyright: Tampa General Hospital.)

Development of Digital Twins

Something akin to digital twins was first used in 1960 at NASA when replicas of spacecrafts currently on a mission in space were duplicated and studied on Earth. In 1991, Michael Grieves introduced the concept to manufacturing while at University of Michigan’s College of Engineering. The technology was later coined “digital twins” by John Vickers, a principal technologist in advanced manufacturing at NASA in 2010, IBM noted.

The increased use of digital twins in healthcare has brought some brilliant advancements. Examples, as reported by Computer Weekly, include:

  • Surgery and treatment: Boston Children’s Hospital uses digital twins to examine the complexities of heart procedures in reference to oxygen, blood flow, and valve pressure. Real-time analysis helps with surgeries and treatments, allowing clear visualization at all angles.
  • Metabolic analysis to tackle kidney failures: Digital twins are being used in Singapore to “Replicate metabolic fluxes to predict chronic kidney disease in type 2 diabetes mellitus.” Doctors there hope to curb the spike of chronic kidney disease found in type 2 diabetes mellitus. Their country has seen cases double in the last 40 years.
  • Bacterial predictions, E. coli: Bacteria behavior is being analyzed in computational simulations as part of a Simulating Microbial Systems (SMS) program. Run by the US Defense Advanced Research Projects Agency, the “SMS seeks interdisciplinary, comprehensive, and integrated workflows to generate unknown parameters from new data to inform computational models that can predict E. coli.”
  • Full body data: Precisely personalized care is the goal of European Virtual Human Twins Initiative, a project from the European Commission. The group creates digital twins and updates them with an individual’s personal conditions and health information that shifts as they age, keeping prevention as a focal point.
  • Respiratory viral pathogens: The complexities and variety of causes behind respiratory infections makes it an ideal area for digital twins. Its use in hospital ICUs can help doctors consider pneumonia treatment outlooks and develop plans for spread of infection.
  • Pharmaceuticals: Many pharma companies are opting to use digital twins since drug development is highly expensive and animal testing does not always provide clear data compared to human testing. Examples include Orion Pharma, which paired with AstraZeneca and Bayer to create digital twins that “capture genetic and molecular interactions that causally drive clinical and physiological outcomes.” Immunology company, Sanofi, also is using digital twins as “an essential first step to improve efficacy and safety.”

Future of Digital Twins in Healthcare

While digital twin development within healthcare is still in early stages, it promises to pioneer much change.

“When you have this model, you can personalize with certain features, certain anatomy, then you can try things. In heart surgery, you can’t try 20 different things, you only have one shot,” Ellen Kuhl PhD, professor of engineering and bioengineering at Stanford University, told Computer Weekly.

As technology advances and personalized healthcare continues to trend, it is likely digital twins will have a long-term place in medical practices. Astute clinical laboratory professionals will watch the expansion of this trend, since lab data will play such a key role in its development.                 

—Kristin Althea O’Connor

Related Information:

Digital Twins Extend to Biological Systems

What Is a Digital Twin?

Digital Twins for Health: A Scoping Review

Digital Twins of Biological Systems: A Narrative Review

Digital Twins of Biological Systems Inform Drug Development

Zhejiang University Researchers Develop Ultrasensitive Nanoscale Sensor That Detects Lung Cancer in Breath Samples

Research could lead to new biomarkers for clinical laboratory tests that spot disease early in patients

As we have covered in previous Dark Daily ebriefs, there are ongoing efforts to develop diagnostic assays that use human breath as the specimen. One early example was the breath specimen for Helicobacter pylori (H. pylori) testing—the bacteria that causes peptic ulcers—in the 1990s. Thus, a new sensor developed by scientists at Zhejiang University in China that can detect the presence of lung cancer in human breath will be of interest to medical laboratory scientists and clinical laboratories working on such testing.

In a proof-of-concept study, the Zhejiang University researchers “developed ultrasensitive nanoscale sensors that in small-scale tests distinguished a key change in the chemistry of the breath of people with lung cancer,” according to an American Chemical Society (ACS) news release.

The new research exemplifies how instruments are becoming increasingly sensitive to detection of smaller specimen quantities, making it possible to even use exhaled breath to diagnose lung cancer, noted a review article published in Science Direct.

The scientists published their findings in ACS Sensors titled, “Ultrasensitive In203-based Nanoflakes for Lung Cancer Diagnosis and the Sensing Mechanism Investigated by Operando Spectroscopy.”

“This study presents a novel Pt@InNiOx [platinum (Pt), indium (In), nickel (Ni)] nanoflake isoprene sensor that achieves an exceptionally low limit of detection at two parts per billion (2ppb)—the lowest reported for isoprene sensor to date,” wrote study lead author, Pingwei Liu, PhD (above), distinguished research fellow, Zhejiang University, et al, in ACS Sensors. “Our work not only provides a breakthrough in low-cost, noninvasive cancer screening through breath analysis but also advances the rational design of cutting-edge gas sensing materials.” Clinical laboratories working with breath sample biomarkers will be intrigued by this new advancement in the technology. (Photo copyright: Zhejiang University.)

Finding the Breakthrough Sensor

The Zhejiang University researchers were motivated by the potential for rapid gas sensing in diagnostics. Many gases, including carbon dioxide, are exhaled. But one particular gas, isoprene, they found “can indicate the presence of lung cancer,” the news release states.  

However, while breath is readily available, it is not easy to isolate breath biomarkers. That is because a detector needs to “differentiate between volatile chemicals, withstand the natural humidity of exhaled breath, and detect tiny quantities of specific chemicals,” New Atlas explained.

To detect small specimen quantities of isoprene, a highly sensitive sensor needed to be developed—one that would be a step up from standard indium oxide-based breath sensors.

The scientists experimented with a series of indium (III) oxide (In203)-based nanoflake sensors until they found the sensor that performed consistently in nine experiments. They called it Pt@InNiOx for the platinum (Pt), indium (In), and nickel (Ni) it contained.

According to the news release, the Pt@InNiOx sensor:

  • Had “sensitivity that far surpassed earlier sensors” as evidenced by detection of isoprene as low as 2ppb.
  • Emphasized isoprene attraction over other volatile compounds in breath.
  • Has advanced sensitivity due to “Pt nanoclusters uniformly anchored on the nanoflakes” activating the isoprene sensing.

Gadget Review described the innovation as a “significant advance in diagnostic capability” that uses nanoscale technology along with “indium oxide nanoflakes with platinum-based nanoclusters.”  

Developing the Lung Cancer Diagnostic Device

The scientists put their Pt@InNiOx nanoflakes into a portable sensing device for breath analysis. They then inserted breath samples from 13 people including five who had lung cancer. They found that:

  • In samples from people with cancer, the device enabled detection of isoprene levels lower than 40 ppb.
  • In samples from cancer-free participants, the device found isoprene levels more than 60 ppb.

“We integrate these ultrasensitive Pt@InNiOx nanoflakes into a miniaturized portable electronic device that successfully distinguishes lung cancer patients with expiratory isoprene below 40ppb, from the healthy population with isoprene above 60 ppb, enabling an accurate diagnosis in clinics,” wrote study lead author, Pingwei Liu, PhD, distinguished research fellow, Zhejiang University, et al, in ACS Sensors.

“As the isoprene hits the nanoflakes, electron release is sparked in a way that can be measured,” MSN Health reported, adding that the nanoflakes were also able to find isoprene in other chemicals and operate even in humid conditions.

Breath as Lab Test Biomarker for Cancer

In the United States, more people die from lung cancer than any other form of cancer, according to US Centers for Disease Control and Prevention statistics. The CDC data show there were 209,500 new lung and bronchus cancer cases in 2022, the most recent year for available data.

The Zhejiang University scientists reportedly plan to continue their research on the sensing materials and link between isoprene and lung cancer.

Studies continue to show many components in human breath can be used as clinical laboratory test biomarkers. Assays that use the breath as specimen may one day play an important role in early diagnosis of lung cancer and other diseases. 

                        —Donna Marie Pocius

Related Information:

Detecting Evidence of Lung Cancer in Exhaled Breath

Ultrasensitive In203-based Nanoflakes for Lung Cancer Diagnosis and the Sensing Mechanism Investigated by Operando Spectroscopy

Advanced Sensing Tech Can Detect Lung Cancer in Your Exhaled Breath

Scientists Develop Breakthrough Breath Test for Early Lung Cancer Detection

Signs of Lung Cancer Can Now Be Detected When You Exhale

NASA Creates Breath Analyzer to Measure Multiple Biomarkers in Space

Breath Sample Is Used by Opteev Technologies’ Combined COVID/Influenza/RSV Screening Device with 95% Sensitivity and 90% Specificity

German Researchers Create Non-invasive Lab-on-a-Chip Biosensor That Detects Antibiotic Levels from Breath Samples

NIST Scientists Enhance Frequency Comb Breathalyzer Enabling It to Detect Multiple Disease Biomarkers

French Scientists Studying Neanderthals Discover New Blood Type and Possibly Key to Human Evolution in Red Blood Antigens

Researchers find neanderthal blood did not evolve and may have contributed to their demise

Researchers out of France have identified a unique antigen in red blood cells that may have contributed to the downfall of Neanderthals, according to an article in Live Science. These findings will be of interest to clinical laboratorians in hospitals who operate blood banks and blood bankers who do daily testing for blood groups and specific antigens.

Stéphane Mazières, PhD, a population geneticist at Aix-Marseille University, and his research team of paleoanthropologists and geneticists discovered that the lack of evolution in Neanderthals blood did not allow them to evolve along the same path as Homo Sapiens, both in terms of immunity and reproductive capability, Live Science noted.

“We showed that all Neanderthal shared the same blood group profile,” Mazières told Discover magazine. “Such low diversity is the signal of small populations.” He added, “the study shows how different blood types can help fight against infectious disease,” and that, “it emphasizes the importance of monitoring blood during both transfusions and pregnancies. The presence of some rare subtypes that originated with the Neanderthals but outlived them can lead to complications,” Discover reported.

Clinical laboratories and pathologists will appreciate these new findings, as this unique look into Neanderthal physiology illustrates how the importance of proper blood typing has endured throughout time.

The researchers published their findings in the journal Scientific Reports titled, “Rapid Change in Red Cell Blood Group Systems after the Main Out of Africa of Homo Sapiens.”

“For any case of inbreeding of a Neanderthal female with a Homo sapiens or Denisova male, there is a high risk of hemolytic disease of the newborn. The condition can lead to jaundice, severe anemia, brain damage and death. This could have contributed to the demise of the Neanderthal population,” Stéphane Mazières, PhD (above), a population geneticist at Aix-Marseille University who led the study into why Neanderthals did not survive, told Live Science. Clinical laboratories that run blood banks and perform blood type testing will find the study results interesting. (Photo copyright: X, formerly Twitter.)

Incompatible Blood Type

Mazières’ team studied ancient genomes to further understand the evolution from Neanderthals and Denisovans to Homo Sapiens. Genome sequencing was used to look at blood groups from “dozens of people who lived between 120,000 and 20,000 years ago.” This uncovered “a rare blood group that could have been fatal to their newborns,” Live Science reported.

The rare blood type discovered was not compatible with either Denisovans or early Homo Sapiens. Additionally, the more diverse blood found in Homo Sapiens may have attributed to a more robust immunity, Discover reported.

“Nowadays, certain blood groups confer an advantage against pathogens such as cholera, malaria, one of the gastroenteritis viruses and, as we’ve seen recently, COVID. We can therefore imagine that the blood groups found in the first Sapiens may have equipped them with a new arsenal to face the new environments encountered as they spread across the world,” Mazières told Discover.

“The contribution of this study is twofold. It enlightens the expansion patterns of Homo Sapiens and recalls the anthropological effectiveness of genetic polymorphisms currently being surveyed for transfusion safety and pregnancy monitoring,” the researchers wrote in Scientific Reports.

Knowing a patient’s blood type is key to ensure immune system acceptance of the blood, leading to successful blood transfusions and preventing fatalities. Focus is given to Rh (Resus) factor’s positive and negative typing and on the antigens responsible for segregating A, B, and O blood types. In the case of Neanderthals, a look at red blood cells was key, Live Science noted.

Modern-day Rh incompatibility, which can occur when an Rh-negative woman is pregnant with an Rh positive fetus, can be discovered during pregnancy and treated with prenatal administration of lab-made immunoglobulin to prevent hemolytic disease of the newborn, Live Science reported. It’s a whole system of healthcare that was certainly not available in Neanderthal times.

“Neanderthals have an Rh blood group that is very rare in modern humans. This Rh variant—a type of RhD, another red blood cell antigen—is not compatible with the variants the team found in the Denisovans or the early Homo Sapiens in their study,” Mazières told Live Science.

Looking Ahead

While this research may not change the way blood is handled today, the new findings serve as a reminder of just how important and varied antigens in human blood type can be and how significant the variances impact individuals. It also provides a window into how subtle differences shape the way civilization grows.

The complexity of red blood cells remains an area worthy of continued research, especially since many of these surface and internal antigens are passed down through generations, Live Science noted.

Also, study results may further the decades-long attempt to create artificial blood that has both an extensive shelf life and is accepted by the immune systems of many different patients. However, that will be a daunting challenge. Over the decades, blood bankers and clinical laboratory scientists have watched many attempts to develop artificial blood come close but fail to demonstrate safety while delivering benefits to patients.                  

—Kristin Althea O’Connor

Related Information:

Neanderthals’ Blood Type May Help Explain Their Demise, New Study Finds

Rapid Change in Red Cell Blood Group Systems After the Main Out of Africa of Homo sapiens

Lack of Blood Type Diversity for Neanderthals May Have Led to Their Demise

Large Study Points to Benefits of Genome Sequencing to Augment Newborn Screening Tests

Researchers find genome sequencing identified conditions missed by standard newborn screening programs that use common clinical laboratory tests

Interim results from a large ongoing pilot study suggest that genome sequencing of newborn children may be more effective than traditional clinical laboratory screening for detection of early-onset genetic conditions. The researchers also found that parents were highly receptive to the idea of performing the sequencing on their newborns.

“The results show us that genome sequencing can radically improve children’s medical care,” said study co-author Joshua Milner, MD, chief of allergy, immunology, and rheumatology services at NewYork-Presbyterian/Columbia University Irving Medical Center, in a Columbia University press release.

The results come from the GUARDIAN (Genomic Uniform-screening Against Rare Disease in All Newborns) study conducted by Columbia University Irving Medical Center, NewYork-Presbyterian (NYP) Health System, and the New York State Department of Health. Collaborators also included Illumina, a maker of next-generation sequencing (NGS) equipment, and GeneDx, a genetic testing company.

Study participants consist of families giving birth at six NYP hospitals in New York City.

The researchers published their findings so far in the Journal of the American Medical Association (JAMA), titled, “Expanded Newborn Screening Using Genome Sequencing for Early Actionable Conditions.”

“Genome sequencing allows us to detect things that cause serious illness and take action to prevent those illnesses in a significant number of children, not just a few rare cases. It should be instituted as the next standard for newborn screening because it can detect so much more than current methods,” said study co-author Joshua Milner, MD (above), chief of allergy, immunology, and rheumatology services at NewYork-Presbyterian/Columbia University Irving Medical Center, in a press release. Study finding suggest genetic sequencing can be more effective than clinical laboratory screening tests for early detection of genetic disorders. (Photo copyright: Columbia University.)

GUARDIAN Study Details

For the pilot study, the researchers sought consent from 5,555 families, with 4,000 (72%) agreeing to participate. The babies studied were born between September 2022 and July 2023. At that time, the researchers screened for 156 treatable conditions. Parents could also choose to add a panel of 99 neurodevelopmental disorders that do not have treatments, but where “affected children may benefit from early intervention,” the press release notes.

The total—255 genetic tests—included the 50 conditions in the standard Newborn Screening Program as a quality control, principal investigator Wendy Chung, MD, PhD, told Healio.

Among the 4,000 participants, 147 children (3.7%) screened positive for one of the conditions. Further testing confirmed diagnoses in 120 children. “Only 10 of these children were detected through standard screening,” the Columbia press release states.

The vast majority—92 of 120 children—were diagnosed with glucose-6-phosphate dehydrogenase (G6PD) deficiency. “G6PD is not included in traditional screening but individuals with G6PD deficiency can have moderate to life-threatening reactions to certain foods and medications which can easily be prevented by avoiding them,” the press release notes.

Screening for Previously Unscreened Treatable Disorders

The New York State Department of Health mandates free Newborn Screening (NBS) in which a blood sample is collected for testing, generally 24 to 36 hours after birth. The test screens for 50 disorders.

Genome sequencing, however, “offers an additional method to improve screening for conditions already included in NBS and to add those that cannot be readily screened because there is no biomarker currently detectable in dried blood spots,” the GUARDIAN researchers wrote in JAMA.

In the GUARDIAN study, families planning to give birth at an NYP hospital can authorize the researchers to perform genome sequencing of the same dried blood spots to screen for additional pre-selected genetic conditions. At present, the study screens for more than 450 conditions, according to the study website.

“It would be prohibitive to screen for all these diseases with standard testing, but with genomic screening, there’s minimal extra cost when adding a condition,” said study co-author Jordan Orange MD, PhD, chair of pediatrics at Columbia University’s Vagelos College of Physicians and Surgeons and physician-in-chief of NewYork-Presbyterian’s Morgan Stanley Children’s Hospital, in the Columbia press release. “We can screen for treatable disorders that we never thought of screening for before.”

GeneDX, which performs the genomic sequencing for GUARDIAN, issued a press release in which it listed other conditions that are not part of the standard screening. These include Long QT syndrome, which the company described as “a rare heart condition that may cause Sudden Infant Death Syndrome (SIDS) and can be treated with beta-blockers.”

GUARDIAN also detected conditions that came up as false negatives in the standard screening, Chung told Healio. One baby had a genetic variant that causes severe combined immunodeficiency disorder (SCID), a rare and often-fatal condition. Chung said that the genomic sequencing identified the condition while the standard newborn screening missed it.

“We know that a bone marrow transplant is a cure for these children, but safety and success are the highest when the transplant occurs in the first few months of life, before the child starts developing infections or other symptoms,” Milner said in the Columbia press release. “Only because of the genomic screening were we able to identify this child in time.”

Excluding the G6PD cases, the positive screening rate was 0.6%, twice the rate of standard screening. As of last November, more than 12,000 babies had been enrolled in the study. The researchers hope to enroll 100,000.

Advances in Genomic Sequencing Bring Benefits to NBS

“In my practice, I’ve seen many patients who’ve spent years going from doctor to doctor with symptoms that no one can explain. But by the time they receive a diagnosis, the window to best manage the disease has usually passed,” said Chung in the Columbia University press release.

Looking ahead, Chung told Healio that she’d like to expand outside of New York, “in part for generalizability to demonstrate that this is something that could be done with our national public health newborn screening system.”

She’d also like to cut the turnaround time from the current three weeks to one week, she said. And she’d like to drive down the cost.          

“Families and pediatricians don’t need to go through those diagnostic odysseys anymore with the genomic technology we now have. We can make the diagnosis at birth,” she said.

The GUARDIAN study shows how advances in genetic testing are moving fast enough that the point has been reached where the classic clinical laboratory methodologies for newborn screening used for decades are becoming outmoded because of the superior performance/cost of genome sequencing. 

—Stephen Beale

Related Information:

In Pioneering Study, Gene Technology Outperforms Standard Newborn Screening Tests

Groundbreaking GUARDIAN Study Shows Benefits of Adding Genome Sequencing to Newborn Screening; Augments and Improves Standard Newborn Screening

Expanded Newborn Screening Using Genome Sequencing for Early Actionable Conditions

Feasibility of Expanded Newborn Screening Using Genome Sequencing for Early Actionable Conditions in a Diverse City

Should Genome Sequencing Be Standard for Newborns?

MUSC Study Finds Decline in Cervical Cancer Strongly Linked to Adoption of HPV Vaccine

Study is first solid evidence that introduction of HPV vaccines may be a factor in the reduction in rates of cervical cancer among those who were vaccinated nearly 20 years ago

Research conducted at the Medical University of South Carolina (MUSC) in Charleston establishes a strong link between the marked decline in cervical cancer cases among young women in American and the introduction of the Human Papillomavirus (HPV) vaccine in 2006, according to reporting by Science News, a journal of the Society for Science.

This success story confirms that a better understanding of what causes cervical cancer—when combined with the development of clinical laboratory tests that detect the HPV virus—were key developments in the fight against this deadly disease.

The study, led by cancer population scientist Ashish Deshmukh, PhD, epidemiologist, professor of public health sciences and co-leader of the cancer control program at the Hollings Cancer Center (HCC) at MUSC, found the connection between the decline in cervical cancer rates and the adoption of the HPV vaccine.

Pathologists and clinical laboratory managers will want to monitor the worldwide effort to eradicate cervical cancer, as many countries focus their efforts on HPV vaccine compliance. The scientists published their findings in the Journal of the American Medical Association (JAMA) titled, “Cervical Cancer Mortality among US Women Younger than 25 Years, 1992-2021.”

The scientists published their findings in the Journal of the American Medical Association (JAMA) titled, “Cervical Cancer Mortality among US Women Younger than 25 Years, 1992-2021.”

“We had a hypothesis that since it’s been almost 16 years, that maybe we might be starting to see [the] initial impact of HPV vaccination on cervical cancer deaths, and that’s exactly what we observed,” Ashish Deshmukh PhD (above), epidemiologist and professor of public health sciences at Medical University of South Carolina in Charleston, told Science News. The MUSC study provides important findings for clinical laboratories and anatomic pathologists providing vaccinations against Human Papillomavirus. (Photo copyright: Medical University of South Carolina.)

MUSC Study Details

Deshmukh’s team examined cervical cancer mortality rates of women younger than 25 from 1992-2021. The team divided data into 3-year periods, noting a “gradual decline in cervical cancer deaths of almost 4%” which brought deaths to .02 per 100,000 people from 2013-2015, Science News reported, adding that the researchers speculated that the “steady drop might be due to improved prior prevention and screening methods for cervical cancer.”

The death rate for cervical cancer continued to trend downward with “a dramatic reduction in mortality over just 60%,” arriving at .007 deaths per 100,000 according to the 2019-2021 data, Science News continued.

In their JAMA article, the MUSC researchers noted a continued positive shift toward lower cervical cancer rates beyond 2021, with a 12% per year decline and 65% reduction overall.

“They’re seeing this precipitous drop in mortality at the time that we would be expecting to see it due to vaccination,” Emily Burger, PhD, professor at the University of Oslo and research scientist at Harvard T.H. Chan School of Public Health told Science News. “Ultimately, we hope we are preventing mortality and death [with the introduction of vaccines], and this study is really supporting that conclusion.”

Nonetheless, a definitive connection to the HPV vaccine was not possible to determine “because it’s unclear whether the women in the study cohort were, in fact, vaccinated,” Science News reported.

Development of the PAP Smear

Cervical cancer was first discovered in 1886. At that time pathologists relied on “examination of tissue biopsies derived from an observable lesion,” LabTAG noted. It was George Papanicolaou, PhD—considered to be the father of cytology—who determined in 1943 that more could be observed via a surface biopsy under a microscope. The Pap Smear was born.

The Pap Smear, for which wider screening began in the US in the late 1950s and 1960s, began to reduce deaths from cervical cancer by the 1990s. But women who did not get an annual pap were the ones generally to be diagnosed with advanced cervical cancer.

By the 1990s, pap smear testing was a major business for clinical laboratories and pathology groups. Fifty-five million pap tests were done annually in the 1990s.

In 2004, clinical laboratories began HPV testing. Then came the HPV vaccine. Introduced in 2006, HPV vaccine programs focused on 12-15 year-old girls with hopes of preventing cervical cancer.

Clinical laboratories in the US today perform many fewer Pap smear tests.

Global Fight against HPV Continues

Many countries are pushing for full eradication of cervical cancer. In “Australia Moves to Fully Eliminate Cervical Cancer by 2035, Especially in Underserved and Diverse Populations,” Dark Daily reported on the land down under’s creation of its National Strategy for the Elimination of Cervical Cancer program in 2010.

Norway is pushing for a full eradication by 2039. 

While efforts overseas appear to focus on HPV vaccine requirements, the US has been hesitant to do the same. The District of Columbia, Hawaii, Virginia, and Rhode Island are the only states to require it by grade seven, Immunize.org notes. Various reasons have kept it from being required in the US, including fear that it might encourage sexual activity in teens.

There is hope that, with a larger focus on cervical cancer, more deaths can be prevented since the cancer itself is slow growing. “When we look at HPV vaccination coverage in the US, we haven’t reached our goal. We have to do better in terms of improving vaccination rates,” Deshmukh told Science News.

As scientists continue to gain a better understanding of causes and prevention of cervical cancer, new clinical laboratory tests may be developed to detect HPV. Thus, lab managers will want to stay in touch with current research as it will surely impact the testing performed by labs in the future.                         

—Kristin Althea O’Connor

Related Information:

Cervical Cancer Mortality among US Women Younger than 25 Years, 1992–2021

Cervical Cancer Deaths Are Plummeting among Young US Women

The History of Cervical Cancer Screening

HPV (Human Papillomavirus) Vaccine Requirements for Secondary School

Australia Moves to Fully Eliminate Cervical Cancer by 2035, Especially in Underserved and Diverse Populations

;