Scientists believe the biodegradable device could someday help detect multiple saliva biomarkers. If true, it might provide a new type of test for clinical laboratories
When it comes to tongue depressors, it turns out you can teach an old dog new tricks. Researchers from National and Kapodistrian University of Athens Greece (NKUA) have taken this simple wooden medical tool and developed a high-tech biosensing device that may someday be useful at the point-of-care in hospitals and as a new type of test for clinical laboratories.
Using diode laser engraving, the researchers developed an “eco-friendly disposable sensor that can measure glucose levels and other biomarkers in saliva,” according to LabMedica.
This proof-of-principle biosensing device demonstrates the feasibility of “simultaneous determination of glucose and nitrite in artificial saliva,” according to the NKUA scientists who hope it will help doctors diagnose a variety of conditions.
In their published paper, the scientists at the University of Athens wrote that their wooden electrochemical biosensing tongue depressor (above) “is an easy-to-fabricate disposable point-of-care chip with a wide scope of applicability to other bioassays,” and that “it paves the way for the low-cost and straightforward production of wooden electrochemical platforms.” Might this and other similar biosensing devices eventually find their way to clinical laboratories for use in identifying and tracking certain biomarkers for disease? (Photo copyright: University of Athens.)
How to Make a High-Tech Tongue Depressor
Though wood is affordable and accessible, it doesn’t conduct electricity very well. The researchers’ first attempt to solve this problem was to use the wood as “a passive substrate” to which they coated “metals and carbon-based inks,” LabMedica reported. After that they tried using high-powered lasers to “char specific regions on the wood, turning those spots into conductive graphite.” But that process was complicated, expensive, and a fire hazard.
The researchers eventually turned to “low-power diode lasers” which have been used successfully “to make polyimide-based sensors but have not previously been applied to wooden electronics and electrochemical sensors,” LabMedica noted.
In their Analytical Chemistry paper, the researchers wrote, “A low-cost laser engraver, equipped with a low-power (0.5 W) diode laser, programmably irradiates the surface of the WTD [wooden tongue depressor], forming two mini electrochemical cells (e-cells). The two e-cells consist of four graphite electrodes: two working electrodes, a common counter, and a common reference electrode. The two e-cells are spatially separated via programmable pen-plotting, using a commercial hydrophobic marker pen.”
In other words, the researchers “used a portable, low-cost laser engraver to create a pattern of conductive graphite electrodes on a wooden tongue depressor, without the need for special conditions. Those electrodes formed two electrochemical cells separated by lines drawn with a water-repellent permanent marker,” states a press release from the American Chemical Society.
“The biosensor was then used to quickly and simultaneously measure nitrite and glucose concentrations in artificial saliva. Nitrite can indicate oral diseases like periodontitis, while glucose can serve as a diagnostic for diabetes. The researchers suggest that these low-cost devices could be adapted to detect other saliva biomarkers and could be easily and rapidly produced on-site at medical facilities,” LabMedica reported.
Benefits of Using Wood
One of the major benefits of using wood for their biosensing device is how environmentally friendly it is. “Since wood is a renewable, biodegradable naturally occurring material, the development of conductive patterns on wood substrates is a new and innovative chapter in sustainable electronics and sensors,” the researchers wrote in Analytical Chemistry.
Additionally, the tongue depressor features “An easy-to-fabricate disposable point-of-care chip with a wide scope of applicability to other bioassays, while it paves the way for the low-cost and straightforward production of wooden electrochemical platforms,” the researchers added.
This adds to a growing trend of developing bioassay products that keep the health of our planet in mind.
“This new BC test is non-toxic, naturally biodegradable and both inexpensive and scalable to mass production, currently costing less than $4.00 per test to produce. Its cellulose fibers do not require the chemicals used to manufacture paper, and the test is almost entirely biodegradable,” a UPenn blog post noted.
New Future Tool Use in Clinical Diagnostics
Who could have predicted that the lowly wooden tongue depressor would go high tech with technology that uses lasers to convert it to an electrochemical multiplex biosensing device for oral fluid analysis? This is yet another example of technologies cleverly applied to classic devices that enable them to deliver useful diagnostic information about patients.
And while a biosensing tongue depressor is certainly a diagnostic tool that may be useful for nurses and physicians in clinic and hospital settings, with further technology advancements, it could someday be used to collect specimens that measure more than glucose and nitrites.
Study findings may lead to new clinical laboratory tests, as well as vaccines and immunotherapies for neurodegenerative diseases
Research into the human genome continues to produce useful new insights. This time, a study led by researchers at Stanford University identified a genetic variation that is believed to help “slow or even stall” progression of neurodegenerative diseases, including Alzheimer’s and Parkinson’s, according to a press release. Because these genetic variations are common, it is likely that diagnostic tests can be developed for use by clinical laboratories.
Researchers at Stanford Medicine led the study which discovered that approximately one in five individuals carry the gene variant, a protective allele identified as DR4 (aka, HLA-DR4). It’s one of a large number of alleles found in a gene known as DRB1.
DRB1 is part of a family of genes collectively known as the human lymphocyte antigen complex or HLA. The HLA-DRB1 gene plays a crucial role in the ability of the immune system to see a cell’s inner contents.
“In an earlier study, we’d found that carrying the DR4 allele seemed to protect against Parkinson’s disease,” said Emmanuel Mignot, MD, PhD (above), Director of the Stanford Center for Narcolepsy, in a Stanford press release. “Now, we’ve found a similar impact of DR4 on Alzheimer’s disease.” Clinical laboratories may soon have new vaccines for both neurodegenerative diseases. (Photo copyright: Stanford University.)
DR4 Found to Impact Both Parkinson’s and Alzheimer’s Diseases
To perform their research, the team examined a large collection of medical and genetic databases from 176,000 people who had either Alzheimer’s or Parkinson’s disease. The people involved in the study were from numerous countries located in East Asia, Europe, the Middle East and South America. Their genomes were then compared with people who did not have the diseases, focusing on the incidence and age of onset.
“In an earlier study we’d found that carrying the DR4 allele seemed to protect against Parkinson’s disease,” said Mignot in the Stanford press release. “Now, we’ve found a similar impact of DR4 on Alzheimer’s disease.”
The team found that about 20% to 30% of people carry DR4, and that they have around a 10% risk reduction for developing the two diseases.
“That this protective factor for Parkinson’s wound up having the same protective effect with respect to Alzheimer’s floored me,” said Emmanuel Mignot, MD, PhD, the Craig Reynolds Professor of Sleep Medicine in the Department of Psychiatry and Behavioral Sciences at Stanford University and the Director of the Stanford Center for Narcolepsy, in the Stanford Medicine press release. “The night after we found that out, I couldn’t sleep.”
The scientists also analyzed data from autopsied brains of more than 7,000 Alzheimer’s patients and discovered that individuals who carry DR4 had fewer neurofibrillary tangles and that those tangles are composed mainly of modified tau proteins, a common biomarker for Alzheimer’s.
The presence of these tangles corresponds with the severity of Alzheimer’s disease. They are not typically seen in Parkinson’s patients, but the Stanford team found that Parkinson’s patients who did carry DR4 experienced later onset of symptoms.
Mignot stated that tau, which is essential in Alzheimer’s, may also play a role in Parkinson’s, but that further research is required to prove its function.
Both diseases are characterized by the progressive loss of certain nerve cells or neurons in the brain and are linked to an accumulation of abnormal proteins. The Stanford researchers suggested that the DR4 gene variant may help protect individuals from Alzheimer’s and Parkinson’s by preventing the buildup of tau proteins.
“This is a very interesting study, providing additional evidence of the involvement of the immune system in the pathogenesis of Alzheimer’s and Parkinson’s,” neurologist Wassim Elyaman, PhD, Assistant Professor of Neurological Sciences in Neurology, the Taub Institute and the Institute for Genomic Medicine at Columbia University, told Live Science.
New Vaccines and Immunotherapies
According to the Alzheimer’s Association, more than six million Americans are currently living with Alzheimer’s disease and approximately one in three Americans die with Alzheimer’s or another dementia.
The Parkinson’s Foundation states that nearly one million Americans are currently living with Parkinson’s disease, and that number is expected to rise to 1.2 million by 2030. Parkinson’s is the second-most common neurodegenerative disease after Alzheimer’s disease.
Even though the genetic analysis of the Stanford research is strong, more immune cell and blood-based research is needed to definitively establish how tau is connected to the two diseases.
This research could have implications for clinical laboratories by giving them biomarkers for a useful new diagnostic test, particularly for diagnosing Alzheimer’s and Parkinson’s.
Further, Mignot suggested that an effective vaccine could delay the onset or slow the progression of both diseases. He hopes to test his hypothesis on genetically modified mice and eventually human subjects.
Collected data could give healthcare providers and clinical laboratories a practical view of individuals’ oral microbiota and lead to new diagnostic assays
When people hear about microbiome research, they usually think of the study of gut bacteria which Dark Daily has covered extensively. However, this type of research is now expanding to include more microbiomes within the human body, including the oral microbiome—the microbiota living in the human mouth.
One example is coming from Genefitletics, a biotech company based in New Delhi, India. It recently launched ORAHYG, the first and only (they claim) at-home oral microbiome functional activity test available in Asia. The company is targeting the direct-to-consumer (DTC) testing market.
According to the Genefitletics website, the ORAHYG test can decode the root causes of:
“Using oral microbial gene expression sequencing technology and its [machine learning] model, [Genefitletics] recently debuted its oral microbiome gene expression solution, which bridges the gap between dentistry and systemic inflammation,” ETHealthworld reported.
“The molecular insights from this test would give an unprecedented view of functions of the oral microbiome, their interaction with gut microbiome and impact on metabolic, cardiovascular, cognitive, skin, and autoimmune health,” BioSpectrum noted.
“Microbes, the planet Earth’s original inhabitants, have coevolved with humanity, carry out vital biological tasks inside the body, and fundamentally alter how we think about nutrition, medicine, cleanliness, and the environment,” Sushant Kumar (above), founder and CEO of Genefitletics, told the Economic Times. “This has sparked additional research over the past few years into the impact of the trillions of microorganisms that inhabit the human body on our health and diverted tons of funding into the microbiome field.” Clinical laboratories may eventually see an interest and demand for testing of the oral microbiome. (Photo copyright: ETHealthworld.)
Imbalanced Oral Microbiome Can Trigger Disease
The term microbiome refers to the tiny microorganisms that reside on and inside our bodies. A high colonization of these microorganisms—including bacteria, fungi, yeast, viruses, and protozoa—live in our mouths.
“Mouth is the second largest and second most diverse colonized site for microbiome with 770 species comprising 100 billion microbes residing there,” said Sushant Kumar, founder and CEO of Genefitletics, BioSpectrum reported. “Each place inside the mouth right from tongue, throat, saliva, and upper surface of mouth have a distinctive and unique microbiome ecosystem. An imbalanced oral microbiome is said to trigger onset and progression of type 2 diabetes, arthritis, heart diseases, and even dementia.”
The direct-to-consumer ORAHYG test uses a saliva sample taken either by a healthcare professional or an individual at home. That sample is then sequenced through Genefitletics’ gene sequencing platform and the resulting biological data set added to an informatics algorithm.
Genefitletics’ machine-learning platform next converts that information into a pre-symptomatic molecular signature that can predict whether an individual will develop a certain disease. Genefitletics then provides that person with therapeutic and nutritional solutions that can suppress the molecules that are causing the disease.
“The current industrial healthcare system is really a symptom care [system] and adopts a pharmaceutical approach to just make the symptoms more bearable,” Kumar told the Economic Times. “The system cannot decode the root cause to determine what makes people develop diseases.”
Helping People Better Understand their Health
Founded in 2019, Genefitletics was created to pioneer breakthrough discoveries in microbial science to promote better health and increase longevity in humans. The company hopes to unravel the potential of the oral microbiome to help people fend off illness and gain insight into their health.
“Microorganisms … perform critical biological functions inside the body and transform our approach towards nutrition, medicine, hygiene and environment,” Kumar told CNBC. “It is important to understand that an individual does not develop a chronic disease overnight.
“It starts with chronic inflammation which triggers pro-inflammatory molecular indications. Unfortunately, these molecular signatures are completely invisible and cannot be measured using traditional clinical grade tests or diagnostic investigations,” he added. “These molecular signatures occur due to alteration in gene expression of gut, oral, or vaginal microbiome and/or human genome. We have developed algorithms that help us in understanding these alterations way before the clinical symptoms kick in.”
Genefitletics plans to utilize individuals’ collected oral microbiome data to determine their specific nutritional shortcomings, and to develop personalized supplements to help people avoid disease.
The company also produces DTC kits that analyze gut and vaginal microbiomes as well as a test that is used to evaluate an infant’s microbiome.
“The startup wants to develop comparable models to forecast conditions like autism, PCOS [polycystic ovarian syndrome], IBD [Inflammatory bowel disease], Parkinson’s, chronic renal [kidney] disease, anxiety, depression, and obesity,” the Economic Times reported.
Time will tell whether the oral microbiome tests offered by this company prove to be clinically useful. Certainly Genefitletics hopes its ORAHYG test can eventually provide healthcare providers—including clinical laboratory professionals—with a useful view of the oral microbiome. The collected data might also help individuals become aware of pre-symptomatic conditions that make it possible for them to seek confirmation of the disease and early treatment by medical professionals.
Doctors report difficulty differentiating COVID-19 from other viral infections, impacting clinical laboratory test orders
Because the SARS-CoV-2 coronavirus is in the same family of viruses that cause the common cold and influenza, virologists expected this virus—which caused the global COVID-19 pandemic—would evolve and mutate into a milder form of infection. Early evidence from this influenza season seems consistent with these expectations in ways that will influence how clinical laboratories offer tests for different respiratory viruses.
While new variants of the SARS-CoV-2 virus continue to appear, indications are that early in this flu season individuals infected with the more recent variants are experiencing milder symptoms when compared to the last few years. Doctors report they find it increasingly difficult to distinguish COVID-19 infections from allergies or the common cold because patients’ symptoms are less severe, according to NBC News.
This, of course, makes it challenging for doctors to know the most appropriate clinical laboratory tests to order to help them make accurate diagnoses.
“It isn’t the same typical symptoms that we were seeing before. It’s a lot of congestion, sometimes sneezing, usually a mild sore throat,” Erick Eiting, MD, Vice Chair of Operations for Emergency Medicine at Mount Sinai Hospital in New York City, told NBC News. “Just about everyone who I’ve seen has had really mild symptoms. The only way that we knew that it was COVID was because we happened to be testing them.” Knowing which tests for respiratory viruses that clinical laboratories need to perform may soon be the challenge for doctors. (Photo copyright: Mt. Sinai.)
Milder COVID-19 Symptoms Follow a Pattern
Previous hallmarks of a COVID-19 infection included:
Loss of taste,
loss of smell,
dry cough,
fever,
sore throat,
diarrhea,
body aches,
headaches.
However, physicians now observe milder symptoms of the infection that follow a distinct pattern and which are mostly concentrated in the upper respiratory tract.
Grace McComsey, MD, Vice President of Research and Associate Chief Scientific Officer at University Hospitals Health System (UH) in Cleveland, Ohio, told NBC News that some patients have described their throat pain as “a burning sensation like they never had, even with Strep in the past.”
“Then, as soon as the congestion happens, it seems like the throat gets better,” she added.
In addition to the congestion, some patients are experiencing:
headache,
fever,
chills,
fatigue,
muscle aches,
post-nasal drip.
McComsey noted that fatigue and muscle aches usually only last a couple of days, but that the congestion can sometimes last a few weeks. She also estimated that only around 10-20% of her newest COVID patients are losing their sense of smell or taste, whereas early in the pandemic that number was closer to 60-70% of her patients.
Doctors also noted that fewer patients are requiring hospitalization and that many recover without the use of antivirals or other treatments.
“Especially since July, when this recent mini-surge started, younger people that have upper respiratory symptoms—cough, runny nose, sore throat, fever and chills—99% of the time they go home with supportive care,” said Michael Daignault, MD, an emergency physician at Providence Saint Joseph Medical Center in Burbank, California.
Milder SARS-CoV-2 Variants Should Still be Taken Seriously
Doctors have varying opinions regarding why the current COVID-19 variants are milder. Some believe the recent variants simply aren’t as good at infecting the lungs as previous variants.
“Overall, the severity of COVID-19 is much lower than it was a year ago and two years ago,” Dan Barouch, MD, PhD, Director of the Center for Virology and Vaccine Research at Beth Israel Deaconess Medical Center, told NBC News. “That’s not because the variants are less robust. It’s because the immune responses are higher.”
McComsey added that she doesn’t think mild cases should be ignored as she is still seeing new cases of long COVID with rapid heart rate and exercise intolerance being among the most common lingering symptoms. Re-infections also add to the risks associated with long COVID.
“What we’re seeing in long COVID clinics is not just the older strains that continue to be symptomatic and not getting better—we’re adding to that number with the new strain as well,” McComsey said. “That’s why I’m not taking this new wave any less seriously.”
Clinical Laboratory COVID-19 Testing May Decrease
According to Andrew Read, PhD, Interim Senior Vice President for Research and Evan Pugh University Professor of Biology and Entomology at Pennsylvania State University, there is nothing unexpected or startling about the coronavirus acquiring new mutations.
“When a mutation confers an interesting new trick that’s got an advantage, it’s going to be popping up in many different places,” Read told the New York Times. “Everything we see is just consistent with how you imagine virus evolution proceeding in a situation where a new virus has jumped into a novel host population.”
Data from the Centers for Disease Control and Prevention’s COVID-19 Data Tracker—which reports weekly hospitalizations, deaths, emergency department (ED) visits, and COVID-19 test positivity results—shows infection trends fluctuating, but overall, they are decreasing.
For the week of October 21, 2023, there were 16,186 hospitalizations due to COVID-19 compared to the highest week recorded (January 15, 2022) with 150,674 hospitalizations nationwide.
The highest number of deaths reported in a single week were 25,974 for the week of January 8, 2021, while 637 patients perished from COVID-19 during the week of October 21, 2023.
In January of 2021, COVID accounted for 13.8% of all ED visits and in October 2023, COVID-19 was responsible for 1.3% of ED visits.
“What I think we’re seeing is the virus continuing to evolve, and then leading to waves of infection, hopefully mostly mild in severity,” Barouch told The New York Times.
As severity of COVID-19 infections continues to fall, so, presumably, will demand for COVID-19 testing which has been a source of revenue for clinical laboratories for several years.
Genetic engineers at the lab used the new tool to generate a catalog of 71 million possible missense variants, classifying 89% as either benign or pathogenic
Genetic engineers continue to use artificial intelligence (AI) and deep learning to develop research tools that have implications for clinical laboratories. The latest development involves Google’s DeepMind artificial intelligence lab which has created an AI tool that, they say, can predict whether a single-letter substitution in DNA—known as a missense variant (aka, missense mutation)—is likely to cause disease.
The Google engineers used their new model—dubbed AlphaMissense—to generate a catalog of 71 million possible missense variants. They were able to classify 89% as likely to be either benign or pathogenic mutations. That compares with just 0.1% that have been classified using conventional methods, according to the DeepMind engineers.
This is yet another example of how Google is investing to develop solutions for healthcare and medical care. In this case, DeepMind might find genetic sequences that are associated with disease or health conditions. In turn, these genetic sequences could eventually become biomarkers that clinical laboratories could use to help physicians make earlier, more accurate diagnoses and allow faster interventions that improve patient care.
“AI tools that can accurately predict the effect of variants have the power to accelerate research across fields from molecular biology to clinical and statistical genetics,” wrote Google DeepMind engineers Jun Cheng, PhD (left), and Žiga Avsec, PhD (right), in a blog post describing the new tool. Clinical laboratories benefit from the diagnostic biomarkers generated by this type of research. (Photo copyrights: LinkedIn.)
AI’s Effect on Genetic Research
Genetic experiments to identify which mutations cause disease are both costly and time-consuming, Google DeepMind engineers Jun Cheng, PhD, and Žiga Avsec, PhD, wrote in a blog post. However, artificial intelligence sped up that process considerably.
“By using AI predictions, researchers can get a preview of results for thousands of proteins at a time, which can help to prioritize resources and accelerate more complex studies,” they noted.
Of all possible 71 million variants, approximately 6%, or four million, have already been seen in humans, they wrote, noting that the average person carries more than 9,000. Most are benign, “but others are pathogenic and can severely disrupt protein function,” causing diseases such as cystic fibrosis, sickle-cell anemia, and cancer.
“A missense variant is a single letter substitution in DNA that results in a different amino acid within a protein,” Cheng and Avsec wrote in the blog post. “If you think of DNA as a language, switching one letter can change a word and alter the meaning of a sentence altogether. In this case, a substitution changes which amino acid is translated, which can affect the function of a protein.”
In the Google DeepMind study, AlphaMissense predicted that 57% of the 71 million variants are “likely benign,” 32% are “likely pathogenic,” and 11% are “uncertain.”
The AlphaMissense model is adapted from an earlier model called AlphaFold which uses amino acid genetic sequences to predict the structure of proteins.
“AlphaMissense was fed data on DNA from humans and closely related primates to learn which missense mutations are common, and therefore probably benign, and which are rare and potentially harmful,” The Guardian reported. “At the same time, the program familiarized itself with the ‘language’ of proteins by studying millions of protein sequences and learning what a ‘healthy’ protein looks like.”
The model assigned each variant a score between 0 and 1 to rate the likelihood of pathogenicity [the potential for a pathogen to cause disease]. “The continuous score allows users to choose a threshold for classifying variants as pathogenic or benign that matches their accuracy requirements,” Avsec and Cheng wrote in their blog post.
However, they also acknowledged that it doesn’t indicate exactly how the variation causes disease.
The engineers cautioned that the predictions in the catalog are not intended for clinical use. Instead, they “should be interpreted with other sources of evidence.” However, “this work has the potential to improve the diagnosis of rare genetic disorders, and help discover new disease-causing genes,” they noted.
Genomics England Sees a Helpful Tool
BBC noted that AlphaMissense has been tested by Genomics England, which works with the UK’s National Health Service. “The new tool is really bringing a new perspective to the data,” Ellen Thomas, PhD, Genomics England’s Deputy Chief Medical Officer, told the BBC. “It will help clinical scientists make sense of genetic data so that it is useful for patients and for their clinical teams.”
AlphaMissense is “a big step forward,” Ewan Birney, PhD, Deputy Director General of the European Molecular Biology Laboratory (EMBL) told the BBC. “It will help clinical researchers prioritize where to look to find areas that could cause disease.”
Other experts, however, who spoke with MIT Technology Review were less enthusiastic.
Heidi Rehm, PhD, co-director of the Program in Medical and Population Genetics at the Broad Institute, suggested that the DeepMind engineers overstated the certainty of the model’s predictions. She told the publication that she was “disappointed” that they labeled the variants as benign or pathogenic.
“The models are improving, but none are perfect, and they still don’t get you to pathogenic or not,” she said.
“Typically, experts don’t declare a mutation pathogenic until they have real-world data from patients, evidence of inheritance patterns in families, and lab tests—information that’s shared through public websites of variants such as ClinVar,” the MIT article noted.
Is AlphaMissense a Biosecurity Risk?
Although DeepMind has released its catalog of variations, MIT Technology Review notes that the lab isn’t releasing the entire AI model due to what it describes as a “biosecurity risk.”
The concern is that “bad actors” could try using it on non-human species, DeepMind said. But one anonymous expert described the restrictions “as a transparent effort to stop others from quickly deploying the model for their own uses,” the MIT article noted.
And so, genetics research takes a huge step forward thanks to Google DeepMind, artificial intelligence, and deep learning. Clinical laboratories and pathologists may soon have useful new tools that help healthcare provider diagnose diseases. Time will tell. But the developments are certain worth watching.
Cellular healthcare is an approach that goes beyond clinical laboratory testing to identify the location of specific cancer cells and aid in treatment decisions
Advances in synthetic biology and genetic engineering are leading to development of bacterial biosensors that could eventually aid pathologists and clinical laboratories in diagnosis of many types of cancers.
One recent example comes from researchers at the University of California San Diego (UCSD) who worked with colleagues in Australia to engineer bacteria that work as “capture agents” and bind to tumorous material.
The KRAS gene is associated with colorectal cancer. The researchers named their development the Cellular Assay for Targeted CRISPR-discriminated Horizontal gene transfer (CATCH).
CATCH successfully detected cancer in the colons of mice. The researchers believe it could be used to diagnose cancers, as well as infections and other diseases, in humans as well, according to a UCSD news release.
“If bacteria can take up DNA, and cancer is defined genetically by a change in its DNA, then, theoretically, bacteria could be engineered to detect cancer,” gastroenterologist Daniel Worthley, PhD, a cancer researcher at Colonoscopy Clinic in Brisbane, Australia, told MedicalResearch.com. This research could eventually provide clinical laboratories and anatomic pathologists with new tools to use in diagnosing certain types of cancer. (Photo copyright: Colonoscopy Clinic.)
Tapping Bacteria’s Natural Competence
In their Science paper, the researchers acknowledged other synthetic biology achievements in cellular biosensors aimed at human disease. But they noted that more can be done by leveraging the “natural competence” skill of bacteria.
“Biosensors have not yet been engineered to detect specific extracellular DNA sequences and mutations. Here, we engineered naturally competent Acinetobacter baylyi (A. baylyi) to detect donor DNA from the genomes of colorectal cancer cells, organoids, and tumors,” they wrote.
“Many bacteria can take up DNA from their environment, a skill known as natural competence,” said Rob Cooper, PhD, co-first author of the study and a scientist at US San Diego’s Synthetic Biology Institute, in the news release. A. baylyi is a type of bacteria renowned for success in doing just that, the NCI article pointed out.
This enabled them to explore “free-floating DNA sequences on a genomic level.”
Those sequences were compared to “known cancer DNA sequences.”
A. baylyi (genetically modified) was tested on its ability to detect “mutated and healthy KRAS DNA.”
Only bacteria that had “taken up mutated copies of KRAS … would survive treatment with a specific drug.”
“It was incredible when I saw the bacteria that had taken up the tumor DNA under the microscope. The mice with tumors grew green bacterial colonies that had acquired the ability to be grown on antibiotic plates,” said Josephine Wright, PhD, Senior Research Fellow, Gut Cancer Group, South Australian Health and Medical Research Institute (SAHMRI), in the news release.
Detecting DNA from Cancer Cells In Vitro and in Mice
Findings in vitro and in mice include the following:
The engineered bacteria enabled detection of DNA with KRAS G12D from colorectal cancer cells made in the lab, NCI reported.
When mice were injected with colorectal cancer cells, the researchers’ technology found tumor DNA, Engadget reported.
The study adds to existing knowledge of horizontal gene transfer from bacteria to bacteria, according to UCSD.
“We observed horizontal gene transfer from the tumor to the sensor bacteria in our mouse model of colorectal cancer. This cellular assay for targeted, CRISPR-discriminated horizontal gene transfer (CATCH) enables the biodetection of specific cell-free DNA,” the authors wrote in Science.
“Colorectal cancer seemed a logical proof of concept as the colorectal lumen is full of microbes and, in the setting of cancer, full of tumor DNA,” gastroenterologist Daniel Worthley, PhD, a cancer researcher at Colonoscopy Clinic in Brisbane, Australia, told MedicalResearch.com.
Finding More Cancers and Treatment
More research is needed before CATCH is used in clinical settings. The scientists are reportedly planning on adapting CATCH to multiple bacteria that can locate other cancers and infections.
“The most exciting aspect of cellular healthcare … is not in the mere detection of disease. A laboratory can do that,” wrote Worthley in The Conversation. “But what a laboratory cannot do is pair the detection of disease (a diagnosis) with the cells actually responding to the disease [and] with appropriate treatment.
“This means biosensors can be programmed so that a disease signal—in this case, a specific sequence of cell-free DNA—could trigger a specific biological therapy, directly at the spot where the disease is detected in real time,” he added.
Clinical laboratory scientists, pathologists, and microbiologists may want to stay abreast of how the team adapts CATCH, and how bacterial biosensors in general continue to develop to aid diagnosis of diseases and improve ways to target treatment.