News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

University of Utah Study Points to Genetic Link for High Risk of Stillbirth

Researchers at the university suggested their findings could lead to new genetic tests that could be offered by medical laboratories

New research conducted at the University of Utah suggests that clinical laboratories may someday be able to deploy genetic tests to indicate whether a couple has a higher-than-average risk of stillbirth.

This is yet another example of how researchers are cracking DNA’s code to understand how certain gene variants may affect the healthcare of offspring. The knowledge produced by this research, as confirmed by additional studies, may lead to genetic markers that medical laboratories can use to diagnose the risk of stillbirth using the parent’s DNA.

The researchers published their study in the British Journal of Obstetrics and Gynaecology (BJOG), titled “Familial Aggregation of Stillbirth: A Pedigree Analysis of a Matched Case–Control Study.”

Jessica Page, MD

“Stillbirth is one of those problems that is so tragic and life-changing,” said study co-author Jessica Page, MD (above). “It is especially frustrating when you don’t have a good answer for why it happens. This knowledge may give us the opportunity to change how we risk stratify people and reduce their risk through prevention.” Should this research be validated, clinical laboratories may soon have new genetics tests to help doctors identify risk for stillbirth. (Photo copyright: Intermountain Healthcare.)

Can Stillbirth be Prevented?

Jessica Page, MD, an assistant professor in the Department of Obstetrics and Gynecology at the University of Utah School of Medical and co-author of the 2022 study, was lead author of a 2018 study that estimated nearly one-fourth of stillbirths are preventable.

“Stillbirth rate reduction has been slow in the US and we think many stillbirths may be potentially preventable,” she said in a university press release. “This is motivating us to look for those genetic factors so we can achieve more dramatic rate reduction.”

According to the press release, the University of Utah researchers found that stillbirth “can be inherited and tends to be passed down through male members of the family. That risk preferentially comes from the mother’s or father’s male relatives—their brothers, fathers, grandfathers, uncles, or male cousins. But the odds of a couple losing a baby to stillbirth are even greater when the condition comes from the father’s side of the family.”

The researchers made this discovery by analyzing data from the Utah Population Database (UPDB), which contains information on eight million people who were born in the state or have other connections there. The database is maintained by the Huntsman Cancer Institute at the University of Utah. It includes genealogical information and health records that allowed the researchers to trace incidence of stillbirths across multiple generations of families.

The researchers examined 9,404 stillbirth cases between 1978 and 2019, along with 18,808 live births that served as controls. They identified 390 multi-generational families with high numbers of stillbirths. Within that group, they looked at incidence of stillbirth among first-, second-, and third-degree relatives of stillborn babies. They then compared those numbers with data from unaffected families.

“We were able to evaluate multigenerational trends in fetal death as well as maternal and paternal lineages to increase our ability to detect a familial aggregation of stillbirth,” said genetic epidemiologist Tsegaselassie Workalemahu, PhD, lead author of the study. “Not many studies have examined inherited genetic risk for stillbirth because of a lack of data. The Utah Population Database allows for a more rigorous evaluation than has been possible in the past.”

Workalemahu described the research as “an important step toward identifying specific genes that increase the risk of stillbirth, which could one day lead to better diagnosis and prevention,” according to the university press release.

One caveat, the press release notes, is that Utah’s population is disproportionately of northern European descent. “Future studies will need to determine whether the trends hold true among people of different races and ethnicities,” it stated.

Call for More Testing

The University of Utah study is part of a larger effort to gain a greater understanding of the causes of stillbirths.

“Researchers and national obstetric groups, including the American College of Obstetricians and Gynecologists and the Society for Maternal-Fetal Medicine, have called on doctors and hospitals to offer a stillbirth evaluation, a systematic assessment that includes placental exams, genetic testing, and autopsies,” states a recent story from ProPublica.

The story notes that “more than 20,000 pregnancies in the US end in stillbirth,” and in one in three of those cases, the cause is not determined.

Drucilla Roberts, MD, an obstetric and perinatal pathologist at Massachusetts General Hospital (MGH), told ProPublica that at a minimum, “the placenta should definitely be evaluated in every stillbirth.” But citing CDC data, the story notes that this is done in only 65% of stillbirths, and autopsies are performed in less than 20%.

“Experts blame the low rates on several factors,” the story states. “Because an autopsy often is performed in the days following a stillbirth, doctors and nurses have to ask families soon after they receive news of the death if they would like one. Many families can’t process the loss, let alone imagine their baby’s body being cut open. What’s more, many doctors aren’t trained in the advantages of an autopsy, or in communicating with parents about the exam.”

One consequence, ProPublica notes, is that clinicians are ill-equipped to advise patients on how to reduce risk in future pregnancies. The story describes the case of Karen Gibbins, MD, a maternal-fetal medicine specialist and an assistant professor of obstetrics and gynecology at the Oregon Health and Science University (OHSU) in Portland.

An Opportunity for Pathologists

Gibbins’ son was stillborn in 2018. She asked for an autopsy and learned that her son “had a rare disease caused by her antibodies attacking the cells in his liver,” the story states. When she became pregnant again, her doctor prescribed antibody infusions and she later gave birth to a healthy son. “If we had not had that autopsy, my third child would have died as well,” she told ProPublica.

This parent’s comment about the value of the autopsy done after her son’s stillbirth identifies an opportunity for the pathology profession. For several decades, health plans have become ever more reluctant to pay for autopsies. Yet, pathologists know the value that autopsies can provide.

The immediate value comes from revealing useful insights about all the health conditions of the deceased. The long-term value comes from the ability to gather the findings across a large number of autopsies that can contribute to new knowledge about health conditions that physicians use to improve the diagnoses of different health conditions.

Thus, with the publication of this peer-reviewed study about the connection between genetic variations and stillbirth, there is the opportunity for some of the nation’s pathology societies to advocate for funding a pilot program to fund more autopsies of stillborn babies, specifically to add more knowledge about the role of gene mutations as a causative factor in stillbirths.

Stephen Beale

Related Information:

Increased Risk for Stillbirth Passed Down Through Fathers, Male Relatives

Familial Aggregation of Stillbirth: A Pedigree Analysis of a Matched Case–Control Study

Potentially Preventable Stillbirth in a Diverse U.S. Cohort

Raising the Bar on Stillbirth Research

Study Finds Genes Might Play Major Factor in Stillbirths

Risk of Stillbirth Linked to Father’s Family History, Study Suggests

After a Stillbirth, an Autopsy Can Provide Answers. Too Few of Them Are Being Performed

Her Child Was Stillborn at 39 Weeks. She Blames a System That Doesn’t Always Listen to Mothers

University College London Uses 3D Printers to Create Custom Prescriptions, What Does That Mean for Clinical Laboratories and Precision Medicine?

As 3D printing technology gains acceptance with pharmaceutical companies, clinical laboratories could see increased demand for pharmacogenomic testing

Will physicians someday “print” prescription drugs for patients in-office? It sounds like science fiction, but research being conducted at the University College London (UCL) indicates the capability may be closer than we think, and it could bring about a new type of collaboration between clinical laboratories, ordering physicians, and pharmacies.

UCL’s new 3D technique, which it calls “volumetric 3D printing,” is intended to enable the pharmaceutical industry to tailor drug dosage, shape/size, and release to an individual patient’s needs and preference. A key element of precision medicine.

According to GlobalData Healthcare, 3D printing also can “significantly reduce cost, wastes, and economic burden as printers only deposit the exact amount of raw materials required.”

The researchers published their findings in the journal Additive Manufacturing, titled, “Volumetric 3D Printing for Rapid Production of Medicines.”

Fred Parietti, PhD

3D printing may enable pharmaceutical companies to address gender and racial disparities in prescription drug manufacturing through a developing technology that could have implications for clinical laboratory testing. Fred Parietti, PhD (above), co-founder and CEO of Multiply Labs, a technology company that develops robotics for precision medicine pharmaceuticals, told 3D Natives, “Currently, medications are developed especially for white adult men, which means that all women and children have an excessive prescription for their bodies. This fact underlines the importance of the advent of personalized medicines, as well as highlighting the individuality of each patient, since the error in the dosage of certain active ingredients can even lead to the malfunctioning of some treatments.” (Photo copyright: Multiply Labs.)

.

Increased Demand for Pharmacogenomic Testing

Though 3D printing of prescription drugs is not directly in the clinical laboratory/pathology space, it is noteworthy because it shows how technological advancements are progressing that actualize the ability to deliver precision medicine care to individual patients.

In turn, this could increase physician/patient demand for pharmacogenomic tests performed by clinical laboratories. The test results would be used by treating physicians to determine proper dosages for their individual patients prior to ordering 3D-printed drugs.

Being able to provide medication tailored to patients’ specific needs could bring about a revolution in pharmaceutical manufacturing. If 3D printed prescription drugs become mainstream, the demands could affect the clinical laboratory and pathology industries as well.

How Far Are We from Mass Production of 3D Printed Drugs?

The first and only 3D printed pharmaceutical drug on the American market is Spritam (levetiracetam) an anti-epileptic drug developed by Aprecia Pharmaceuticals, according to Medical Device Network. It received FDA clearance under the name Keppra in 1999.

Headquartered in Blue Ash, Ohio, Aprecia’s patented ZipDose manufacturing process allows 3D-printed pills to hold a larger dosage and dissolve rapidly. They currently have the only FDA process-validated 3D printing platform for commercial-scale drug production. They are leading the way on this new 3D technology and others are following suit.

FabRx, a start-up 3D printing company developed by academic researchers in 2014 at the University College London, released its first pharmaceutical 3D printer for personalized medicine called M3DIMAKER according to LabioTech.eu. The system is “controlled by specialized software, allowing the selection of the required dose by the pharmacist according to the prescription given by the clinician,” the company’s website notes.

The technology also allows for additional customization of pills, including the application of Braille for visually impaired patients, and printing of Polypills, which combine more than one drug into a single pill.

Other company’s developing 3D printing of pharmaceuticals, according to LabioTech.eu, include:

  • Germany’s Merck: currently in clinical trials of 3D printing medication with the goal of reaching large scale production.
  • China’s Triastek: which holds “41 patents that account for more than 20% of global 3D printing pharmaceuticals applications.”
  • GlaxoSmithKline of the UK: which has partnered with the University of Nottingham to study 3D printing technology.

We are still far away from large scale production of drugs using 3D printing, but that doesn’t mean it should not be on clinical laboratory leaders’ radar.

The rise of 3D printing technology for precision medicine could lead to big changes in the pharmaceutical world and alter how patients, providers, and clinical laboratories interact. It also could increase demand for pharmacogenomic testing to determine the best dosage for individual patients. This breakthrough shows how one line of technology research and development may, as it reaches clinical use, engage clinical laboratories.

Ashley Croce

Related Information:

3D-Printed Tablets Offer Taste of Personalized Seven-Second Medicine

Volumetric 3D Printing for Rapid Production of Medicines

3D Printing of Drugs Can Revolutionize Personalized Medicine and Improve Sustainability

Are 3D Printed Drugs the Future of Personalized Medicine?

Seeing Drugs in 3D

Five Companies Personalizing Treatments with 3D Printed Drugs

The Advent of a New Era in Digital Healthcare: A Role for 3D Printing Technologies in Drug Manufacturing?

FDA: A Basic Guide to Process Validation in the Pharmaceutical Industry

New Research Challenges Long-Held Theory about Causes of Alzheimer’s Disease, Creating the Possibility of Useful New Biomarkers for Clinical Laboratory Tests

University of Cincinnati researchers hypothesize that low levels of amyloid-beta protein, not amyloid plaques, are to blame

New research from the University of Cincinnati (UC) and Karolinska Institute in Sweden challenges the prevailing theory about the causes of Alzheimer’s disease, suggesting the possibility of new avenues for the development of effective clinical laboratory assays, as well as effective therapies for treating patients diagnosed with Alzheimer’s.

Scientists have long theorized that the disease is caused by a buildup of amyloid plaques in the brain. These plaques are hardened forms of the amyloid-beta protein, according to a UC news story.

However, in their findings published in the Journal of Alzheimer’s Disease, titled “High Soluble Amyloid-β42 Predicts Normal Cognition in Amyloid-Positive Individuals with Alzheimer’s Disease-Causing Mutations,” the researchers advanced an alternative hypothesis—that Alzheimer’s is instead caused by “depletion” of a soluble form of that same amyloid-beta protein.

“The paradox is that so many of us accrue plaques in our brains as we age, and yet so few of us with plaques go on to develop dementia,” said Alberto Espay, MD, one of the lead researchers of the study, in another UC news story. Espay is Professor of Neurology at the UC College of Medicine and Director and Endowed Chair of the Gardner Center for Parkinson’s Disease and Movement Disorders.

“Yet the plaques remain the center of our attention as it relates to biomarker development and therapeutic strategies,” he added.

Alberto Espay, MD

“It’s only too logical, if you are detached from the biases that we’ve created for too long, that a neurodegenerative process is caused by something we lose, amyloid-beta, rather than something we gain, amyloid plaques,” said Alberto Espay, MD (above), in a University of Cincinnati news story. “Degeneration is a process of loss, and what we lose turns out to be much more important.” The UC study could lead to new clinical laboratory diagnostics, as well as treatments for Alzheimer’s and Parkinson’s diseases. (Photo copyright: University of Cincinnati.)

.

High Levels of Aβ42 Associated with Lower Dementia Risk

In their retrospective longitudinal study, the UC researchers looked at clinical assessments of individuals participating in the Dominantly Inherited Alzheimer Network (DIAN) cohort study. DIAN is an ongoing effort, sponsored by the Washington University School of Medicine in St. Louis, to identify biomarkers associated with Alzheimer’s among people who carry Alzheimer’s mutations.

The researchers found that study participants with high levels of a soluble amyloid-beta protein, Aβ42, were less likely to develop dementia than those with lower levels of the protein, regardless of the levels of amyloid plaques in their brains or the amount of tau protein—either as phosphorylated tau (p-tau) or total tau (t-tau)—in their cerebral spinal fluid. P-tau and t-tau are proteins that form “tau tangles” in the brain that are also associated with Alzheimer’s.

One limitation of the study was that the researchers were unable to include Aβ40, another amyloid-beta protein, in their analysis. But they noted that this “did not limit the testing of our hypothesis since Aβ40 exhibits lower fibrillogenicity and lesser depletion than Aβ42, and is therefore less relevant to the process of protein aggregation than Aβ42.” Fibrillogenicity, in this context, refers to the process by which the amyloid-beta protein hardens into plaque.

While the presence of plaques may be correlated with Alzheimer’s, “Espay and his colleagues hypothesized that plaques are simply a consequence of the levels of soluble amyloid-beta in the brain decreasing,” UC news stated. “These levels decrease because the normal protein, under situations of biological, metabolic, or infectious stress, transform into the abnormal amyloid plaques.”

The UC News story also noted that many attempts to develop therapeutics for Alzheimer’s have focused on reducing amyloid plaques, but “in some clinical trials that reduced the levels of soluble amyloid-beta, patients showed worsening in clinical outcomes.”

New Therapeutics for Multiple Neurodegenerative Diseases

Eisai, a Japanese pharmaceutical company, recently announced phase three clinical trial results of lecanemab, an experimental drug jointly developed by Eisai and Biogen, claiming that the experimental Alzheimer’s drug modestly reduced cognitive decline in early-stage patients, according to NBC News.

Espay noted that lecanemab “does something that most other anti-amyloid treatments don’t do in addition to reducing amyloid: it increases the levels of the soluble amyloid-beta.” That may slow the process of soluble proteins hardening into plaques.

Beyond their findings about Alzheimer’s, the researchers believe similar mechanisms could be at work in other neurodegenerative diseases such as Parkinson’s disease, where the soluble alpha-synuclein protein also hardens into deposits.

“We’re advocating that what may be more meaningful across all degenerative diseases is the loss of normal proteins rather than the measurable fraction of abnormal proteins,” Espay said. “The net effect is a loss not a gain of proteins as the brain continues to shrink as these diseases progress.”

Espay foresees two approaches to treating these diseases: Rescue medicine, perhaps based on increasing levels of important proteins, and precision medicine, which “entails going deeper to understand what is causing levels of soluble amyloid-beta to decrease in the first place, whether it is a virus, a toxin, a nanoparticle, or a biological or genetic process,” according to UC News. “If the root cause is addressed, the levels of the protein wouldn’t need to be boosted because there would be no transformation from soluble, normal proteins to amyloid plaques.”

Clinical Laboratory Impact

What does this mean for clinical laboratories engaged in treatment of both Alzheimer’s and Parkinson’s patients? A new understanding of the disease would create “the opportunity to identify new biomarkers and create new clinical laboratory tests that may help diagnose Alzheimer’s earlier in the disease progression, along with tests that help with the patient’s prognosis and monitoring his or her progression,” said Robert Michel, Editor-in-Chief of Dark Daily and its sister publication The Dark Report.

Given the incidence of Alzheimer’s disease in the population, any clinical laboratory test cleared by the FDA would be a frequently-ordered assay, Michel noted. It also would create the opportunity for pathologists and clinical laboratories to provide valuable interpretation about the test results to the ordering physicians.

Stephen Beale

Related Information:

High Soluble Amyloid-β42 Predicts Normal Cognition in Amyloid-Positive Individuals with Alzheimer’s Disease-Causing Mutations

UC Study: Decreased Proteins, Not Amyloid Plaques, Tied to Alzheimer’s Disease

US News: Scientists Propose New Mechanism Driving Alzheimer’s

Scientists Propose New Mechanism Driving Alzheimer’s Disease

Alzheimer’s: Lack of Beta-Amyloid, Not Plaque Buildup, May Be the Culprit

Better Cognitive Predictor in People at High Risk of Alzheimer’s Disease

UC Study: Researchers Question Prevailing Alzheimer’s Theory with New Discovery

ABPP Amyloid Plaques’ Role in Onset of Alzheimer’s Questioned by Cincinnati University: GlobalData Reveals That ABPP Targeted by a Tenth of All Alzheimer’s Drugs

Blots on a Field? A Neuroscience Image Sleuth Finds Signs of Fabrication in Scores of Alzheimer’s Articles, Threatening a Reigning Theory of the Disease

WVXU: Does a Key Alzheimer’s Study Contain Fabricated Images?

Nutromics Receives $14M for Development of Lab-on-a-Patch DNA Sensor Platform That Transmits Biometric Data in Real Time from Interstitial Fluid

Similar health monitoring devices have been popular with chronic disease patients and physicians who treat them; this technology may give clinical laboratories a new diagnostic tool

There is an ever-increasing number of companies working to develop lab testing technologies that would be used outside of the traditional clinical laboratory. One such example is Nutromics, an Australia-based medical technology company which recently announced it has raised US $14 million to fund its new lab-on-a-patch platform, according to a company press release.

Nutromics’ lab-on-a-patch device “uses DNA sensor technology to track multiple targets in the human body, including disease biomarkers and hard-to-dose drugs,” according to MobiHealthNews. Notably, Nutromics’ technology uses interstitial fluid as the sample source.

The funding, which is earmarked for clinical trials, research, and continued development of the technology, comes from health technology company Dexcom (through the Dexcom Ventures capital fund), VU Venture Partners, and global investment management firm Artesian Investments.

Nutromics raised $4 million last year to support a manufacturing facility and an initial human clinical trial of its “continuous molecular monitoring (CMM) platform technology that is able to track multiple targets in the human body via a single wearable sensor. The platform provides real-time, continuous molecular-level insights for remote patient monitoring and hospital-at-home systems,” MobiHealthNews reported.

Peter Vranes

“We are aiming to cause a paradigm shift in diagnostic healthcare by essentially developing a lab-on-a-patch. A lack of timely and continuous diagnostic insights can strongly impact outcomes when dealing with critical disease states. With this strategic industry and VC (venture capital) investment in us, we see more confidence in our technology and hope to accelerate our growth,” said entrepreneur and chemical engineer Peter Vranes (above), co-founder and CEO of Nutromics, in a press release. Clinical laboratory leaders have watched similar biometric monitoring devices come to fruition. (Photo copyright: Nutromics.)

.

How Nutromics’ Lab-on-a-Patch Works

“Our technology is, in fact, two technologies coming together—a marker and needle. What that does is give us access to fluid under your skin called interstitial fluid. If you’re going to measure something continuously, that’s a really good fluid [to measure],” Vranes told Outcomes Rocket.

Vranes calls the system’s aptamer-based sensor platform technology the “jewel in the crown.” An aptamer is a short sequence of artificial DNA or RNA that binds a specific target molecule. Nutromics’ aptamer sensor, Vranes said, enables targeting of analytes, unlike continuous glucose monitors (CGMs). 

“[CGMs] are limited to metabolites—things that are already in the body like glucose and lactate. We’re not limited to those. We can do a whole range of different targets. And what that gives us is a ‘blue ocean’ opportunity to go in and solve problems in areas that other technologies just can’t solve,” Vranes said.

Nutromics plans to develop multiple aptamer-based sensors that measure a variety of analytes in interstitial fluid, Medtech Insight noted.

Nutromics' wearable DNA sensor lab-on-a-patch

Nutromics’ wearable DNA sensor lab-on-a-patch technology (above) enables monitoring of multiple targets, including disease biomarkers and some medications, MobiHealthNews explained. The wearable patch contains microneedles that painlessly access interstitial fluid under the skin. Collected data is wirelessly transmitted to a software application and integrates with consumer health software and provider platforms, according to Nutromics. Medical laboratories could have a role in collecting this data and adding it other test results from patients using the wearable patch. (Photo copyright: Nutromics.)

Initial Launch Will Include Antibiotic Monitoring

Nutromics expects to initially launch therapeutic monitoring of vancomycin, a glycopeptide antibiotic medication used to treat various bacterial infections. The company says 60% of doses for this prescription antibiotic are not within therapeutic range.

The smart patch enables clinicians to give patients medicine “at the right dose and at the right time,” Sophie Stocker, PhD, a senior hospital scientist at St. Vincent’s Hospital Sydney and Senior Lecturer, University of Sydney School of Pharmacy in New South Wales, Australia, told MobiHealthNews.

Nutromics also envisions opportunity in acute kidney injury (AKI).

Other Research Using Microneedle Patch to Sample Interstitial Fluid

Nutromics is not alone in its use of a microneedle patch to access interstitial fluid (ISF) for diagnostics. In “Researchers at Washington University in St. Louis Use Microneedle Patch with Fluorescent Nanolabels to Detect Biomarkers in Skin’s Interstitial Fluid,” Dark Daily reported how engineers at the McKelvey School of Engineering at Washington University in St. Louis in Missouri have developed a disposable microneedle patch that one day could be a painless alternative to some blood draws for diagnostics tests and health monitoring.

Scientists at the Georgia Institute of Technology and Emory University in Atlanta have been studying interstitial fluid as a source of biomarkers, as compared to blood, for years.

“Interstitial fluid originates in the blood and then leaks out of capillaries to bring nutrients to cells in the body’s tissues. Because interstitial fluid is in direct communication with the cells, it should have information about the tissues themselves beyond what can be measured from testing the blood,” said Mark Prausnitz, PhD, Regents Professor and J. Erskine Love Jr. Chair, Georgia Tech School of Chemical and Biomolecular Engineering, in a 2020 news release announcing results of human trials of microneedle-based ISF sampling.

The scientists published their findings in the journal Science Translational Medicine titled, “Sampling Interstitial Fluid from Human Skin Using a Microneedle Patch.”

“We sampled interstitial fluid from 21 human participants and identified clinically relevant and sometimes distinct biomarkers in interstitial fluid when compared to companion plasma samples based on mass spectrometry analysis,” the scientists wrote.

Clinical laboratory leaders and pathologists will find it useful to monitor the development of diagnostics for use outside the lab. Nutromics is an example of a company developing wearable health technology that painlessly gathers data for lab tests to be conducted in point-of-care and near-patient settings.     

—Donna Marie Pocius

Related Information:

Nutromics Raises US$14 Million For Its Ground-breaking Wearable Diagnostic Platform

Lab-on-a-Patch Maker Nutromics Scores $14M From Dexcom Ventures, Others

Peter Vranes, Co-founder of Nutromics, Nutromics Smart Patch—The Next Evolution of the Continuous Glucose Monitor

Nutromics Raises $14m as Dexcom Signals Move into Wider Sensing Capabilities

Australian Medtech Start-up Nutromics Bags $4M in Pre-Market Funding for Continuous Monitoring Device

Extraction of Largely Unexplored Bodily Fluid Could be a New Source of Biomarkers

Sampling Interstitial Fluid from Human Skin Using a Microneedle Patch

Researchers at Washington University in St. Louis Use Microneedle Patch with Fluorescent Nanolabels to Detect Biomarkers in Skin’s Interstitial Fluid

Researchers in US and Israel Detect Fungal DNA in Most Cancer Types Found in the Human Body

Studies could lead to new prognostic biomarkers and clinical laboratory diagnostics for cancer

Might fungi be involved in human cancers? Two separately published studies have found fungal DNA in various cancers in the human body. However, the researchers are unclear on how the fungi got into the cancer cells and if it is affecting the cancers’ pathology. Nevertheless, these discoveries could lead to utilizing tumor-associated fungal DNA as clinical laboratory diagnostics or prognostic biomarkers in the fight against cancer. 

The first study, performed by a team of international researchers from the University of California San Diego (UCSD) and the Weizmann Institute of Science in Israel, detected the presence of fungal DNA or cells in some cancer types.

They published their findings in the peer-reviewed scientific journal Cell, titled, “Pan-cancer Analyses Reveal Cancer-type Specific Fungal Ecologies and Bacteriome Interactions.”  

Ravid Straussman, MD, PhD

“The finding that fungi are commonly present in human tumors should drive us to better explore their potential effects and re-examine almost everything we know about cancer through a ‘microbiome lens,’” said Ravid Straussman, MD, PhD (above), a principal investigator at Weizmann Institute of Science and one of the authors of the study in a UCSD press release. These findings could lead to new clinical laboratory diagnostics and prognostic biomarkers. (Photo copyright: Weizmann Institute of Science.)

.

Microbiome Key to Cancer Biology and Detection

To perform their research, the team examined 17,401 samples of patient tissues, blood, and plasma across 35 different types of cancers in four independent cohorts. They discovered fungal DNA and cells in low abundances in many human cancers. 

“The existence of fungi in most human cancers is both a surprise and to be expected,” said biologist Rob Knight, PhD, founding Director of the Center for Microbiome Innovation and Professor of Pediatrics and Computer Science and Engineering at UC San Diego in a UCSD press release. “It is surprising because we don’t know how fungi could get into tumors throughout the body. But it is also expected because it fits the pattern of healthy microbiomes throughout the body, including the gut, mouth and skin, where bacteria and fungi interact as part of a complex community.”

The main highlights of this study include:

  • Fungi detected in the different cancer types were often intracellular.
  • Multiple fungal-bacterial-immune ecologies were detected across tumors.
  • Intratumoral fungi stratified clinical outcomes, including immunotherapy response.
  • Cell-free fungal DNA found in both healthy and cancer patients in early-stage disease.

Fungi found on the human body appear as either environmental fungi, such as yeasts and molds, and commensal fungi, which live either on or inside the body. Both are typically harmless to most healthy people and can provide some benefits, such as improving gut health, but they may also be a contributing factor in some disease.

The researchers found that there were notable parallels between specific fungi and certain factors, such as age, tumor subtypes, smoking status, immunotherapy responses, and survival measures.

“These findings validate the view that the microbiome in its entirety is a key piece of cancer biology and may present significant translational opportunities, not only in cancer detection, but also in other biotech applications related to drug development, cancer evolution, minimal residual disease, relapse, and companion diagnostics,” said Gregory Sepich-Poore, MD, PhD, one of the study’s authors and co-founder and chief analytics officer at biotechnology company Micronoma, in the UCSD press release.  

New Clinical Laboratory Tests to Identify Fungal Species in Cancer

The second study also was published in the journal Cell, titled, “A Pan-cancer Mycobiome Analysis Reveals Fungal Involvement in Gastrointestinal and Lung Tumors.”

Researchers from Duke University and Cornell University uncovered compelling evidence of fungi in multiple cancer types and focused on a detected link between Candida and gastrointestinal cancers.

They found that “several Candida species were enriched in tumor samples and tumor-associated Candida DNA was predictive of decreased survival,” according to their paper.

Their analysis of multiple body sites revealed tumor-associated mycobiomes in fungal cells. The researchers found that fungal spores known as blastomyces were associated with tumor tissues in lung cancers, and that high rates of Candida were present in stomach and colon cancers.

The Duke/Cornell researchers hope their work can provide a framework to develop new tests that can distinguish fungal species in tumors and predict cancer progression and help medical professionals and patients chose the best treatment therapies. 

“These findings open up a lot of exciting research directions, from the development of diagnostics and treatments to studies of the detailed biological mechanisms of fungal relationships to cancers,” said Iliyan Iliev, PhD, Associate Professor of Microbiology and Immunology in Medicine, Weill Cornell Medicine, and one of the authors of the study, in a Weill news release.

More research is needed to determine if fungal DNA plays a role in disease pathology or if its presence does not have any causal link.

“It’s plausible that some of these fungi are promoting tumor progression and metastasis, but even if they aren’t, they could be very valuable as prognostic indicators,” Iliev said.

The insights gleaned from these two studies will be of particular interest to microbiologists, clinical laboratory professionals, and anatomic pathologists. Additional research could answer questions about how and if fungi infect tumors and if such fungi is a factor that increases cancer risk and outcomes. 

JP Schlingman

Related Information:

Fungal DNA, Cells Found in Human Tumors

First-ever Mycobiome Atlas Describes Associations Between Cancers and Fungi

Pan-cancer Analyses Reveal Cancer-type Specific Fungal Ecologies and Bacteriome Interactions

A Pan-cancer Mycobiome Analysis Reveals Fungal Involvement in Gastrointestinal and Lung Tumors

Fungal Association with Tumors May Predict Worse Outcomes

Stanford Medicine Scientists Sequence Patient’s Whole Genome in Just Five Hours Using Nanopore Genome Sequencing, AI, and Cloud Computing

And in less than eight hours, they had diagnosed a child with a rare genetic disorder, results that would take clinical laboratory testing weeks to return, demonstrating the clinical value of the genomic process

In another major genetic sequencing advancement, scientists at Stanford University School of Medicine have developed a method for rapid sequencing of patients’ whole human genome in as little as five hours. And the researchers used their breakthrough to diagnose rare genetic diseases in under eight hours, according to a Stanford Medicine news release. Their new “ultra-rapid genome sequencing approach” could lead to significantly faster diagnostics and improved clinical laboratory treatments for cancer and other diseases.

The Stanford Medicine researchers used nanopore sequencing and artificial intelligence (AI) technologies in a “mega-sequencing approach” that has redefined “rapid” for genetic diagnostics. The sequence for one study participant—completed in just five hours and two minutes—set the first Guinness World Record for the fastest DNA sequencing to date, the news release states.

The Stanford scientists described their new method for rapid diagnosis of genetic diseases in the New England Journal of Medicine (NEJM) titled, “Ultrarapid Nanopore Genome Sequencing in a Critical Care Setting.”

Euan Ashley, MD, PhD

“A few weeks is what most clinicians call ‘rapid’ when it comes to sequencing a patient’s genome and returning results,” said cardiovascular disease specialist Euan Ashley, MD, PhD (above), professor of medicine, genetics, and biomedical data science, at Stanford University in the news release. “The right people suddenly came together to achieve something amazing. We really felt like we were approaching a new frontier.” Their results could lead to faster diagnostics and clinical laboratory treatments. (Photo copyright: Stanford Medicine.)

.

Need for Fast Genetic Diagnosis 

In their NEJM paper, the Stanford scientists argue that rapid genetic diagnosis is key to clinical management, improved prognosis, and critical care cost savings.

“Although most critical care decisions must be made in hours, traditional testing requires weeks and rapid testing requires days. We have found that nanopore genome sequencing can accurately and rapidly provide genetic diagnoses,” the authors wrote.

To complete their study, the researchers sequenced the genomes of 12 patients from two hospitals in Stanford, Calif. They used nanopore genome sequencing, cloud computing-based bioinformatics, and a “custom variant prioritization.”

Their findings included:

  • Five people received a genetic diagnosis from the sequencing information in about eight hours.
  • Diagnostic rate of 42%, about 12% higher than the average rate for diagnosis of genetic disorders (the researchers noted that not all conditions are genetically based and appropriate for sequencing).
  • Five hours and two minutes to sequence a patient’s genome in one case.
  • Seven hours and 18 minutes to sequence and diagnose that case.

How the Nanopore Process Works

To advance sequencing speed, the researchers used equipment by Oxford Nanopore Technologies with 48 sequencing units called “flow cells”—enough to sequence a person’s whole genome at one time.

The Oxford Nanopore PromethION Flow Cell generates more than 100 gigabases of data per hour, AI Time Journal reported. The team used a cloud-based storage system to enable computational power for real-time analysis of the data. AI algorithms scanned the genetic code for errors and compared the patients’ gene variants to variants associated with diseases found in research data, Stanford explained.

According to an NVIDIA blog post, “The researchers accelerated both base calling and variant calling using NVIDIA GPUs on Google Cloud. Variant calling, the process of identifying the millions of variants in a genome, was also sped up with NVIDIA Clara Parabricks, a computational genomics application framework.”

Rapid Genetic Test Produces Clinical Benefits

“Together with our collaborators and some of the world’s leaders in genomics, we were able to develop a rapid sequencing analysis workflow that has already shown tangible clinical benefits,” said Mehrzad Samadi, PhD, NVIDIA Senior Engineering Manager and co-author of the NEJM paper, in the blog post. “These are the kinds of high-impact problems we live to solve.”

In their paper, the Stanford researchers described their use of the rapid genetic test to diagnose and treat an infant who was experiencing epileptic seizures on arrival to Stanford’s pediatric emergency department. In just eight hours, their diagnostic test found that the infant’s convulsions were attributed to a mutation in the gene CSNK2B, “a variant and gene known to cause a neurodevelopmental disorder with early-onset epilepsy,” the researchers wrote.

“By accelerating every step of this process—from collecting a blood sample to sequencing the whole genome to identifying variants linked to diseases—[the Stanford] research team took just hours to find a pathogenic variant and make a definitive diagnosis in a three-month-old infant with a rare seizure-causing genetic disorder. A traditional gene panel analysis ordered at the same time took two weeks to return results,” AI Time Journal reported.

New Benchmarks

The Stanford research team wants to cut the sequencing time in half. But for now, the five-hour rapid whole genome sequence can be considered by clinical laboratory leaders, pathologists, and research scientists a new benchmark in genetic sequencing for diagnostic purposes.

Stories like Stanford’s rapid diagnosis of the three-month old patient with epileptic seizures, point to the ultimate value of advances in genomic sequencing technologies.

Donna Marie Pocius

Related Information:

Fastest DNA Sequencing Technique Helps Undiagnosed Patients Find Answers in Mere Hours

Ultrarapid Nanopore Genome Sequencing in a Critical Care Setting

Stanford Researchers Use AI to Sequence and Analyze DNA in Five Hours

World Record-Setting DNA Sequencing Technique Helps Clinicians Rapidly Diagnose Critical Care Patients

Ultima Genomics Delivers the $100 Genome

;