Researchers found that early in life intestinal microorganisms “educate” the thymus to develop T cells; findings could lead to improved immune system therapeutics and associated clinical laboratory tests
The researchers published their findings in Nature. They used engineered mice as the test subjects and say the study could lead to a greater understanding of human conditions such as Type 1 and Type 2 diabetes and inflammatory bowel disease (IBD). In turn, this new knowledge could lead to new diagnostic tests for clinical laboratories.
“From the time we are born, our immune system is set up so that it can learn as much as it can to distinguish the good from the bad,” Matthew Bettini, PhD, Associate Professor of Pathology said in a University of Utah news release.
Does Gut Bacteria ‘Educate’ the Immune System?
The researchers were attempting to learn how the body develops T cells specific to intestinal microorganisms. T cells, they noted, are “educated” in the thymus, an organ in the upper chest that is key to the adaptive immune system.
“Humans and their microbiota have coevolved a mutually beneficial relationship in which the human host provides a hospitable environment for the microorganisms and the microbiota provides many advantages for the host, including nutritional benefits and protection from pathogen infection,” they wrote in their study. “Maintaining this relationship requires a careful immune balance to contain commensal microorganisms within the lumen, while limiting inflammatory anti-commensal responses.”
Findings Challenge Earlier Assumptions about Microbiota’s Influence on Immunity
The researchers began by seeding the intestines of mice with segmented filamentous bacteria (SFB), which they described as “one of the few commensal microorganisms for which a microorganism-specific T-cell receptor has been identified.” In addition, SFB-specific T cells can be tracked using a magnetic enrichment technique, they wrote in Nature.
They discovered that in young mice, microbial antigens from the intestines migrated to the thymus, resulting in an expansion of T cells specific to SFB. But they did not see an expansion of T cells in adult mice, suggesting that the process of adapting to microbiota happens early.
“Our study challenges previous assumptions that potential pathogens have no influence on immune cells that are developing in the thymus,” Bettini said in the news release. “Instead, we see that there is a window of opportunity for the thymus to learn from these bacteria. Even though these events that shape which T cells are present happen early in life, they can have a greater impact later in life.”
For example, T cells specific to microbiota can also protect against closely related harmful bacteria, the researchers found. “Mice populated with E. coli at a young age were more than six times as likely to survive a lethal dose of Salmonella later in life,” the news release noted. “The results suggest that building immunity to microbiota also builds protection against harmful bacteria the body has yet to encounter.”
According to the researchers, in addition to protecting against pathogens, “microbiota-specific T cells have pathogenic potential.” For example, “defects in these mechanisms could help explain why the immune system sometimes attacks good bacteria in the wrong place, causing the chronic inflammation that’s responsible for inflammatory bowel disease,” they suggested.
Other Clinical Laboratory Research into the Human Microbiome
All of this suggests the potential in the future “for clinical laboratories and microbiologists to do microbiome testing in support of clinical care,” said Robert Michel, Editor-in-Chief of Dark Daily and its sister publication The Dark Report. Of course, more research is needed in these areas.
“We believe that our findings may be extended to areas of research where certain bacteria have been found to be either protective or pathogenic for other conditions, such as Type 1 and Type 2 diabetes,” Bettini said in the University of Utah news release. “Now we’re wondering, will this window of bacterial exposure and T cell development also be important in initiating these diseases?”
With 100% of the human genome mapped, new genetic diagnostic and disease screening tests may soon be available for clinical laboratories and pathology groups
Utilizing technology developed by two different biotechnology/genetic sequencing companies, an international consortium of genetic scientists claim to have sequenced 100% of the entire human genome, “including the missing parts,” STAT reported. This will give clinical laboratories access to the complete 3.055 billion base pair (bp) sequence of the human genome.
If validated, this achievement could greatly impact future genetic research and genetic diagnostics development. That also will be true for precision medicine and disease-screening testing.
Completing the First “End-to-End” Genetic Sequencing
In June of 2000, the Human Genome Project (HGP) announced it had successfully created the first “working draft” of the human genome. But according to the National Human Genome Research Institute (NHGRI), the draft did not include 100% of the human genome. It “consists of overlapping fragments covering 97% of the human genome, of which sequence has already been assembled for approximately 85% of the genome,” an NHGRI press release noted.
“The original genome papers were carefully worded because they did not sequence every DNA molecule from one end to the other,” Ewan Birney, PhD, Deputy Director General of the European Molecular Biology Laboratory (EMBL) and Director of EMBL’s European Bioinformatics Institute (EMBL-EBI), told STAT. “What this group has done is show that they can do it end-to-end. That’s important for future research because it shows what is possible,” he added.
In their published paper, the T2T scientists wrote, “Addressing this remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium has finished the first truly complete 3.055 billion base pair (bp) sequence of a human genome, representing the largest improvement to the human reference genome since its initial release.”
Tale of Two Genetic Sequencing Technologies
Humans have a total of 46 chromosomes in 23 pairs that represent tens of thousands of individual genes. Each individual gene consists of numbers of base pairs and there are billions of these base pairs within the human genome. In 2000, scientists estimated that humans have only 30,000 to 35,000 genes, but that number has since been reduced to just above 20,000 genes.
According to STAT, “The work was possible because the Oxford Nanopore and PacBio technologies do not cut the DNA up into tiny puzzle pieces.”
PacBio used HiFi sequencing, which is only a few years old and provides the benefits of both short and long reads. STAT noted that PacBio’s technology “uses lasers to examine the same sequence of DNA again and again, creating a readout that can be highly accurate.” According to the company’s website, “HiFi reads are produced by calling consensus from subreads generated by multiple passes of the enzyme around a circularized template. This results in a HiFi read that is both long and accurate.”
Oxford Nanopore uses electrical current in its sequencing devices. In this technology, strands of base pairs are pressed through a microscopic nanopore one molecule at a time. Those molecules are then zapped with electrical currents to enable scientists to determine what type of molecule they are and, in turn, identify the full strand.
The T2T Consortium acknowledge in their paper that they had trouble with approximately 0.3% of the genome, but that, though there may be a few errors, there are no gaps.
Might New Precision Medicine Therapies Come from T2T Consortium’s Research?
The researchers claim in their paper that the number of known base pairs has grown from 2.92 billion to 3.05 billion and that the number of known genes has increased by 0.4%. Through their research, they also discovered 115 new genes that code for proteins.
The T2T Consortium scientists also noted that the genome they sequenced for their research did not come from a person but rather from a hydatidiform mole, a rare growth that occasionally forms on the inside of a women’s uterus. The hydatidiform occurs when a sperm fertilizes an egg that has no nucleus. As a result, the cells examined for the T2T study contained only 23 chromosomes instead of the full 46 found in most humans.
Although the T2T Consortium’s work is a huge leap forward in the study of the human genome, more research is needed. The consortium plans to publish its findings in a peer-reviewed medical journal. In addition, both PacBio and Oxford Nanopore plan to develop a way to sequence the entire 46 chromosome human genome in the future.
The future of genetic research and gene sequencing is to create technologies that will allow researchers to identify single nucleotide polymorphisms (SNPs) that contain longer strings of DNA. Because these SNPs in the human genome correlate with medical conditions and response to specific genetic therapies, advancing knowledge of the genome can ultimately provide beneficial insights that may lead to new genetic tests for medical diagnoses and help medical professionals determine the best, personalized therapies for individual patients.
This is yet another example that dogs can be highly accurate screeners for disease. But are they ready to be included in clinical laboratory diagnostic tests?
Thailand researchers have trained dogs to screen for COVID-19 infections in humans, despite the country’s “spicy and flavorful cuisine,” the AP reported. This is just the latest example of a country using dogs to identify individuals who are infected with the SARS-CoV-2 coronavirus. Clinical laboratory managers and pathologists have seen other examples of dogs being trained to identify different diseases or health conditions.
In fact, dogs have been shown to be highly accurate at spotting disease in humans and the practice is becoming common worldwide. But could dogs achieve the required clinical accuracy and reproducibility in detecting disease for the procedure to be translated into clinical practice?
Smelling Disease as a Clinical Laboratory Diagnostic
Clinical laboratory professionals are quite familiar with the concept of the human body producing volatile chemicals that can serve as biomarkers for disease or illness. Dark Daily has previously reported on multiple breath/aroma-based diagnostic clinical laboratory tests going as far back as 2013.
But it is in the use of dogs to spot COVID-19 infections in humans where this type of breath/aroma-based diagnostic test research is making a notable impact.
“Even if this approach were not warranted as a clinical diagnostic procedure, trained dogs could be deployed at airports, train stations, sporting events, concerts, and other public places to identify individuals who may be positive for SARS-CoV-2, the coronavirus that causes the COVID-19 illness,” we wrote. “Such an approach would make it feasible to ‘screen’ large numbers of people as they are on the move. Those individuals could then undergo a more precise medical laboratory test as confirmation of infections.”
According to the researchers, individuals with a COVID-19 infection emit a unique odor that is present in sweat samples. The six Labrador retrievers used in the research were able to detect the presence of COVID-19 with an impressive 95% accuracy rate in more than 1,000 samples presented to them, the AP reported.
To perform the study, the scientists placed sweat samples in metal containers and allowed the dogs to sniff each sample. If no trace of the infection was present, the dogs simply walked past the container. If the disease was detected in a particular sample, the dogs would sit down in front of the container.
Would Spicy Food Interfere with Dogs’ Ability to Detect COVID-19?
The head of the research team, Professor Kaywalee Chatdarong, PhD, noted that other countries also have been using canines to detect the presence of COVID-19. She did have some concerns that the utilization of dogs for this purpose may not work in Thailand due to their often-spicy cuisine. However, since the samples used were from students and faculty at the university, as well as people from the surrounding area, the cuisine did not seem to affect the study results, the AP reported.
Thailand is facing a surge in COVID-19 cases with recent clusters reported at construction sites, crowded neighborhoods, and large markets. The research team plans to use the canines in mobile units in communities suspected of being hotspots for the disease.
A major plus of using dogs to sniff out the disease from sweat samples is the ability to test people who may not be able to get out of their homes to be tested.
“People can simply put cotton balls underneath their armpits to collect sweat samples and send them to the lab,” Suwanna Thanaboonsombat, a volunteer who collects samples and brings them to the clinical laboratory for testing, told the AP. “And the result is quite accurate.”
According to the US Centers for Disease Control and Prevention (CDC), dogs can become infected with the SARS-CoV-2 coronavirus. However, their chances of transmitting the disease to humans is extremely low. Nevertheless, to ensure the dogs do not become infected with COVID-19 themselves, the researchers designed the sample containers to avoid contact between the samples and the dogs’ noses.
Living Animals Come with Limitations
While dogs can provide a quick and inexpensive method of testing for COVID-19, they do have limitations.
“5 p.m. is their dinner time. When it’s around 4:50, they will start to be distracted. So, you can’t really have them work anymore,” Chatdarong told the AP. “And we can’t have them working after dinner either because they need a nap. They are living animals and we do have to take their needs and emotions into consideration. But for me, they are heroes and heroines.”
Using Dogs to Detect COVID-19 in Other Countries
Last fall, the Helsinki Airport in Finland announced it would use a team of trained dogs to detect the presence of COVID-19 among visitors to the airport to ensure the health and safety of its customers and their families, and to help prevent the spread of SARS-CoV-2 in Finland.
“We are among the pioneers. As far as we know no other airport has attempted to use canine scent detection on such a large scale against COVID-19,” said Airport Director Ulla Lettijeff in a Finavia press release. “This might be an additional step forward on the way to beating COVID-19.”
In addition to being “man’s best friend,” dogs serve valuable purposes in the medical community. Their strong sense of smell may render them useful in the detection of and fight against illnesses, including COVID-19.
Whether the performance and accuracy of individual dogs can be validated with acceptable quality control (QC) procedures remains to be seen. Medical laboratory managers and pathologists understand the challenges presented with demonstrating accuracy and reproducibility with this method of diagnostic testing. That obstacle has prevented research outcomes from being translated into clinical practice.
By analyzing ancient poop, researchers have discovered how much the human microbiome has changed over the past millennium, what may have brought about the change, and how those changes formed today’s human microbiome
Two thousand year-old human poop has yielded new insights into the evolution of the microbial cells (microbiota) inhabiting today’s human gut—collectively known as the human microbiome—that could help pathologists and clinical laboratories better understand diseases that may be linked to gut bacteria.
A recent study conducted by an international team of scientists reveals that the gut bacteria of today’s humans may have been altered by the onset of modern processed foods, sanitation, and the use of antibiotics.
In “Reconstruction of Ancient Microbial Genomes from the Human Gut,” published in the journal Nature, the researchers wrote, “In this study, we establish that palaeofaeces [Paleofeces in the US] with well-preserved DNA are abundant sources of microbial genomes, including previously undescribed microbial species, that may elucidate the evolutionary histories of human microbiomes. Similar future studies tapping into the richness of palaeofaeces will not only expand our knowledge of the human microbiome but may also lead to the development of approaches to restore present-day gut microbiomes to their ancestral state.”
Ancient Poop Is a ‘Time Machine’ into the Human Microbiome
To perform the research for this study, scientists analyzed Deoxyribonucleic acid (DNA) from eight preserved, fossilized feces (coprolites) to gain insight into the gut bacteria of ancient communities. The samples used in the research were originally found in rock formations in Utah and Mexico and were preserved by dryness and stable temperatures. The coprolites were between 1,000 and 2,000 years old.
“These paleofeces are the equivalent of a time machine,” Justin Sonnenburg, PhD, Associate Professor, Microbiology and Immunology at Stanford University and co-author of the study, told Science. Tiny bits of food found in the coprolites indicated that the diet of the ancient people included:
The dried-out poop samples were first radiocarbon dated. Then, tiny fragments of the coprolites were rehydrated which allowed researchers to recover longer DNA strands than those found in previous, similar studies. This study compared the microbiome of the ancient populations to that of present-day individuals. The authors of the study suggest that during the past millennium, the human microbiome has lost dozens of bacterial species and has become less diverse.
Other research studies have linked lower diversity among gut bacteria to higher rates of modern diseases, such as diabetes, obesity, and allergies, Science noted.
Ancient versus Modern Microbiome
The ancient microbiomes lacked markers for antibiotic resistance and included dozens of bacterial species that were previously unknown. According to the study, “a total of 181 of the 498 reconstructed microbial genomes were classified as gut derived and had extensive DNA damage, consistent with an ancient origin, and 39% of the ancient genomes offered evidence of being newly discovered species.”
The scientists also discovered that the gut bacteria of present-day people living in non-industrialized societies is more like that of the ancient people when compared to present-day humans living in industrialized societies. But there are still vast differences between the ancient and the modern microbiome.
For example, a bacteria known as Treponema is virtually unknown in the microbiome of current humans, even those living in non-industrialized societies. However, according to Kostic, “They’re present in every single one of the paleofeces, across all the geographic sites. That suggests it’s not purely diet that’s shaping things,” he told Science.
What Can Clinical Laboratories Learn from Ancient Poop?
The ancient poop study scientists hope that future research on coprolites from the past will reveal more information regarding when shifts in the microbiome occurred and what events or human activities prompted those changes.
Research on the human microbiome has been responsible for many discoveries that have greatly impacted clinical pathology and diagnostics development.
Microbiologists and other medical laboratory scientists may soon have more useful biomarkers that aid in earlier, more accurate detection of disease, as well as guiding physicians to select the most effective therapies for specific patients, a key component of Precision Medicine.
The findings of this study are another step forward in understanding the composition and functions of gut bacteria. The study of the microbiome could prove to be a growth area for clinical laboratories and microbiology labs as well. It is probable that soon, labs will be performing more microbiome testing to help with the diagnosis, and treatment selection and monitoring of patients.
Four International Pandemics That Occurred Prior to COVID-19 and Contributed to Increased Clinical Laboratory Testing to Aid in Managing the Outbreaks
Since 1900, millions have died worldwide from previous viruses that were as deadly as SARS-CoV-2. But how much do pathologists and clinical laboratory scientists know about them?
SARS-CoV-2 continues to infect populations worldwide. As of May 28, 2021, the World Health Organization (WHO) reported that 168,599,045 people have been diagnosed with COVID-19 infections globally, and 3,507,377 individuals have perished from the coronavirus.
At the same time, federal Centers for Disease Control and Prevention (CDC) statistics show there have been 33,018,965 cases of COVID-19 in the United States, 589,547 of which resulted in death.
But COVID-19 is just the latest in a string of pandemics that spread across the planet in the past century. Since 1900, there have been four major international pandemics resulting in millions of deaths. But how many people even remember them? And how many pathologists, microbiologists, and clinical laboratory scientists working today experienced even the most recent of these four global pandemics?
Here is a summary/review of these major pandemics to give clinical laboratory professionals context for comparing the COVID-19 pandemic to past pandemics.
Spanish Flu of 1918
The 1918 influenza pandemic, commonly referred to as the Spanish Flu, was the most severe and deadliest pandemic of the 20th century. This pandemic was caused by a novel strand of the H1N1 virus that had avian origins. It is estimated that approximately one third of the world’s population (at that time) became infected with the virus.
According to a CDC article, the flu pandemic of 1918 was responsible for at least 50 million deaths worldwide, with about 675,000 of those deaths occurring in the United States. This pandemic had an unusually high death rate among healthy individuals between the ages of 15 and 34 and actually lowered the average life expectancy in the United States by more than 12 years, according to a CDC report, titled, “The Deadliest Flu: The Complete Story of the Discovery and Reconstruction of the 1918 Pandemic Virus.”
Interestingly, experts feel the 1918 flu strain never fully left us, but simply weakened and became less lethal as it mutated and passed through humans and other animals.
“All those pandemics that have happened since—1957, 1968, 2009—all those pandemics are derivatives of the 1918 flu,” he told The Washington Post. “The flu viruses that people get this year, or last year, are all still directly related to the 1918 ancestor.”
1957 Asian Flu
The H2N2 virus, which caused the Asian Flu, first emerged in East Asia in February 1957 and quickly spread to other countries throughout Asia. The virus reached the shores of the US by the summer of 1957, where the number of infections continued to rise, especially among the elderly, children, and pregnant women.
Between 1957-1958, the Asian Flu spread across the planet causing between one to two million deaths, including 116,000 deaths in the US alone. However, this pandemic could have been much worse were it not for the efforts of microbiologist and vaccinologist Maurice Hilleman, PhD, who in 1958 was Chief of the Department of Virus Diseases at Walter Reed Army Medical Center.
Concerned that the Asian flu would wreak havoc on the US, Hilleman—who today is considered the father of modern vaccines—researched and created a vaccine for it in four months. Public health experts estimated the number of US deaths could have reached over one million without the fast arrival of the vaccine, noted Scientific American, adding that though Hilleman “is little remembered today, he also helped develop nine of the 14 children’s vaccines that are now recommended.”
1968 Hong Kong Flu
The 1968 influenza pandemic known as the Hong Kong flu emerged in China and persisted for several years. Within weeks of its emergence in the heavily populated Hong Kong, the flu had infected more than 500,000 people. Within months, the highly contagious virus had gone global.
According to the Encyclopedia Britannica, this pandemic was initiated by the influenza A subtype H3N2 virus and is suspected to have evolved from the viral strain that caused the 1957 flu pandemic through a process called antigenic shift. In this case, the hemagglutinin (H) antigen located on the outer surface of the virus underwent a genetic mutation to manufacture the new H3 antigen. Persons who had been exposed to the 1957 flu virus seemed to retain immune protection against the 1968 virus, which, Britannica noted, could help explain the relative mildness of the 1968 outbreak.
It is estimated that the 1968 Hong Kong Flu killed one to four million people worldwide, with approximately 100,000 of those deaths occurring in the US. A vaccine for the virus was available by the end of 1968 and the outbreaks appeared to be under control the following year. The H3N2 virus continues to circulate worldwide as a seasonal influenza A virus.
2009 H1N1 Swine Flu
In the spring of 2009, the novel H1N1 influenza virus that caused the Swine Flu pandemic was first detected in California. It soon spread across the US and the world. This new H1N1 virus contained a unique combination of influenza genes not previously identified in animals or people. By the time the World Health Organization (WHO) declared this flu to be a pandemic in June of 2009, a total of 74 countries and territories had reported confirmed cases of the disease. The CDC estimated there were 60.8 million cases of Swine Flu infections in the US between April 2009 and April 2010 that resulted in approximately 274,304 hospitalizations and 12,469 deaths.
This pandemic primarily affected children and young and middle-aged adults and was less severe than previous pandemics. Nevertheless, the H1N1 pandemic dramatically increased clinical laboratory test volumes, as Dark Daily’s sister publication, The Dark Report, covered in “Influenza A/H1N1 Outbreak Offers Lessons for Labs,” TDR June 8, 2009.
“Laboratories in the United States experienced a phenomenal surge in specimen volume during the first few weeks of the outbreak of A/H1N1. This event shows that the capacity in our nation’s public health system for large amounts of testing is inadequate,” Steven B. Kleiboeker, DVM, PhD, told The Dark Report. At that time Kleiboeker was Chief Scientific Officer and a Vice-President of ViraCor Laboratories in Lee’s Summit, Mo.
1.7 Million ‘Undiscovered’ Viruses
As people travel more frequently between countries, it is unlikely that COVID-19 will be the last pandemic that we encounter. According to the World Economic Forum (WEF), there are 1.7 million “undiscovered” viruses that exist in mammals and birds and approximately 827,000 of those viruses have the ability to infect humans.
Thus, it remains the job of pathologists and clinical laboratories worldwide to remain ever vigilant and prepared for the next global pandemic.
Wait times blamed on the Irish National Health System’s ‘overstretched’ services and ‘under-resourced’ commitment to cancer genetic testing done by medical laboratories
Histopathologists in the UK and anatomic pathologists in the US understand the important role predictive genetic testing can play in helping patients understand their risk for certain types of breast, bowel, and ovarian cancers. While timely access to cancer testing may be routine in the United States, a report out of Ireland reveals patients in that country’s government-run healthcare system may have to wait up to two years or more for genetic counseling and testing.
UK Patients in Need of Genetic Services Are Switching from Public to Private Healthcare
While early access to genetic testing can provide opportunities for preventative treatments or earlier diagnosis of cancer, many patients in Ireland with a family history of cancer must wait months or years for genetic services. UCC Nursing Professor and Physiologist Josephine Hegarty, PhD, lead author of the ICS report, stated in a news release that “public cancer genetic services are overstretched. Waiting lists exist at every point on the pathway for people who need genetic services.”
She added, “Many patients spoken to seemed to abandon the waiting for overstretched public services in favor of paying for private testing and treatment.”
While the ICS report’s survey sample size was small—154 patients, family members, or members of the public—the data revealed:
One in seven respondents waited 13-24 months and one in 27 waited over 24 months for counseling and testing appointments.
Many people had changed from the public health system to private healthcare to speed up access to genetic testing.
The cumulative waiting time from referral to counseling, testing, receipt of genetic test results, and onwards to screening, surveillance, or prophylactic treatments [aka, preventive healthcare] can be up to four years, which patients see as time lost in terms of cancer prevention and early intervention.
Barriers to Genetic Services Affect Treatment Decisions
A separate survey of 52 healthcare professionals highlighted barriers for accessing services with six in 10 respondents saying they are under-resourced and four in 10 concerned about access to follow-up surgery for patients deemed to be at high risk.
In the ICS news release, breast cancer patient Margaret Cuddigan said genetic testing was not available to her at diagnosis.
“In those 13 months waiting for a result, I went through chemotherapy, a lumpectomy, and radiotherapy on my breast, only for a double mastectomy to be required once the BRCA mutation was known. Had I known this earlier, my course of treatment could have been very different,” Cuddigan said.
“I had to postpone a radiation treatment to go up to Dublin from Cork to do the genetic test, as it would have taken up to another 12 months in Cork, and then I waited over four months for the results. Once I received the news of the gene mutation, I had to navigate a path of risk-reducing surgeries,” she noted, adding, “I researched and sought out a surgeon myself.”
Long Waits for Genetic Testing Are Common in Single-Payer Healthcare
The waiting list for genetic cancer testing has long been an issue in Ireland. A 2017 article in the Irish Examiner, titled, “Woman Faces 18-month Wait for Vital Cancer Test,” brought to light the 18-month waiting time for BRCA1 and BRCA2 mutation testing for breast cancer. While the COVID-19 pandemic has further exacerbated the backlog of cancer treatment services, such issues are not new in single-payer healthcare systems.
Across the Irish Sea in Great Britain, some patients have experienced delays of six months before getting cancer test results. In “Shortage of Histopathologists in the United Kingdom Now Contributing to Record-Long Cancer-Treatment Waiting Times in England,” Dark Daily reported how prolonged wait times for cancer test results in the United Kingdom’s National Health Service are one disadvantage of a government-run, single-payer health system. With limited funds, frequently the government health program under invests in certain clinical services. It is not until several years later that the underinvestment reveals itself in the form of lengthy wait times.
Meanwhile, it is cancer patients and their families who pay the price for underinvestment because delays in their cancer test results then delay timely treatment decisions. This is particularly true when an immediate start of therapy for an aggressive form of cancer is imperative.
ICS Executive Director, Advocacy and External Relations, Rachel Morrogh, argues the solution is prioritizing cancer prevention within the Health Service Executive, which runs Ireland’s national healthcare system.
“The reality is the focus must be on urgent care, but we’re missing chances to keep people healthy (through genetic testing),” Morrogh told the Irish Independent. “We can prevent four in 10 cancers, but we have to prioritize prevention. There needs to be a significant investment and the expansion of capacity across all the follow-on services that someone with a genetic risk of cancer may need, focusing on the development of a dedicated and resourced pathway for them.
The ICS report found that limited access to timely genetically-guided health and oncology services is the result of multiple barriers to care.
“It is apparent from engaging directly with service users that waiting lists exist at every point on the pathway for people who need genetic [cancer testing] services,” the report states. “For those who may have a genetic risk of cancer, the wait times for access to [genetic cancer] testing alone (before counselling treatment, prophylactic surgery, etc.) can be up to two years. Barriers to accessing cancer genetic services include costs of tests, long processing time for referrals to tests, restrictive referral criteria, and difficulty in accessing information on cancer genetic services.”
In the forward she wrote for the ICS report, ICS Chief Executive Officer Averil Power said her organization would continue its push for improved access to genetic testing services. “Government needs to not only expand capacity for testing and counselling, but also ensure that the follow-on services that are needed by people diagnosed with a genetic risk of cancer are in place and can be accessed swiftly.”
The ICS report is another reminder to histopathologists in the UK—as well as anatomic pathologists in the US—that a single-payer healthcare system comes with its own flaws and access-to-care issues.