News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Florida Hospital Utilizes Machine Learning Artificial Intelligence Platform to Reduce Clinical Variation in Its Healthcare, with Implications for Medical Laboratories

Pathologists and clinical laboratory scientists may find one hospital’s use of a machine-learning platform to help improve utilization of lab tests both an opportunity and a threat

Variation in how individual physicians order, interpret, and act upon clinical laboratory test results is regularly shown by studies in peer-reviewed medical journals to be one reason why some patients get great outcomes and other patients get less-than-desirable outcomes. That is why many healthcare providers are initiating efforts to improve how physicians utilize clinical laboratory tests and other diagnostic procedures.

At Flagler Hospital, a 335-bed not-for-profit healthcare facility in St. Augustine, Fla., a new tool is being used to address variability in clinical care. It is a machine learning platform called Symphony AyasdiAI for Clinical Variation Management (AyasdiAI) from Silicon Valley-based SymphonyAI Group. Flagler is using this system to develop its own clinical order set built from clinical data contained within the hospital’s electronic health record (EHR) and financial systems.

This effort came about after clinical and administrative leadership at Flagler Hospital realized that only about one-third of its physicians regularly followed certain medical decision-making guidelines or clinical order sets. Armed with these insights, staff members decided to find a solution that reduced or removed variability from their healthcare delivery.

Reducing Variability Improves Care, Lowers Cost

Variability in physician care has been linked to increased healthcare costs and lower quality outcomes, as studies published in JAMA and JAMA Internal Medicine indicate. Such results do not bode well for healthcare providers in today’s value-based reimbursement system, which rewards increased performance and lowered costs.

“Fundamentally, what these technologies do is help us recognize important patterns in the data,” Douglas Fridsma, PhD, an expert in health informatics, standards, interoperability, and health IT strategy, and CEO of the American Medical Informatics Association (AMIA), told Modern Healthcare.

Clinical order sets are designed to be used as part of clinical decision support systems (CDSS) installed by hospitals for physicians to standardize care and support sound clinical decision making and patient safety.

However, when doctors don’t adhere to those pre-defined standards, the results can be disadvantageous, ranging from unnecessary services and tests being performed to preventable complications for patients, which may increase treatment costs.

“Over the past few decades we’ve come to realize clinical variation plays an important part in the overuse of medical care and the waste that occurs in healthcare, making it more expensive than it should be,” Michael Sanders, MD (above) Flagler’s Chief Medical Information Officer, told Modern Healthcare. “Every time we’re adding something that adds cost, we have to make sure that we’re adding value.” (Photo copyright: Modern Healthcare.)

Flagler’s AI project involved uploading clinical, demographic, billing, and surgical information to the AyasdiAI platform, which then employed machine learning to analyze the data and identify trends. Flagler’s physicians are now provided with a fuller picture of their patients’ conditions, which helps identify patients at highest risk, ensuring timely interventions that produce positive outcomes and lower costs.

How Symphony AyasdiAI Works

The AyasdiAI application utilizes a category of mathematics called topological data analysis (TDA) to cluster similar patients together and locate parallels between those groups. “We then have the AI tools generate a carepath from this group, showing all events which should occur in the emergency department, at admission, and throughout the hospital stay,” Sanders told Healthcare IT News. “These events include all medications, diagnostic tests, vital signs, IVs, procedures and meals, and the ideal timing for the occurrence of each so as to replicate the results of this group.”

Caregivers then examine the data to determine the optimal plan of care for each patient. Cost savings are figured into the overall equation when choosing a treatment plan. 

Flagler first used the AI program to examine trends among their pneumonia patients. They determined that nebulizer treatments should be started as soon as possible with pneumonia patients who also have chronic obstructive pulmonary disease (COPD).

“Once we have the data loaded, we use [an] unsupervised learning AI algorithm to generate treatment groups,” Sanders told Healthcare IT News. “In the case of our pneumonia patient data, Ayasdi produced nine treatments groups. Each group was treated similarly, and statistics were given to us to understand that group and how it differed from the other groups.”

Armed with this information, the hospital achieved an 80% greater physician adherence to order sets for pneumonia patients. This resulted in a savings of $1,350 per patient and reduced the readmission rates for pneumonia patients from 2.9% to 0.4%, reported Modern Healthcare.

The development of a machine-learning platform designed to reduce variation in care (by helping physicians become more consistent at following accepted clinical care guidelines) can be considered a warning shot across the bow of the pathology profession.

This is a system that has the potential to become interposed between the pathologist in the medical laboratory and the physicians who refer specimens to the lab. Were that to happen, the deep experience and knowledge that have long made pathologists the “doctor’s doctor” will be bypassed. Physicians will stop making that first call to their pathologists, clinical chemists, and laboratory scientists to discuss a patient’s condition and consult on which test to order, how to interpret the results, and get guidance on selecting therapies and monitoring the patient’s progress.

Instead, a “smart software solution” will be inserted into the clinical workflow of physicians. This solution will automatically guide the physician to follow the established care protocol. In turn, this will give the medical laboratory the simple role of accepting a lab test order, performing the analysis, and reporting the results.

If this were true, then it could be argued that a laboratory test is a commodity and hospitals, physicians, and payers would argue that they should buy these commodity lab tests at the cheapest price.

—JP Schlingman

Related Information:

Flagler Hospital Combines AI, Physician Committee to Minimize Clinical Variation

Flagler Hospital Uses AI to Create Clinical Pathways That Enhance Care and Slash Costs

Case Study: Flagler Hospital, How One of America’s Oldest Cities Became Home to One of America’s Most Innovative Hospitals

How Using Artificial Intelligence Enabled Flagler Hospital to Reduce Clinical Variation

Florida Hospital to Save $20M Through AI-enabled Clinical Variation

The Journey from Volume to Value-Based Care Starts Here

The Science of Clinical Carepaths

AdventHealth Gives 10,000 Floridians Free Genetic Tests, Sees Genomics as the Future of Precision Medicine

Many other healthcare systems also are partnering with private genetic testing companies to pursue research that drive precision medicine goals

It is certainly unusual when a major health network announces that it will give away free genetic tests to 10,000 of its patients as a way to lay the foundation to expand clinical services involving precision medicine. However, pathologists and clinical laboratory managers should consider this free genetic testing program to be the latest marketplace sign that acceptance of genetic medicine continues to move ahead.

Notably, it is community hospitals that are launching this new program linked to clinical laboratory research that uses genetic tests for specific, treatable conditions. The purpose of such genetic research is to identify patients who would benefit from test results that identify the best therapies for their specific conditions, a core goal of precision medicine.

The health system is AdventHealth of Orlando, Fla., which teamed up with Helix, a personal genomics company in San Mateo, Calif., to offer free DNA sequencing to 10,000 Floridians through its new AdventHealth Genomics and Personalized Health Program. A company news release states this is the “first large-scale DNA study in Florida,” and that it “aims to unlock the secret to a healthier life.”

The “WholeMe” genomic population health study screens people for familial hypercholesterolemia  (FH), a genetic disorder that can lead to high cholesterol and heart attacks in young adults if not identified and treated, according to the news release.

Clinical laboratory leaders will be interested in this initiative, as well other partnerships between healthcare systems and private genetic testing companies aimed at identifying and enrolling patients in research studies for disease treatment protocols and therapies. 

The Future of Precision Medicine

Modern Healthcare reported that data from the WholeMe DNA study, which was funded through donations to the AdventHealth Foundation, also will be used by the healthcare network for research beyond FH, as AdventHealth develops its genomics services. The project’s cost is estimated to reach $2 million.

“Genomics is the future of medicine, and the field is rapidly evolving. As we began our internal discussions about genomics and how to best incorporate it at AdventHealth, we knew research would play a strong role,” Wes Walker MD, Director, Genomics and Personalized Health, and Associate CMIO at AdventHealth, told Becker’s Hospital Review.

“We decided to focus on familial hypercholesterolemia screening initially because it’s a condition that is associated with life-threatening cardiovascular events,” he continued. “FH is treatable once identified and finding those who have the condition can lead to identifying other family members who are subsequently identified who never knew they had the disease.”

The AdventHealth Orlando website states that participants in the WholeMe study receive information stored in a confidential data repository that meets HIPAA security standards. The data covers ancestry and 22 other genetic traits, such as:

  • Asparagus Odor Detection
  • Bitter Taste
  • Caffeine Metabolism
  • Cilantro Taste Aversion
  • Circadian Rhythm
  • Coffee Consumption
  • Delayed Sleep
  • Earwax Type
  • Endurance vs Power
  • Exercise Impact on Weight
  • Eye Color
  • Freckling
  • Hair Curl and Texture
  • Hand Grip Strength
  • Height
  • Lactose Tolerance
  • Sleep Duration
  • Sleep Movement
  • Sleeplessness
  • Sweet Tooth
  • Tan vs. Sunburn
  • Waist Size

Those who test positive for a disease-causing FH variant will be referred by AdventHealth for medical laboratory blood testing, genetic counseling, and a cardiologist visit, reported the Ormond Beach Observer.

One in 250 people have FH, and 90% of them are undiagnosed, according to the FH Foundation, which also noted that children have a 50% chance of inheriting FH from parents with the condition.

AdventHealth plans to expand the free testing beyond central Florida to its 46 other hospitals located in nine states, Modern Healthcare noted.

Other Genetics Data Company/Healthcare Provider Partnerships

In Nevada, Helix partnered with the Renown Health Institute for Health Innovation (IHI) and the Desert Research Institute (DRI) to sequence 30,000 people for FH as part of the state’s Healthy Nevada Project (HNP).

Helix (above) is one of the world’s largest CLIA-certified, CAP-accredited next-generation sequencing labs. The partnership with AdventHealth offered study participants Exome+: a panel-grade medical exome enhanced by more than 300,000 informative non-coding regions; a co-branded ancestry + traits DNA product for all participants; secure storage of genomic data for the lifetime of the participant; infrastructure and data to facilitate research; and in-house clinical and scientific expertise, according to Helix’s website. (Photo copyright: Orlando Sentinel.)

Business Insider noted that Helix has focused on clinical partnerships for about a year and seems to be filling a niche in the genetic testing market.

“Helix is able to sidestep the costs of direct-to-consumer marketing and clinical test development, while still expanding its customer base through predefined hospital networks. And the company is in a prime position to capitalize on providers’ interest in population health management,” Business Insider reported.

Another genomics company, Color of Burlingame, Calif., also has population genomics programs with healthcare networks, including NorthShore University Health System in Ill.; Ochsner Health System in La.; and Jefferson Health in Philadelphia.

Ochsner’s program is the first “fully digital population health program” aimed at including clinical genomics data in primary care in an effort to affect patients’ health, FierceHealthcare reported.

In a statement, Ochsner noted that its innovationOchsner (iO) program screens selected patients for:

  • Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2 genes;
  • Lynch syndrome, associated with colorectal and other cancers; and
  • FH.

Color also offers genetic testing and whole genome sequencing services to NorthShore’s DNA10K program, which plans to test 10,000 patients for risk for hereditary cancers and heart diseases, according to news release.

And, Jefferson Health offered Color’s genetic testing to the healthcare system’s 33,000 employees, 10,000 of which signed up to learn their health risks as well as ancestry, a Color blog post states.

Conversely, Dark Daily recently reported on two Boston healthcare systems that started their own preventative gene sequencing clinics. The programs are operated by Brigham and Women’s Hospital and Massachusetts General Hospital (MGH).

And a Precision Medicine Institute e-briefing reported on Geisinger Health and Sanford Health’s move to offer genetic tests and precision medicine services in primary care clinics.

“Understanding the genome warning signals of every patient will be an essential part of wellness planning and health management,” said Geisinger Chief Executive Officer David Feinberg, MD, when he announced the new initiative at the HLTH (Health) Conference in Las Vegas. “Geisinger patients will be able to work with their family physician to modify their lifestyle and minimize risks that may be revealed,” he explained. “This forecasting will allow us to provide truly anticipatory healthcare instead of the responsive sick care that has long been the industry default across the nation.”

It will be interesting to see how and if genetic tests—free or otherwise—will advance precision medicine goals and population health treatments. It’s important for medical laboratory leaders to be involved in health network agreements with genetic testing companies. And clinical laboratories should be informed whenever private companies share their test results data with patients and primary care providers. 

—Donna Marie Pocius

Related Information:

It May Be Your DNA: First Large-Scale DNA Study in Florida Aims to Unlock the Secret to a Healthier Life

AdventHealth Offers Free DNA Tests to 10,000 Floridians

How AdventHealth Orlando is Building a Future in Genomics

Helix Partners with AdventHealth to Offer 10,000 Genetic Screenings in Florida

AdventHealth to Launch Large Genetic Study for High Cholesterol

Ochsner Health System Teaming Up with Genetic Testing Company Color in Population Genomics

The Healthy Nevada Project: from Recruitment to Real-World Impact

Ochsner Health System to Pilot Genetic Screening Program in Partnership with Color

North Shore and Color Unlock the Power of Genomics in Routine Care

Jefferson Heath and Color Advancing Precision Health Through Clinical Genomics and Richer Data

Two Boston Health Systems Enter the Growing Direct-to-Consumer Gene Sequencing Market by Opening Preventative Genomics Clinics, But Can Patients Afford the Service

Geisinger Health and Sanford Health Ready to Offer Genetic Tests and Precision Medicine Services in Primary Care Clinics

Proteomics May Hold Key to Understanding Aging’s Role in Chronic Diseases and Be Useful as a Clinical Laboratory Test for Age-related Diseases

Researchers are discovering it’s possible to determine a person’s age based on the amount of protein in the blood, but the technology isn’t always correct

Mass spectrometry is increasingly finding its way into clinical laboratories and with it—proteomics—the study of proteins in the human body. And like the human genome, scientists are discovering that protein plays an integral part in the aging process.

This is a most interesting research finding. Might medical laboratories someday use proteomic biomarkers to help physicians gauge the aging progression in patients? Might this diagnostic capability give pathologists and laboratory leaders a new product line for direct-to-consumer testing that would be a cash-paying, fast-growing, profitable clinical laboratory testing service? If so, proteomics could be a boon to clinical laboratories worldwide.

When research into genomics was brand-new, virtually no one imagined that someday the direct-to-consumer lab testing model would offer genetic testing to the public and create a huge stream of revenue for clinical laboratories that process genetic tests. Now, research into protein and aging might point to a similar possibility for proteomics.

For example, through proteomics, researchers led by Benoit Lehallier, PhD, Biostatistician, Instructor of Neurology and Neurological Sciences, and senior author Tony Wyss-Coray, PhD, Professor of Neurology and Neurological Sciences and co-director of the Stanford Alzheimer’s Disease Research Center at Stanford University in California, gained an understanding of aging that suggest intriguing possibilities for clinical laboratories.

In their study, published in Nature, titled, “Undulating Changes in Human Plasma Proteome Profiles Across the Lifespan,” the scientists stated that aging doesn’t happen in a consistent process over time, reported Science Alert.  

The Stanford researchers also found that they can accurately determine a person’s age based on the levels of certain proteins in his or her blood.

Additionally, the study of proteomics may finally explain why blood from young people can have a rejuvenating effect on elderly people’s brains, noted Scientific American.

Each of these findings is important on its own, but taken together, they may have interesting implications for pathologists who follow the research. And medical laboratory leaders may find opportunities in mass spectrometry in the near future, rather than decades from now.

Three Distinct Stages in Aging and Other Findings

The Stanford study found that aging appears to happen at three distinct points in a person’s life—around the ages 34, 60, and 78—rather than being a slow, steady process.

The researchers measured and compared levels of nearly 3,000 specific proteins in blood plasma taken from healthy people between the ages of 18 and 95 years. In the published study, the authors wrote, “This new approach to the study of aging led to the identification of unexpected signatures and pathways that might offer potential targets for age-related diseases.”

Along with the findings regarding the timeline for aging, the researchers found that about two-thirds of the proteins that change with age differ significantly between men and women. “This supports the idea that men and women age differently and highlights the need to include both sexes in clinical studies for a wide range of diseases,” noted a National Institutes of Health (NIH) report.

“We’ve known for a long time that measuring certain proteins in the blood can give you information about a person’s health status—lipoproteins for cardiovascular health, for example,” stated Wyss-Coray in the NIH report. “But it hasn’t been appreciated that so many different proteins’ levels—roughly a third of all the ones we looked at—change markedly with advancing age.”

Tony Wyss-Coray, PhD (above), Professor of Neurology and Neurological Sciences at Stanford University, was senior author of the proteomics study that analyzed blood plasma from 4,263 people between the ages 18-95. “Proteins are the workhorses of the body’s constituent cells, and when their relative levels undergo substantial changes, it means you’ve changed, too,” he said in a Stanford Medicine news article. “Looking at thousands of them in plasma gives you a snapshot of what’s going on throughout the body.” (Photo copyright: Stanford University.)

Differentiating Aging from Disease

Previous research studies also found it is indeed possible to measure a person’s age from his or her “proteomic signature.”

Toshiko Tanaka, PhD, Research Associate with the Longitudinal Study Section, Translational Gerontology Branch, National Institute of Aging (NIG), National Institute of Health (NIH), Baltimore, led a study into proteomics which concluded that more than 200 proteins are associated with age.

The researchers published their findings in Aging Cell, a peer-reviewed open-access journal of the Anatomical Society in the UK, titled, “Plasma Proteomic Signature of Age in Healthy Humans.” In it, the authors wrote, “Our results suggest that there are stereotypical biological changes that occur with aging that are reflected by circulating proteins.”

The fact that chronological age can be determined through a person’s proteomic signature suggests researchers could separate aging from various diseases. “Older age is the main risk factor for a myriad of chronic diseases, and it is invariably associated with progressive loss of function in multiple physiological systems,” wrote the researchers, adding, “A challenge in the field is the need to differentiate between aging and diseases.”

Can Proteins Cause Aging?

Additionally, the Stanford study found that changes in protein levels might not simply be a characteristic of aging, but may actually cause it, a Stanford Medicine news article notes.

“Changes in the levels of numerous proteins that migrate from the body’s tissues into circulating blood not only characterize, but quite possibly cause, the phenomenon of aging,” Wyss-Coray said.

Can Proteins Accurately Predict Age? Not Always

There were, however, some instances where the protein levels inaccurately predicted a person’s age. Some of the samples the Stanford researchers used were from the LonGenity research study conducted by the Albert Einstein College of Medicine, which investigated “why some people enjoy extremely long life spans, with physical health and brain function far better than expected in the 9th and 10th decades of life,” the study’s website notes.

That study included a group of exceptionally long-lived Ashkenazi Jews, who have a “genetic proclivity toward exceptionally good health in what for most of us is advanced old age,” according to the Stanford Medicine news article.

“We had data on hand-grip strength and cognitive function for that group of people. Those with stronger hand grips and better measured cognition were estimated by our plasma-protein clock to be younger than they actually were,” said Wyss-Coray. So, physical condition is a factor in proteomics’ ability to accurately prediction age.

Although understanding the connections between protein in the blood, aging, and disease is in early stages, it is clear additional research is warranted. Not too long ago the idea of consumers having their DNA sequenced from a home kit for fun seemed like fantasy.

However, after multiple FDA approvals, and the success of companies like Ancestry, 23andMe, and the clinical laboratories that serve them, the possibility that proteomics might go the same route does not seem so far-fetched.

—Dava Stewart

Related Information:

Our Bodies Age in Three Distinct Shifts, According to More than 4,000 Blood Tests

Fountain of Youth? Young Blood Infusions ‘Rejuvenate’ Old Mice

Undulating Changes in Human Plasma Proteome Profiles Across the Lifespan

Blood Protein Signatures Change Across Lifespan

Plasma Proteomic Signature of Age in Healthy Humans

Stanford Scientists Reliably Predict People’s Age by Measuring Proteins in Blood

Advancements That Could Bring Proteomics and Mass Spectrometry to Clinical Laboratories

Might Proteomics Challenge the Cult of DNA-centricity? Some Clinical Laboratory Diagnostic Developers See Opportunity in Protein-Centered Diagnostics

Two Boston Health Systems Enter the Growing Direct-to-Consumer Gene Sequencing Market by Opening Preventative Genomics Clinics, but Can Patients Afford the Service?

By offering DTC preventative gene sequencing, hospital leaders hope to help physicians better predict cancer risk and provide more accurate diagnoses

Two Boston health systems, Brigham and Women’s Hospital and Massachusetts General Hospital (MGH), are the latest to open preventative gene sequencing clinics and compete with consumer gene sequencing companies, such as 23andMe and Ancestry, as well as with other hospital systems that already provide similar services.

This may provide opportunities for clinical laboratories. However, some experts are concerned that genetic sequencing may not be equally available to patients of all socioeconomic classes. Nor is it clear how health systems plan to pay for the equipment and services, since health insurance companies continue to deny coverage for “elective” gene sequencing, or when there is not a “clear medical reason for it, such as for people with a long family history of cancer,” notes STAT.

Therefore, not everyone is convinced of the value of gene sequencing to either patients or hospitals, even though advocates tout gene sequencing as a key element of precision medicine.

Is Preventative Genetic Sequencing Ready for the Masses?

Brigham’s Preventive Genomics Clinic offers comprehensive DNA sequencing, interpretation, and risk reporting to both adults and children. And MGH “plans to launch its own clinic for adults that will offer elective sequencing at a similar price range as the Brigham,” STAT reported.

The Brigham and MGH already offer similar gene sequencing services as other large health systems, such as Mayo Clinic and University of California San Francisco (UCSF), which are primarily used for research and cancer diagnoses and range in price depending on the depth of the scan, interpretation of the results, and storage options.

However, some experts question whether offering the technology to consumers for preventative purposes will benefit anyone other than a small percentage of patients.

“It’s clearly not been demonstrated to be cost-effective to promote this on a societal basis,” Robert Green, MD, MPH, medical geneticist at Brigham and Women’s Hospital, and professor of genetics at Harvard, told STAT. “The question that’s hard to answer is whether there are long-term benefits that justify those healthcare costs—whether the sequencing itself, the physician visit, and any downstream testing that’s stimulated will be justified by the situations where you can find and prevent disease.”

Additionally, large medical centers typically charge more for genomic scans than consumer companies such as 23andMe and Ancestry. Hospital-based sequencing may be out of the reach of many consumers, and this concerns some experts.

“The idea that genomic sequencing is only going to be accessible by wealthy, well-educated patrons who can pay out of pocket is anathema to the goals of the publicly funded Human Genome Project,” Jonathan Berg, MD, PhD, Genetics Professor, University of North Carolina at Chapel Hill, told Scientific American.

Nevertheless, consumer interest in preventative genetic sequencing is increasing and large health systems want a piece of the market. At the same time, genetics companies are reducing their costs and passing that reduction on to their customers. (See Dark Daily, “Veritas Genetics Drops Its Price for Clinical-Grade Whole-Genome Sequencing to $599, as Gene Sequencing Costs Continue to Fall,” October 23, 2018.)

Providers Go Direct to Consumers with Gene Sequencing

Healthcare providers and clinical laboratories played an important part in the growth of the Direct-to-Consumer (DTC) genetic testing, a market which the American Hospital Association (AHA) predicts is on track to expand dramatically over the next decade. BIS Research foresees a $6.3 billion valuation of the DTC genetic test market by 2028, according to a news release.

And, according to the American Journal of Managed Care, “It’s estimated that by 2021, 100 million people will have used a direct-to-consumer (DTC) genetic test. As these tests continue to gain popularity, there is a need for educating consumers on their DTC testing results and validating these results with confirmatory testing in a medical-grade laboratory.”

This is why it’s critical that clinical laboratories and anatomic pathology groups have a genetic testing and gene sequencing strategy, as Dark Daily reported.

David Bick, MD, Chief Medical Officer at the HudsonAlpha Institute for Biotechnology and Medical Director of the Smith Family Clinic for Genomic Medicine, told Scientific American, “there’s just more and more interest from patients and families not only because of 23andMe and the like, but because there’s just this understanding that if you can find out information about your health before you become sick, then really our opportunity as physicians to do something to help you is much greater.”

In an article he penned for Medium, Robert Green, MD, MPH (shown above counseling a patient), medical geneticist at Brigham and Women’s Hospital and professor of genetics at Harvard, wrote, “The ultimate aim of our Genomes2People Research Program is to contribute to the transformation of medicine from reactive to proactive, from treatment-oriented to preventive. We are trying to help build the evidence base that will justify societal decision to make these technologies and services accessible to anyone who wants them, regardless of means, education or race and ethnicity.” (Photo copyright: Wall Street Journal.)

Is Preventative Genomics Elitist?

As large medical centers penetrate the consumer genetic testing market some experts express concerns. In a paper he wrote for Medium, titled, “Is Preventive Genomics Elitist?” Green asked, “Is a service like this further widening the inequities in our healthcare system?”

Green reported that while building the Preventive Genomics Clinic at Brigham, “we … struggled with the reality that there is no health insurance coverage for preventive genomic testing, and our patients must therefore pay out of pocket. This is a troubling feature for a clinic at Brigham and Women’s Hospital, which is known for its ties to communities in Boston with diverse ethnic and socioeconomic backgrounds.”

Most of Brigham’s early genetics patients would likely be “well-off, well-educated, and largely white,” Green wrote. “This represents the profile of typical early adopters in genetic medicine, and in technology writ large. It does not, however, represent the Clinic’s ultimate target audience.”

More Data for Clinical Laboratories

Nevertheless, preventive genomics programs offered by large health systems will likely grow as primary care doctors and others see evidence of value.

Therefore, medical laboratories that process genetic sequencing data may soon be working with growing data sets as more people reach out to healthcare systems for comprehensive DNA sequencing and reporting.

—Donna Marie Pocius

Related Information:

Top U.S. Medical Centers Roll Out DNA Sequencing Clinics for Healthy Clients

Brigham and Women’s Hospital Opens Preventive Genomics Clinic

Preventive Genomics for Healthy People

Consumers Buy into Genetic Testing Kits

Direct-to-Consumer Genetic Testing Market to Reach $6.36 Billion by 2028

Is Preventive Genomics Elitist?

Why It’s Time for All Clinical Laboratories and Anatomic Pathology Groups to Have a Genetic Testing and Gene Sequencing Strategy

More Clinical Laboratories and Genetic Testing Companies Are Sharing Gene Sequencing Data That Involve Variations

Veritas Genetics Drops Its Price for Clinical-Grade Whole-Genome Sequencing to $599, as Gene Sequencing Costs Continue to Fall

Does Precision Oncology Offer Patients Superior Treatment Therapies? Anatomic Pathologists Will Be Interested to Learn Why Oncology Experts Disagree

Number of patients eligible for genome-driven oncology therapy is increasing, but the percentage who reportedly benefit from the therapy remains at less than 5%

Advances in precision medicine in oncology (precision oncology) are fueling the need for clinical laboratory companion diagnostic tests that help physicians choose the best treatment protocols. In fact, this is a fast-growing area of clinical diagnostics for the nation’s anatomic pathologists. However, some experts in the field of genome-based cancer treatments disagree over whether such treatments offer more hype than hope.

At an annual meeting of the American Association for Cancer Research (AACR) in Chicago, David Hyman, MD, Chief of Early Drug Development at Memorial Sloan Kettering Cancer Center in New York, and Vinay Prasad, MD, MPH, Hematologist-Oncologist and Associate Professor of Medicine at Oregon Health and Science University (OHSU), squared off.

Science, a journal of the American Association for the Advancement of Science (AAAS), reported that during a panel discussion, titled, “Is Genome-Informed Cancer Medicine Generating Patient Benefit or Just Hype?,” Prasad argued precision oncology benefits far fewer advanced cancer patients than headlines suggest. “When you look at all the data, it’s a sobering picture,” he told the AACR attendees.

To support his claim, Prasad pointed to a study he co-authored that was published in JAMA Oncology, titled, “Estimation of the Percentage of US Patients with Cancer Who Benefit from Genome-Driven Oncology.”

Prasad and his colleagues evaluated 31 US Food and Drug Administration (FDA) approved drugs, which were “genome-targeted” or “genome-informed” for 38 indications between 2006 and 2018. The researchers sought to answer the question, “How many US patients with cancer are eligible for and benefit annually from genome-targeted therapies approved by the US Food and Drug Administration?”

They found that in 2018 only 8.33% of 609,640 patients with metastatic cancer were eligible for genome-targeted therapy—though this was an increase from 5.09% in 2006.

Even more telling from Prasad’s view, his research team concluded that only 4.9% had benefited from such treatments. Prasad’s study found the percentage of patients estimated to have benefited from genome-informed therapy rose from 1.3% in 2006 to 6.62% in 2018.

“Although the number of patients eligible for genome-driven treatment has increased over time, these drugs have helped a minority of patients with advanced cancer,” the researchers concluded. “To accelerate progress in precision oncology, novel trial designs of genomic therapies should be developed, and broad portfolios of drug development, including immunotherapeutic and cytotoxic approaches, should be pursued.”

The graph above is based on data from a study published in Science titled, “Estimation of the Percentage of US Patients With Cancer Who Benefit from Genome-Driven Oncology,” co-authored by Vinay Prasad, MD, MPH, et al. (Image copyright: Science.)

A Value versus Volume Argument?

Hyman, who leads a team of oncologists that conduct dozens of clinical trials and molecularly selected “basket studies” each year, countered Prasad’s assertions by noting the increase in the number of patients who qualify for precision oncology treatments.

As reported in Science, Hyman said during his AACR presentation that Sloan Kettering matched 15% of the 25,000 patients’ tumors it tested with FDA-approved drugs and 10% with drugs in clinical trials.

“I think this is certainly not hype,” he said during the conference.

Hyman added that another 10% to 15% of patient tumors have a DNA change that matches a potential drug tested in animals. He expects “basket” trials to further increase the patient pool by identifying drugs that can work for multiple tumor types.

The US National Institute of Health (NIH) describes “basket studies” as “a new sort of clinical studies to identify patients with the same kind of mutations and treat them with the same drug, irrespective of their specific cancer type. In basket studies, depending on the mutation types, patients are classified into ‘baskets.’ Targeted therapies that block that mutation are then identified and assigned to baskets where patients are treated accordingly.”

Are Expectations of Precision Medicine Exaggerated?

A profile in MIT Technology Review, titled, “The Skeptic: What Precision Medicine Revolution?,” describes Prasad’s reputation as a “professional scold” noting the 36-year-old professor’s “sharp critiques of contemporary biomedical research, including personalized medicine.” Nevertheless, Prasad is not alone in arguing that precision oncology’s promise is often exaggerated.

Following the Obama Administration’s 2015 announcement of its precision medicine initiative, Michael J. Joyner, MD, Professor of Anesthesiology at the Mayo Clinic, penned a New York Times (NYT) editorial in which he cast doubt on the predictive power of genetic variants to improve disease outcomes.

“Like most ‘moonshot’ medical research initiatives, precision medicine is likely to fall short of expectations,” Joyner wrote. “Medical problems and their underlying biology are not linear engineering exercises and solving them is more than a matter of vision, money, and will.”

Recently, he increased his dissent over current perceptions of precision medicine’s value. In a STAT article, titled, “Precision Medicine’s Rosy Predictions Haven’t Come True. We Need Fewer Promises and More Debate,” Joyner and co-author Nigel Paneth, MD, MPH, Professor of Epidemiology and Biostatistics and Pediatrics at Michigan State University, pushed for more debate over the “gene-centric paradigms” that now “pervade biomedical research.”

“Although some niche applications have been found for precision medicine—and gene therapy is now becoming a reality for a few rare diseases—the effects on public health are miniscule while the costs are astronomical,” they wrote.

Hope for Precision Medicine Remains High

However, optimism over precision oncology among some industry leaders has not waned. Cindy Perettie, CEO of molecular information company Foundation Medicine of Cambridge, Mass., argues genome-directed treatments have reached an “inflection point.”

“Personalized cancer treatment is a possibility for more patients than ever thanks to the advent of targeted therapies,” she told Genetic Engineering and Biotechnology News. “With a growing number of new treatments—including two pan-tumor approvals—the need for broad molecular diagnostic tools to match patients with these therapies has never been greater. We continue to advance our understanding of cancer as a disease of the genome—one in which treatment decisions can be informed by insight into the genomic changes that contribute to each patient’s unique cancer.”

Prasad acknowledges genome-driven therapies are beneficial for some cancers. However, he told MIT Technology Review the data doesn’t support the “rhetoric that we’re reaching exponential growth, or that is taking off, or there’s an inflection point” signaling rapid new advancements.

“Right now, we are investing heavily in immunotherapy and heavily in genomic therapy, but in other categories of drugs, such as cytotoxic drugs, we have stopped investigating in them,” he told Medscape Medical News. “But it’s foolish to do this—we need to have the vision to look beyond the fads we live by in cancer medicine and do things in a broader way,” he added.

“So, I support broader funding because you have to sustain efforts even when things are not in vogue if you want to make progress,” Prasad concluded.

Is precision oncology a fad? Dark Daily has covered the advancements in precision medicine extensively over the past decade, and with the launch of our new Precision Medicine Institute website, we plan to continue reporting on further advancements in personalized medicine.

Time will tell if precision oncology can fulfill its promise. If it does, anatomic pathologists will play an important role in pinpointing patients most likely to benefit from genome-driven treatments.

One thing that the debate between proponents of precision medicine in oncology and their critics makes clear is that more and better clinical studies are needed to document the true effectiveness of target therapies for oncology patients. Such evidence will only reinforce the essential role that anatomic pathologists play in diagnosis, guiding therapeutic decisions, and monitoring the progress of cancer patients.

—Andrea Downing Peck

Related Information:

A Cancer Drug Tailored to your Tumor? Experts Trade Barbs over Precision Oncology

Estimation of the Percentage of US Patients with Cancer who Benefit from Genome-Driven Oncology

2020 Vision: Predictions of What May Shape Precision Medicine

Precision Medicine’s Rosy Predictions Haven’t Come True. We Need Fewer Promises and More Debate

The Skeptic: What Precision Medicine Revolution?

‘Moonshot’ Medicine Will Let Us Down

Basket Studies: An Innovative Approach for Oncology Trials

‘Genome-Driven’ Cancer Drugs Treat Small Minority of Patients

Press Release: The All-New Precision Medicine Institute Website Makes Its Debut

Harvard Medical School Study Finds ‘Staggering’ Amounts of Genetic Diversity in Human Microbiome; Might Be Useful in Diagnostics and Precision Medicine

McKinsey and Company Report Highlights Precision Medicine’s Advancements in Integrating Genetic Testing Results with Electronic Medical Records

Precision Medicine’s Most Successful Innovators to Speak in Nashville, including Vanderbilt Univ. Med. Center, Illumina, Geisinger Health, Northwell Health

Targeted Cancer Therapies Bring New Precision Medicine Tools to Anatomic Pathologists and Clinical Laboratories

;