Executives and pathologists from many of the nation’s most prominent clinical laboratories are on their way to the Crescent City today to share best practices, hear case studies from innovative labs, and network
NEW ORLEANS—This afternoon, more than 900 lab CEOs, administrators, and pathologists will convene for the 28th Annual Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management conference. Three topics of great interest will center around adequate lab staffing, effective cost management, and developing new sources of lab testing revenue.
Important sessions will also address the explosion in next-generation sequencing and genetic testing, proposed FDA regulation of laboratory-developed tests (LDTs), and innovative ways that clinical laboratories and pathology groups can add value and be paid for that additional value.
All this is happening amidst important changes to healthcare and medicine in the United States. “Today, the US healthcare system is transforming itself at a steady pace,” explained Robert L. Michel, Editor-in-Chief of The Dark Report and Founder of the Executive War College. “Big multi-hospital health systems are merging with each other, and payers are slashing reimbursement for many medical lab tests, even as healthcare consumers want direct access to clinical laboratory tests and the full record of their lab test history.
“Each of these developments has major implications in how clinical laboratories serve their parent organizations, offer services directly to consumers, and negotiate with payers for fair reimbursement as in-network providers,” Michel added. “Attending the Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management equips lab leaders with the tools they’ll need to make smart decisions during these challenging times.”
Now in its 28th year, the Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management convenes April 25-26 in New Orleans. Executive War College extends to a third day with three full-day workshops: LEAN fundamentals for lab leaders, a genetic testing program track, and a digital pathology track. Learn more at www.ExecutiveWarCollege.com. (Photo copyright: The Dark Intelligence Group.)
Challenges and Opportunities for Clinical Laboratories
With major changes unfolding in the delivery and reimbursement of clinical services, clinical laboratory and pathology practice leaders need effective ways to respond to the evolving needs of physicians, patients, and payers. As The Dark Report has often covered, three overlapping areas are a source of tension and financial pressure for labs:
Day-to-day pressures to manage costs in the clinical laboratory or pathology practice.
The growing demand for genetic testing, accompanied by reimbursement challenges.
Evolving consumer expectations in how they receive medical care and interact with providers.
Addressing all three issues and much more, the 2023 Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management features more than 80 sessions with up to 125 lab managers, consultants, vendors, and in vitro diagnostic (IVD) experts as speakers and panelists.
Old-School Lab Rules Have Evolved into New-School Lab Rules
Tuesday’s keynote general sessions (to be reported exclusively in Wednesday’s Dark Daily ebriefing) will include four points of interest for clinical laboratory and pathology leaders who are managing change and pursuing new opportunities:
Positioning the lab to prosper by serving healthcare’s new consumers, new care models, new payment models, and more, with Michel at the podium.
How old-school lab rules have evolved into new-school lab rules and ways to transition the lab through today’s disrupters in healthcare and the clinical laboratory marketplace, with Stan Schofield, Managing Principal of the Compass Group.
Generating value by identifying risk signals in longitudinal lab data and opportunities in big data from payers, physicians, pharma, and bioresearch, with Brad Bostic, Chairman and CEO of hc1.
Wednesday’s keynote sessions (see exclusive insights in Friday’s Dark Daily ebriefing) explore:
Wednesday’s keynotes conclude with a panel discussion on delivering value to physicians, patients, and payers with lab testing services.
Clinical Labs, Payers, and Health Plans Swamped by Genetic Test Claims
Attendees of the 2023 Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management may notice a greater emphasis on whole genome sequencing and genetic testing this year.
As regular coverage and analysis in The Dark Report has pointed out, clinical laboratories, payers, and health plans face challenges with the explosion of genetic testing. Several Executive War College Master Classes will explore critical management issues of genetic and genomic testing, including laboratory benefit management programs, coverage decisions, payer relations, and best coding practices, as well as genetic test stewardship.
This year’s Executive War College also devotes a one-day intensive session on how community hospitals and local labs can set up and offer genetic tests and next-generation sequencing services. This third-day track features more than a dozen experts including:
During these sessions, attendees will be introduced to “dry labs” and “virtual CLIA labs.” These new terms differentiate the two organizations that process genetic data generated by “wet labs,” annotate it, and provide analysis and interpretation for referring physicians.
State of the Industry: Clinical Lab, Private Practice Pathology, Genetic Testing, IVD, and More
For lab consultants, executives, and directors interested in state-of-the-industry Q/A and discussions concerning commercial laboratories, private-practice pathology, and in vitro diagnostics companies, a range of breakout sessions, panels, and roundtables will cover:
Action steps to protect pathologists’ income and boost practice revenue.
Important developments in laboratory legal, regulatory, and compliance requirements.
New developments in clinical laboratory certification and accreditation, including the most common deficiencies and how to reach “assessment ready” status.
An update on the IVD industry and what’s working in today’s post-pandemic market for lab vendors and their customers.
Federal government updates on issues of concern to clinical laboratories, including PAMA, the VALID Act, and more.
Long-time attendees will notice the inclusion of “Diagnostics” into the Executive War College moniker. It’s an important addition, Michel explained for Dark Daily.
“In the recent past, ‘clinical laboratory’ and ‘anatomic pathology’ were terms that sufficiently described the profession of laboratory medicine,” he noted. “However, a subtle but significant change has occurred in recent years. The term ‘diagnostics’ has become a common description for medical testing, along with other diagnostic areas such as radiology and imaging.”
Key managers of medical laboratories, pathology groups, and in vitro diagnostics have much to gain from attending the Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management, now in its 28th year. Look for continued coverage through social media channels, at Dark Daily, and in The Dark Report.
Understanding why some people display no symptoms during a COVID-19 infection could lead to new precision medicine genetic tests medical labs could use to identify people with the mutated gene
New research from the University of California San Francisco (UCSF) may explain why some people could get COVID-19 but never test positive on a clinical laboratory test or develop symptoms despite exposure to the SARS-CoV-2 coronavirus.
According to the UCSF study, variations in a specific gene in a system of genes responsible for regulating the human immune system appears to be the factor in why about 10% of those who become infected with the virus are asymptomatic.
These scientific insights did not receive widespread news coverage but will be of interest to clinical laboratory managers and pathologists who oversee SARS-CoV-2 testing in their labs.
“Some people just don’t have symptoms at all,” Jill Hollenbach, PhD (above), Professor of Neurology atUCSF’s Weill Institute for Neurosciences and lead researcher in the study, told NBC News. “There’s something happening at a really fundamental level in the immune response that is helping those people to just completely wipe out this infection.” Identifying a genetic reason why some people are asymptomatic could lead to new precision medicine clinical laboratory diagnostics for COVID-19. (Photo copyright: Elena Zhukova /University of California San Francisco.)
Fortunate Gene Mutation
According to the Centers for Disease Control and Prevention’s (CDC) COVID Data Tracker, as of April 5, 2023, a total of 104,242,889 COVID-19 cases have been reported in the United States. However, according to a CDC Morbidity and Mortality Weekly Report (MMWR), “Traditional methods of disease surveillance do not capture all COVID-19 cases because some are asymptomatic, not diagnosed, or not reported; therefore, [knowing the true] proportion of the population with SARS-CoV-2 antibodies (i.e., seroprevalence) can improve understanding of population-level incidence of COVID-19.”
She also participates in the COVID-19 HLA and Immunogenetics Consortium, a group of academic researchers, clinical laboratory directors, journal editors, and others who examine the role of HLA variations in determining COVID-19 risk.
Hollenbach’s research identified an HLA variant—known as HLA-B*15:01—that causes the human immune system to react quickly to SARS-CoV-2 and “basically nuke the infection before you even start to have symptoms,” she told NPR.
“It’s definitely luck,” she added. “But, you know, this [gene] mutation is quite common. We estimate that maybe one in 10 people have it. And in people who are asymptomatic, that rises to one in five.”
“HLA variants are among the strongest reported associations with viral infections,” the UCSF study notes. So, the researchers theorized that HLA variations play a role in asymptomatic SARS-CoV-2 infections as well.
To conduct their study, shortly after the SARS-CoV-2 outbreak in 2020, the researchers recruited approximately 30,000 volunteer bone marrow donors from the National Marrow Donor Program to respond to periodic questions via a smartphone app or website. Because HLA variations can determine appropriate matches between donors and recipients, the database includes information about their HLA types.
Each week, respondents were asked to report if they had been tested for SARS-CoV-2. Each day, they were asked to report whether they had symptoms associated with COVID-19. “We were pretty stringent in our definition of asymptomatic,” Hollenbach told NBC News. “[The respondents couldn’t] even have a scratchy throat.”
The researchers eventually identified a cohort of 1,428 people who had tested positive for SARS-CoV-2 between February 2020 and April 30, 2021, before vaccines were widely available. Among these individuals, 136 reported no symptoms for two weeks before or two weeks after a positive test.
“Overall, one in five individuals (20%) who remained asymptomatic after infection carried HLA-B*15:01, compared to 9% among patients reporting symptoms,” the researchers wrote in their medRxiv preprint. Study participants with two copies of the gene were more than eight times more likely to be asymptomatic.
The UCSF researchers also looked at four other HLA variants and found none to be “significantly associated” with lack of symptoms. They confirmed their findings by reproducing the HLA-B association in two additional independent cohorts, one from an earlier study in the UK and the other consisting of San Francisco-area residents.
Individuals in the latter group had either tested positive for SARS-CoV-2 or reported COVID symptoms, and their DNA was analyzed to determine their HLA types.
Pre-existing T-Cell Immunity May Reduce Severity of COVID-19 Infection
The UCSF researchers also attempted to determine how HLA-B*15:01 plays a role in knocking out SARS-CoV-2 infections. They noted previous research that indicated previous exposure to seasonal coronaviruses, such as common cold viruses, could limit the severity of COVID-19. The scientists hypothesized that pre-existing T-cell immunity in HLA-B carriers may be the key.
The COVID-19 HLA and Immunogenetics Consortium website describes how HLA and T-cells work together to ward off disease. HLA “proteins are found on the surface of all cells except red-blood cells.” They’re “like windows into the inner workings of a cell,” and T-cells use the molecules to determine the presence of foreign proteins that are likely signs of infection. “Activated T-cells can kill infected cells, or activate B-cells, which produce antibodies in response to an infection,” the website explains.
Hollenbach’s research team analyzed T-cells from pre-pandemic individuals and observed that in more than half of HLA-B carriers, the T-cells were reactive to a SARS-CoV-2 peptide. The scientists corroborated the hypothesis by examining crystal structures of the HLA-B*15:01 molecule in the presence of coronavirus spike peptides from SARS-CoV-2 and two other human coronaviruses: OC43-CoV and HKU1-CoV.
“Altogether, our results strongly support the hypothesis that HLA-B*15:01 mediates asymptomatic COVID-19 disease via pre-existing T-cell immunity due to previous exposure to HKU1-CoV and OC43-CoV,” the researchers wrote.
Can Genes Prevent COVID-19 Infections?
Meanwhile, researchers at The Rockefeller University in New York City are attempting to go further and see if there are mutations that prevent people from getting infected in the first place. NPR reported that they were seeking participants for a study seeking to identify so-called “superdodger” genes.
Study participants identified as possibly having superdodger genes receive a kit designed to collect saliva samples, after which the researchers sequence the respondents’ genomes. “We hope that in a group of 2,000 to 4,000 people, some people will have genetic mutations that tell us why they’re resistant to infection,” Casanova told NPR.
All this genetic research is in very early stages. But results are promising and may lead to new precision medicine clinical laboratory tests for identifying people who are predisposed to having an asymptomatic response to COVID-19 infection. That in turn could help scientists learn how to moderate or even eliminate symptoms in those unfortunate people who suffer the typical symptoms of the disease.
Viruses are between 27,000 to 48,500 years old and not dangerous, but researchers say thawing permafrost may one day release pathogens capable of infecting humans
Last fall, European researchers working with virologists and genetic scientists at the Aix-Marseille University in France reported having revived and characterized 13 previously unknown “zombie” viruses isolated from Siberian permafrost samples, including one that was almost 50,000 years old. This will be of particular interest to microbiologists and clinical laboratory managers since these organisms are new to science and may be precursors to infectious agents active in the world today.
The work of the European scientists demonstrates how advancements in genome sequencing and analysis of DNA data are becoming, faster, less expensive, and more precise. That’s good because the researchers warned that, should the permafrost continue to thaw, other previously dormant viruses could be released, posing potential risks for public health.
The pathogens isolated by the researchers are so-called “giant viruses” that infect Acanthamoeba, a commonly found genus of amoeba, and thus are not likely to pose an immediate health threat, the researchers wrote.
However, the scientists expressed concern. “We believe our results with Acanthamoeba-infecting viruses can be extrapolated to many other DNA viruses capable of infecting humans or animals. It is thus likely that ancient permafrost … will release these unknown viruses upon thawing,” they stated in their Viruses paper.
It’s unknown how long the viruses “could be infectious once exposed to outdoor conditions (UV light, oxygen, heat), and how likely they will be to encounter and infect a suitable host in the interval,” they added. However, “the risk is bound to increase in the context of global warming, in which permafrost thawing will keep accelerating, and more people will populate the Arctic in the wake of industrial ventures.”
“In nature we have a big natural freezer, which is the Siberian permafrost,” virologist Paulo Verardi, PhD (above), head of the Department of Pathobiology and Veterinary Science at the University of Connecticut, told The Washington Post. “And that can be a little bit concerning.” However, “if you do the risk assessment, this is very low. We have many more things to worry about right now.” Nevertheless, clinical laboratories may want to remain vigilant. (Photo copyright: University of Connecticut.)
Extremely Old, Very Large Viruses
The newly discovered viruses were found in seven different permafrost samples. Radiocarbon dating determined that they had been dormant for 27,000 to 48,500 years. But viruses contained in permafrost could be even older, the researchers wrote, as the time limit is “solely dictated by the validity range of radiocarbon dating.”
In their Viruses paper, the researchers noted that most of the 13 viruses are “at a preliminary stage of characterization,” and others have been isolated in the research laboratory “but not yet published, pending their complete genome assembly, annotation, or detailed analysis.”
“Every time we look, we will find a virus,” study co-author Jean-Michel Claverie, PhD, told The Washington Post. “It’s a done deal. We know that every time we’re going to look for viruses—infectious viruses in permafrost—we are going to find some.”
Claverie is a professor emeritus of genomics and bioinformatics in the School of Medicine at Aix-Marseille Université in Marseille, France. He leads a university laboratory known for its work in “paleovirology,” and in 2003, discovered the first known giant virus, dubbed Mimivirus. The research team included scientists from Germany and Russia.
According to CNN, unlike regular viruses that generally require an electron microscope to be viewed, giant viruses can be seen under a standard light (optical) microscope. Claverie’s laboratory previously isolated giant viruses from permafrost in 2014 and 2015.
Protecting Against Accidental Infection
To demonstrate the infectious potential of the viruses, the researchers inserted the microbes into cultured amoeba cells, which the researchers describes as “virus bait,” The Washington Post reported. One advantage of using Acanthamoeba cultures is to maintain “biological security,” the researchers wrote in their paper.
“We are using [the amoeba’s] billion years of evolutionary distance with human and other mammals as the best possible protection against an accidental infection of laboratory workers or the spread of a dreadful virus once infecting Pleistocene mammals to their contemporary relatives,” the paper noted. “The biohazard associated with reviving prehistorical amoeba-infecting viruses is thus totally negligible compared to the search for ‘paleoviruses’ directly from permafrost-preserved remains of mammoths, woolly rhinoceros, or prehistoric horses.”
The paper cites earlier research noting the presence of bacteria in ancient permafrost samples, “a significant proportion of which are thought to be alive.” These include relatives of contemporary pathogens such as:
“We can reasonably hope that an epidemic caused by a revived prehistoric pathogenic bacterium could be quickly controlled by the modern antibiotics at our disposal,” the researchers wrote, but “the situation would be much more disastrous in the case of plant, animal, or human diseases caused by the revival of an ancient unknown virus.”
However, according to The Washington Post, “Virologists who were not involved in the research said the specter of future pandemics being unleashed from the Siberian steppe ranks low on the list of current public health threats. Most new—or ancient—viruses are not dangerous, and the ones that survive the deep freeze for thousands of years tend not to be in the category of coronaviruses and other highly infectious viruses that lead to pandemics.”
Cornell University virologist Colin Parrish, PhD, President of the American Society for Virology, told The Washington Post that an ancient virus “seems like a low risk compared to the large numbers of viruses that are circulating among vertebrates around the world, and that have proven to be real threats in the past, and where similar events could happen in the future, as we still lack a framework for recognizing those ahead of time.”
Anthony Fauci, MD, former Director of the National Institute of Allergy and Infectious Diseases (NIAID), responded to an earlier study from Claverie’s lab by outlining all the unlikely events that would have to transpire for one of these viruses to cause a pandemic. “The permafrost virus must be able to infect humans, it must then [cause disease], and it must be able to spread efficiently from human to human,” he told The Washington Post in 2015. “This can happen, but it is very unlikely.”
Thus, clinical laboratories probably won’t see new diagnostic testing to identify ancient viruses anytime soon. But it’s always best to remain vigilant.
Dogs’ acute sense of smell can even surpass effectiveness of some clinical laboratory testing in detecting certain diseases in humans
When it comes to COVID-19 testing, a recent Italian study demonstrates that trained dogs can detect SARS-CoV-2 with accuracy comparable to rapid molecular tests used in clinical laboratories. The researchers wanted to determine if dogs could be more effective at screening people for COVID-19 at airports, schools, and other high-traffic environments as a way to detect the coronavirus and reduce the spread of this infectious disease.
Scientists at the State University of Milan in Italy conducted a study that shows dogs can be trained to accurately identify the presence of the COVID-19 infection from both biological samples and by simply smelling an individual.
For their validation study, the Italian team trained three dogs named Nala, Otto, and Helix, “to detect the presence of SARS-CoV-2 in sweat samples from infected people. At the end of the training, the dogs achieved an average sensitivity of 93% and a specificity of 99%, showing a level of accuracy highly consistent with that of the RT-PCR [reverse transcription polymerase chain reaction] used in molecular tests and a moderate to strong reproducibility over time,” Nature reported.
RT-PCR tests are the current gold-standard for SARS-CoV-2 detection. This is yet another example of scientists training dogs to smell a disease with “acceptable” accuracy. This time for COVID-19.
“We only recruited dogs that showed themselves predisposed and positively motivated to carry out this type of activity. One of the fundamental aspects was not to cause stress or anxiety in the subjects used,” Federica Pirrone, PhD (above), Associate Professor, Department of Veterinary Medicine and Animal Sciences, University of Milan, and one of the authors of the study told Lifegate. “Training always takes place using positive reinforcement of a food nature: whether it’s a particularly appetizing morsel, a biscuit, or something that associates the dog’s search with a rewarding prize.” In some instances, dogs have been shown to be as good or more effective at detecting certain diseases than clinical laboratory testing. (Photo copyright: Facebook.)
Dogs More Accurate than Rapid Antigen Testing
Nala and four other dogs (Nim, Hope, Iris and Chaos) were later trained by canine technicians from Medical Detection Dogs Italy (MDDI) to identify the existence of the SARS-CoV-2 virus by directly smelling people waiting in line in pharmacies to get a nasal swab to test for the coronavirus.
Working with their handlers, the five dogs accurately signaled the presence or absence of the virus with 89% sensitivity and 95% specificity. That rate is “well above the minimum required by the WHO [World Health Organization] for rapid swabs for SARS-CoV-2,” according to Nature.
“The results of studies published so far on the accuracy of canine smell in detecting the presence of SARS-CoV-2 in biological samples (e.g., saliva, sweat, urine, trachea-bronchial secretions) from infected people suggest that sniffer dogs might reach percentages of sensitivity and specificity comparable to, or perhaps even higher, than those of RT-PCR,” the scientists wrote in Scientific Reports.
“However, although most of these studies are of good quality, none of them provided scientific validation of canine scent detection, despite this being an important requirement in the chemical analysis practice. Therefore, further applied research in this field is absolutely justified to provide definitive validation of this biodetection method,” the researchers concluded.
Other Studies into Using Dogs for Detecting Disease
Scientists from the Division of Biological and Health Sciences, Department of Agriculture and Livestock at the University of Sonora; and the Canine Training Center Obi-K19, both in Hermosillo, Mexico, conducted the study “as part of a Frontiers of Science Project of the National Council of Science and Technology (CONACYT), in which in addition to analyzing sweat compounds, trained dogs are put to sniff the samples and make detections in people who show symptoms or could be positive for coronavirus,” Mexico Daily Post reported.
The researchers trained four dogs with sweat samples and three dogs with saliva samples of COVID-19 positive patients. The samples were obtained from a health center located in Hermosillo, Sonora, in Mexico. The dogs were restricted to spend five minutes per patient and the researchers calculated the performance of the dogs by measuring sensitivity, specificity, and their 95% confidence intervals (CI).
The researchers concluded that all four of the dogs could detect COVID-19 from either sweat or saliva samples “with sensitivity and specificity rates significantly different from random [sampling] in the field.” According to the Frontiers in Medicine study, the researchers found their results promising because, they said, it is reasonable to expect the detection rate would improve with longer exposure to the samples.
The objective of the Mexican researchers is for the dogs to ultimately reach the sensitivity range requested by WHO for the performance of an antigen test, which is at least 80% sensitivity and 97% specificity. If that goal is achieved, dogs could become important partners in the control of the COVID-19 pandemic, the scientists wrote.
Data obtained so far from these studies indicate that biosensing dogs may represent an effective method of screening for COVID-19 as well as other diseases. More studies and clinical trials are needed before the widespread use of dogs might become feasible. Nevertheless, scientists all over the world are finding that Man’s best friend can be a powerful ally in the fight against the spread of deadly diseases.
In the meantime, the gold standard in COVID-19 testing will continue to be the FDA-cleared assays used by clinical laboratories throughout the United States.
Research in the UK and US into how rapid WGS can prevent deaths and improve outcomes for kids with rare genetic diseases may lead to more genetic testing based in local clinical laboratories
Genetic scientists with the National Health Service (NHS) in England have embarked on an ambitious plan to offer rapid whole genome sequencing (rWGS) for children and babies with serious illnesses, as part of a larger initiative to embrace genomic medicine in the United Kingdom (UK).
The NHS estimates that the plan will benefit more than 1,000 children and babies each year, including newborns with rare diseases such as cancer, as well as kids placed in intensive care after being admitted to hospitals. Instead of waiting weeks for results from conventional tests, clinicians will be able to administer a simple blood test and get results within days, the NHS said in a press release.
The press release notes that about 75% of rare genetic diseases appear during childhood “and are responsible for almost a third of neonatal intensive care deaths.”
Here in the United States, pathologists and clinical laboratory managers should see this development as a progressive step toward expanding access to genetic tests and whole genome sequencing services. The UK is looking at this service as a nationwide service. By contrast, given the size of the population and geography of the United States, as this line of medical laboratory testing expands in the US, it will probably be centered in select regional centers of excellence.
“This strategy sets out how more people will be empowered to take preventative action following risk-based predictions, receive life-changing diagnoses, and get the support needed to live with genomically-informed diagnoses alongside improved access to cutting-edge precision [medicine] treatments. It also outlines how the NHS will accelerate future high-quality genomic innovation that can be adopted and spread across the country, leading to positive impacts for current and future generations,” the NHS wrote.
“This global first is an incredible moment for the NHS and will be revolutionary in helping us to rapidly diagnose the illnesses of thousands of seriously ill children and babies—saving countless lives in the years to come,” said NHS chief executive Amanda Pritchard (above) in a press release announcing the program. (Photo copyright: Hospital Times.)
New Rapid Whole Genome Sequencing Service
The NHS announced the plan following a series of trials last year. In one trial, a five-day old infant was admitted to a hospital in Cheltenham, Gloucester, with potentially deadly levels of ammonia in his blood. Whole genome sequencing revealed that changes in the CPS1 gene were preventing his body from breaking down nitrogen, which led to the spike in ammonia. He was given life-saving medication in advance of a liver transplant that doctors believed would cure the condition. Without the rapid genetic test, doctors likely would have performed an invasive liver biopsy.
Using a simple blood test, the new newborn genetic screening service in England is expected to benefit more than 1,000 critically ill infants each year, potentially saving their lives. “The rapid whole genome testing service will transform how rare genetic conditions are diagnosed,” explained Emma Baple, PhD, Professor of Genomic Medicine at University of Exeter Medical School and leader of the National Rapid Whole Genome Sequencing Service in the press release. “We know that with prompt and accurate diagnosis, conditions could be cured or better managed with the right clinical care, which would be life-altering—and potentially life-saving—for so many seriously unwell babies and children,” Precision Medicine Institute reported.
According to The Guardian, test results will be available in two to seven days.
Along with the new rWGS testing service, the NHS announced a five-year plan to implement genomic medicine more broadly. The provisions include establishment of an ethics advisory board, more training for NHS personnel, and an expansion of genomic testing within the existing NHS diagnostic infrastructure. The latter could include using NHS Community Diagnostics centers to collect blood samples from family members to test for inherited diseases.
UK’s Longtime Interest in Whole Genome Sequencing
The UK government has long been interested in the potential role of WGS for delivering better outcomes for patients with genetic diseases, The Guardian reported.
In 2013, the government launched the 100,000 Genomes Project to examine the usefulness of the technology. In November 2021, investigators with the project reported the results of a large pilot study in which they analyzed the genomes of 4,660 individuals with rare diseases. The study, published in the New England Journal of Medicine (NEJM) titled, “100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care—Preliminary Report,” found “a substantial increase in yield of genomic diagnoses made in patients with the use of genome sequencing across a broad spectrum of rare disease.”
The study’s findings suggest that use of WGS “could save the NHS millions of pounds,” The Guardian reported.
Whole Genome Sequencing System for Newborns in the US
“This NBS-rWGS [newborn screening by rapid whole genome sequencing] system is designed to complement the existing newborn screening process and has the potential to eliminate the diagnostic and therapeutic odyssey that many children and parents face,” Kingsmore said in a press release. “Currently, only 35 core genetic disorders are recommended for newborn screening in the United States, but there are more than 7,200 known genetic diseases. Outcomes remain poor for newborns with a genetic disease because of the limited number of recommended screenings. With NBS-rWGS, we can more quickly expand that number and therefore potentially improve outcomes through precision medicine.”
A more recent 2023 study which examined 112 infant deaths at Rady Children’s Hospital found that 40% of the babies had genetic diseases. In seven infants, genetic diseases were identified post-mortem, and in five of them “death might have been avoided had rapid, diagnostic WGS been performed at time of symptom onset or regional intensive care unit admission,” the authors wrote.
“Prior etiologic studies of infant mortality are generally retrospective, based on electronic health record and death certificate review, and without genome information, leading to underdiagnosis of genetic diseases,” said Christina Chambers, PhD, co-author of the study, in a press release. “In fact, prior studies show at least 30% of death certificates have inaccuracies. By implementing broad use of genome sequencing in newborns we might substantially reduce infant mortality.”
Pioneering work with whole genome sequencing for newborns, such as that being conducted by the clinical laboratory and genetic teams at Rady Children’s Hospital and the UK’s NHS, could allow doctors to make timely interventions for our most vulnerable patients.
Novel scheme by medical laboratory company to induce patients to collect and return their own specimen for testing is central to a federal whistleblower case alleging violations of the Anti-Kickback Statute
Handing out gift cards only to patients who return a specimen to a clinical laboratory company for colorectal cancer screening is a unique approach that is now at the center of a federal qui tamcase filed by a retired Indiana pathologist.
The defendant in this whistleblower lawsuit is Exact Sciences Laboratories and its parent company Exact Sciences Corporation (NASDAQ:EXAS). Last month, a federal judge ruled the court case will proceed following attempts by the defendant’s attorneys to have the case dismissed.
The plaintiffs (United States of America ex rel. Niles Rosen, MD) allege Exact Sciences Laboratories violated the Federal Anti-Kickback Statute (AKS) and False Claims Act by offering $75 gift cards to induce patients to return self-collected fecal samples for the lab’s Cologuard at-home colon cancer screening kit through its Patient Compliance Program.
Exact Sciences refuted the allegations and moved to have the case dismissed claiming it “had a good faith belief that its [Patient Compliance Program] complied with the law and thus lacked the requisite intent for a violation of the AKS,” according to court documents. The court denied Exact Sciences’ motion to dismiss.
“We are grateful for the hard work and courage of those private citizens who bring evidence of fraud to the Department’s attention, often putting at risk their careers and reputations,” said Brian Boynton, JD (above), Principal Deputy Assistant Attorney General and head of the federal Department of Justice (DOJ) Civil Division in a February 7, 2023, DOJ statement. “Our ability to protect citizens and taxpayer funds continues to benefit greatly from their actions.” Clinical laboratory managers will want to follow this and other qui tam cases claiming violation of anti-kickback laws. (Photo copyright: Department of Justice.)
.
Was Exact Sciences’ Patient Compliance Program a Kickback?
Cologuard is a non-invasive testing kit utilized by people to screen for colorectal cancer in the privacy of their own homes. It is intended for those over the age of 45 who are at low or average risk for the disease. Exact Sciences regularly runs television advertisements urging individuals to be screened for colorectal cancer using the Cologuard test.
Following a physician’s order, and after receiving the testing kit in the mail, individuals collect a stool sample using the specimen container in the kit and return the sample to Exact Sciences Laboratories (ESL) for analysis. The test works by looking for certain DNA markers and blood in the stool sample.
According to Report on Medicare Compliance from the Health Care Compliance Association (HCCA), in 2017, a gastroenterologist ordered the Cologuard kit for Rosen, the whistleblower, but Rosen chose not to return a stool sample to ESL. A few months later, ESL sent Rosen a letter offering him a $75 Visa gift card if he performed the at-home specimen collection and then returned it to ESL by March 22, 2018. Persuaded by the offer, Rosen collected a sample, returned it to ESL, and received the gift card.
As part of its Patient Compliance Program, ESL analyzed Rosen’s sample and received $499 from Medicare for performing the test. The complaint filed against Exact Sciences states Medicare paid Exact Sciences more than $160 million for a total of 334,424 Cologuard tests in 2018 while the company offered “unlawful cash equivalent inducements directly to Medicare beneficiaries,” COSMOS reported.
“It was a straight-up kickback,” Rosen’s attorney Marlan Wilbanks, JD, Senior Partner at Atlanta law firm Wilbanks and Gouinlock, told COSMOS. “You can’t offer cash or cash equivalents to anyone to induce them to use a government service.”
DOJ Elects to Not Intervene in Lawsuit
In February 2020, Exact Sciences received a civil investigation demand by the US Department of Justice (DOJ) regarding the gift card incentive. The DOJ later filed a notice that it had elected to decline intervention in the lawsuit. This action did not prevent Rosen from continuing with the lawsuit. Accordingly, in April of 2021, he filed an amended complaint against Exact Sciences alleging violations of the Federal Anti-Kickback Statute and False Claims Act.
Rosen is seeking a monetary award for himself, and on behalf of the US government, for civil penalties, treble damages, fees, and costs.
According to Report on Medicare Compliance, Exact Sciences “refuted the allegations and asserted, among other things, that the arrangement qualifies for the preventive care safe harbor to the anti-kickback statute (AKS) and that the complaint fails for many reasons.”
Exact Sciences also noted in its motion to dismiss that “encouraging a patient to have a medical service that was already ordered by a provider isn’t an inducement under the AKS.”
At this time, the case remains unresolved and continues in federal court.
DOJ Recovers Billions of Taxpayer Dollars from AKS Violations
A qui tam lawsuit or action is a method available for individuals to help the government circumvent fraud and recover money for taxpayers. Types of fraud included in these cases often pertain to Medicare and Medicaid services, defense contractor fraud, and procurement fraud.
According to the DOJ, over $1.9 billion was recovered as a result of qui tam lawsuits pursued by either the government or whistleblowers during fiscal year 2022. The number of these types of lawsuits has increased dramatically over the years with a total of 652 qui tam cases filed in 2022 alone.
Thus, clinical laboratory professionals should be aware that this type of novel scheme to generate more patients could possibly lead to legal issues. Dark Daily would like to credit Laboratory Economics for calling attention to this fascinating case of alleged illegal inducement involving a medical laboratory company.