News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Protesters Outside UnitedHealthcare Headquarters Allege Company Systemically Denies Care

Are ongoing protests and federal investigations into health plan practices evidence that customers have reached a tipping point?

It is not common for beneficiaries to get arrested in front of their health plan’s headquarters. But that is what happened in July, when protesters gathered outside of UnitedHealth Group (UHG) in Minnetonka, Minn., to stress their dissatisfaction with the health insurer. More than 150 protesters participated in the demonstration. Eleven were arrested and charged with misdemeanors for blocking the public street outside of the headquarters.

Their main complaint is that the insurer systemically denies care for patients. This is a situation that probably resonates with hospitals, physicians, clinical laboratory professionals, and pathologists, who often see their own claims denied by health plans, including UnitedHealthcare. 

“UnitedHealth Group’s profiteering by denying care is a disgrace, leaving people across Minnesota and all of the United States without the care they desperately need,” wrote members of the People’s Action Institute in a letter to UHG’s CEO Sir Andrew Witty. People’s Action organized the protest as part of its Care Over Cost campaign.

“Health insurance coverage has expanded in America, but we are finding it is private health insurance corporations themselves that are often the largest barrier for people to receive the care they and their doctor agree they need,” Aija Nemer-Aanerud, campaign director with People’s Action told CBS News.

“We have asked UnitedHealthcare for systemic changes in their practices and they have refused,” he told Bring Me The News.

Nemer-Aanerud told CBS News that UnitedHealth Group leadership has “refused to acknowledge that prior authorizations and claim denials are a widespread problem.”

“Our mission is to help people live healthier lives and help make the health system work better for everyone,” said UnitedHealth Group CEO Sir Andrew Witty (above) during a Senate Finance Committee hearing in May, NTD reported. “Together, we are working to help enable our health system’s transition to value-based care and are empowering physicians and their care teams to deliver more personalized, high-quality care that delivers better outcomes at a lower cost.” (Photo copyright: The Business Journals.)

People’s Action Institute Demands

In the letter, the changes People’s Action urged UHG to make include:

  • Ceasing to deny claims for treatments recommended by medical professionals.
  • Overturning existing denials for recommended treatments.
  • Stopping the practice of using Artificial Intelligence (AI) and algorithms to deny claims in bulk.
  • Executing a publicly shared audit and reimbursing federal/state governments for public money diverted by claims and prior-authorization denials within Medicare and Medicaid systems.
  • Expediting payment of claims.
  • Making public the details of denied claims and prior authorizations by market, plan, state, geography, gender, disability and race.

A spokesperson for UnitedHealth Group told CBS News that the company has had several talks with People’s Action and has settled some of the organization’s issues. That spokesperson also confirmed that UHG tried to discuss specific cases, but the issues People’s Action brought up had already been resolved.

“The safety and security of our employees is a top priority. We have resolved the member-specific concerns raised by this group and remain open to a constructive dialogue about ensuring access to high-quality, affordable care,” UnitedHealthcare said in a statement.

Profits over Patients?

The People’s Action Institute is a national network of individuals and organizations who strive to help people across the US overturn medical care denials made by insurance giants. Its Care Over Cost campaign aims to influence insurers to initiate systemic changes in their practices. 

The recent protest occurred as UnitedHealth Group released its second-quarter financial report claiming $7.9 billion in profits. The company provides health insurance for more than 47 million people across the country and took in $22.4 billion in profits last year.

“UnitedHealth Group’s $7.9 billion quarterly profit announcement is the result of a business model built on pocketing premiums and billions of dollars in public funds, then profiting by refusing to authorize or pay for care,” said Nemer-Aanerud in a press release. “People should not have to turn to public petitions or direct actions to get UnitedHealthcare to pay for the care they need to live.”

“UnitedHealth Group made a decision to spend billions of dollars on stock buybacks, lobbying, and executive pay instead of paying for care people need,” Nemer-Aanerud told Bring Me The News. “They are harming people for profit and should be held accountable for that choice.”

“Delays and denials of care hurt millions of people every year and result in ongoing sickness, injury, medical debt, bankruptcy, worsened health outcomes and even premature death,” wrote Christy Atkinson, MD, a family physician with M Health Fairview University of Minnesota Medical Center and chair of Physicians for a National Health Program-Minnesota; and Matt Hoffman, MD, a physician at Allina Health Vadnais Heights Clinic and a member of Doctors Council, the country’s oldest and largest union of attending physicians, in an article they penned for Minnesota Reformer following a meeting with UHG concerning the protests.

“We all pay for this convoluted system, whether it is in our health insurance premiums or in our public programs. UnitedHealth Group is making billions of dollars in profit by denying people care, including in privatized Medicare and Medicaid plans, to the point that it has prompted a federal investigation … Still, we left the meeting with hope,” they added.

Protests like this one against UnitedHealth Group serve as evidence that the current system of commercial health insurance plans could be deteriorating. This descent may cause customers of these plans to take unprecedented actions to fight for necessary medical care.

As noted earlier, hospitals, physician groups, clinical laboratories, and anatomic pathology groups that see their own claims often denied by health insurers without a clear reason for the denials are probably sympathetic to the plight of patients who are frustrated with how UnitedHealthcare denies their access to care.

—JP Schlingman

Related Information:

11 Arrested During Protest at UnitedHealthcare HQ, Alleging Company is Systemically “Refusing to Approve Care”

Protesters Arrested Outside of UnitedHealth Group Headquarters in Minnetonka

People’s Action Institute Statement on UnitedHealth Group $7.9 Billion Profit Report Following Arrests at Headquarters

Copy of Demand Letter for Delivery (United Healthcare) April 2024

Doctors Speak: Inside Our Meeting with UnitedHealth Group

UnitedHealth Reports $7.9 Billion in Q2 Profits after Protesters Arrested

Arrests Made During Protest Outside UnitedHealthcare Headquarters

11 Protesters Arrested Outside UnitedHealth Group Headquarters

In Massive Crackdown, US Department of Justice Charges 193 Defendants with $2.75 Billion in Healthcare Fraud

Charges include $1.1 billion in alleged telemedicine and fraudulent clinical laboratory testing

Nearly 200 individuals in 25 states are facing charges for alleged participation in a variety of healthcare frauds, the US Department of Justice (DOJ) announced in a press release. This major enforcement action involves telemedicine and clinical laboratory testing as well as other healthcare schemes. In total, the DOJ is alleging the defendants are responsible for $2.75 billion in intended losses and $1.6 billion in actual losses.

The charges include:

  • $1.1 billion in alleged telemedicine and clinical laboratory fraud.
  • A $900 million scheme involving fraudulent Medicare billing for amniotic wound grafts.
  • Unlawful distribution of Adderall and other stimulants.
  • A $90 million scheme involving distribution of “adulterated and misbranded HIV medication.”
  • More than $146 million in fraud involving addiction treatment schemes.
  • A variety of schemes involving fraudulent billing for durable medical equipment (DME) products.

This is one of the DOJ’s largest fraud enforcement actions to date. The charges follow investigations by the Department of Health and Human Services Office of Inspector General (OIG), the Federal Bureau of Investigations (FBI), the Drug Enforcement Administration (DEA), and other federal and state law enforcement agencies, the government said. Most defendants are facing charges in federal court, but some cases are being prosecuted in state courts.

As part of the action, the government has seized more than $231 million in assets, including cash, luxury vehicles, and gold.

Monica Cooper, JD (above), a DOJ trial attorney and member of the Texas Strike Force, is one of two attorneys prosecuting the case against Harold Albert “Al” Knowles of Delray Beach, Fla., and Chantal Swart of Boca Raton, Fla., in the DOJ’s latest crackdown on healthcare fraud. Charges against Knowles and Swart include conspiracy to commit healthcare fraud, conspiracy to defraud the United States, and paying/receiving healthcare kickbacks in a $359 million scheme to bill Medicare for medically unnecessary genetic tests at two Houston clinical laboratories. (Photo copyright: US Department of Justice.)

Houston-Area Labs Charged in $359 Million Scheme

In one case, the government charged Florida residents Harold Albert “Al” Knowles and Chantal Swart in a $359 million scheme involving fraudulent Medicare billing for medically unnecessary genetic tests. Knowles owned two Houston-area labs—Bio Choice Laboratories, Inc. and Bios Scientific, LLC—while Swart ran a telemarketing operation. According to DOJ case summaries, the government alleges that Knowles paid kickbacks to Swart to obtain DNA samples and doctors’ orders for tests.

“Knowles, Swart, and others obtained access to tens of thousands of beneficiaries across the United States by targeting them with deceptive telemarketing campaigns,” the indictments allege. “Call center representatives—who were almost never medical professionals—often prompted beneficiaries to disclose their medical conditions and induced them to agree to genetic testing regardless of medical necessity.”

In addition, “Knowles, Swart, and others agreed that Swart and others would pay illegal kickbacks and bribes to purported telemedicine companies to obtain signed doctors’ orders for genetic testing after only a brief telemedicine visit,” the indictment stated. “Knowles and his co-conspirators knew that the purported telemedicine companies’ physicians were rarely, if ever, the beneficiaries’ treating physicians and rarely, if ever, used the genetic testing results in the beneficiaries’ treatment.”

Dallas-Area Labs Charged in $335 Million Scheme

In another case, the federal government charged that the owner of two Dallas-area clinical laboratories engaged in a $335 million Medicare billing scheme.

Keith Gray, owner of Axis Professional Labs, LLC and Kingdom Health Laboratory, LLC, “offered and paid kickbacks to marketers in exchange for their referral to Axis and Kingdom of Medicare beneficiaries’ DNA samples, personally identifiable information (including Medicare numbers), and signed doctors’ orders authorizing medically unnecessary cardio genetic testing,” the government alleged. “As part of the scheme, the marketers engaged other companies to solicit Medicare beneficiaries through telemarketing and to engage in ‘doctor chase,’ i.e., to obtain the identity of beneficiaries’ primary care physicians and pressure them to approve genetic testing orders for patients who purportedly had already been ‘qualified’ for the testing.”

The indictment, filed in the US District Court for the Northern District of Texas, noted that cardio, or cardiovascular tests, are designed to assess a patient’s risk of developing cardiovascular diseases or assist in treatment.

Other Clinical Laboratory and Healthcare Fraud Cases

DOJ attorneys charged the owners of Innovative Genomics, a clinical laboratory in San Antonio, in a $65 million scheme to bill Medicare and the COVID-19 Uninsured Program for “medically unnecessary and otherwise non-reimbursable COVID-19 and genetic testing,” according to the indictment. Also charged were two patient recruiters who allegedly received kickbacks for referring patients.

Richard Abrazi of New York City was charged in a $60 million Medicare billing scheme. Abrazi owned two clinical laboratories: Enigma Management Corp. and Up Services Inc. Both operated as Alliance Laboratories.

“Abrazi and others engaged in a scheme to pay and receive kickbacks and bribes in exchange for laboratory tests, including genetic tests, that Enigma and Up billed to Medicare,” the indictment alleges. “Abrazi and others also allegedly paid and received kickbacks and bribes in exchange for arranging for the ordering of medically unnecessary genetic tests that were ineligible for Medicare reimbursement.”

The DOJ charged Brian Cotugno, of Auburn, Ga., and James Matthew Thorton “Bo” Potter, of Santa Rosa Beach, Fla., in a $20 million Medicare billing scheme. Cotugno, the indictment alleges, sold Medicare Beneficiary Identification Numbers (BINs) to two Alabama laboratories co-owned by Potter.

“The BINs were used to bill Medicare tens of millions of dollars for OTC COVID-19 test kits, many of which had not been requested by the beneficiaries,” the government alleged.

These are only a few of the recent cases the DOJ brought against defendants nationwide for healthcare, telemedicine, and clinical laboratory fraud. Both Dark Daily and our sister publication The Dark Report have covered these ongoing investigations for years. And we will continue to do so because it’s important that lab managers and pathology group leaders are aware of the lengths to which the DOJ is pursuing bad actors in healthcare.

—Stephen Beale

Related Information:

National Health Care Fraud Enforcement Action Results in 193 Defendants Charged and Over $2.75 Billion in False Claims

2024 National Health Care Fraud Enforcement Action Summary of Criminal Charges

2024 National Health Care Fraud Enforcement Action Court Documents

Clinical Laboratory Testing Implicated in National Healthcare Fraud Sting

Almost 200 People Charged in Schemes Totaling $2.7B in False Health Care Claims

DOJ Catches Over $2.7B in Healthcare Fraud Schemes

UC San Francisco Scientists Discover Antibodies That Appear in Multiple Sclerosis Patients Years before Symptoms Occur

Findings may lead to new clinical laboratory biomarkers for predicting risk of developing MS and other autoimmune diseases

Scientists continue to find new clinical laboratory biomarkers to detect—and even predict risk of developing—specific chronic diseases. Now, in a recent study conducted at the University of California San Francisco (UCSF), researchers identified antibodies that develop in about 10% of Multiple Sclerosis (MS) patients’ years before the onset of symptoms. The researchers reported that of those who have these antibodies, 100% develop MS. Thus, this discovery could lead to new blood tests for screening MS patients and new ways to treat it and other autoimmune diseases as well.

The UCSF researchers determined that, “in about 10% [of] cases of multiple sclerosis, the body begins producing a distinctive set of antibodies against its own proteins years before symptoms emerge,” Yahoo Life reported, adding that “when [the patients] are tested at the time of their first disease flare, the antibodies show up in both their blood and cerebrospinal fluid.”

That MS is so challenging to diagnose in the first place makes this discovery even more profound. And knowing that 100% of a subset of MS patients who have these antibodies will develop MS makes the UCSF study findings quite important.

“This could be a useful tool to help triage and diagnose patients with otherwise nonspecific neurological symptoms and prioritize them for closer surveillance and possible treatment,” Colin Zamecnik, PhD, scientist and research fellow at UCSF, told Yahoo Life.

The researchers published their findings in the journal Nature Medicine titled, “An Autoantibody Signature Predictive for Multiple Sclerosis.”

“From the largest cohort of blood samples on Earth, we obtained blood samples from MS patients years before their symptoms began and profiled antibodies against self-autoantibodies that are associated with multiple sclerosis diagnosis,” Colin Zamecnik, PhD (above), scientist and research fellow at UCSF, told Yahoo Life. “We found the first molecular marker of MS that appears up to five years before diagnosis in their blood.” These findings could lead to new clinical laboratory tests that determine risk for developing MS and other autoimmune diseases. (Photo copyright: LinkedIn.)

UCSF Study Details

According to the MS International Foundation Atlas of MS, there are currently about 2.9 million people living with MS worldwide, with about one million of them in the US. The disease is typically diagnosed in individuals 20 to 50 years old, mostly targeting those of Northern European descent, Yahoo Life reported.

To complete their study, the UCSF scientists used the Department of Defense Serum Repository (DoDSR), which is comprised of more than 10 million individuals, the researchers noted in their Nature Medicine paper.

From that group, the scientists identified 250 individuals who developed MS, spanning a period of five years prior to showing symptoms through one year after their symptoms first appeared, Medical News Today reported. These people were compared to 250 other individuals in the DoDSR who have no MS diagnosis but who all had similar serum collection dates, ages, race and ethnicities, and sex.

“The researchers validated the serum results against serum and cerebrospinal fluid results from an incident MS cohort at the University of California, San Francisco (ORIGINS) that enrolled patients at clinical onset. They used data from 103 patients from the UCSF ORIGINS study,” according to Medical News Today. “They carried out molecular profiling of autoantibodies and neuronal damage in samples from the 500 participants, measuring serum neurofilament light chain measurement (sNfL) to detect damage to nerve cells.

“The researchers tested the antibody patterns of both MS and control participants using whole-human proteome seroreactivity which can detect autoimmune reactions in the serum and CSF,” Medical News Today noted.

Many who developed MS had an immunogenicity cluster (IC) of antibodies that “remained stable over time” and was not found in the control samples. The higher levels of sNfL in those with MS were discovered years prior to the first flare up, “indicating that damage to nerve cells begins a long time before symptom onset,” Medical News Today added.

“This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically or radiologically isolated neuroinflammatory syndromes,” the UCSF scientists wrote in Nature Medicine.

“We believe it’s possible that these patients are exhibiting cross reactive response to a prior infection, which agrees with much current work in the literature around multiple sclerosis disease progression,” Zamecnik told Yahoo Life.

It “validates and adds to prior evidence of neuro-axonal injury occurring in patients during the MS preclinical phase,” the researchers told Medical News Today.

Implications of UCSF’s Study

UCSF’s discovery is a prime example of technology that could soon work its way into clinical use once additional studies and research are done to support the findings.

The researchers believe their research could lead to a simple blood test for detecting MS years in advance and discussed how this could “give birth to new treatments and disease management opportunities,” Neuroscience News reported.

Current MS diagnosis requires a battery of tests, such as lumbar punctures for testing cerebrospinal fluid, magnetic resonance imaging (MRI) scans of the spinal cord and brain, and “tests to measure speed and accuracy of nervous system responses,” Medical News Today noted.

“Given its specificity for MS both before and after diagnosis, an autoantibody serology test against the MS1c peptides could be implemented in a surveillance setting for patients with high probability of developing MS, or crucially at a first clinically isolated neurologic episode,” the UCSF researchers told Medical News Today.

“It would also be interesting to see whether these antibodies could be a marker of disease severity and explain some of the MS course heterogeneity,” epidemiologist Marianna Cortese, MD, PhD, senior research scientist at Harvard T.H. Chan School of Public Health, told Medical News Today.

The UCSF discovery is another example of nascent technology that could work its way into clinical use after more research and studies. Microbiologists, clinical laboratories, and physicians tasked with diagnosing MS and other autoimmune diseases should find the novel biomarkers the researchers identified most interesting, as well as what changed with science and technology that enabled researchers to identify these biomarkers for development.

—Kristin Althea O’Connor

Related Information:

An Autoantibody Signature Predictive for Multiple Sclerosis

Signs of Multiple Sclerosis Can Be Detected in Blood 5 Years before Symptoms Appear, New Study Finds. Here’s Why This Breakthrough Is Important.

Signs of MS May Be Visible in Blood Years Before First Flare-Up of Symptoms

Blood Test Predicts Multiple Sclerosis Years Before Symptoms Appear

UK Researchers Use Artificial Intelligence to Identify DNA Methylation Signatures Associated with Cancer

Study findings could lead to new clinical laboratory diagnostics that give pathologists a more detailed understanding about certain types of cancer

New studies proving artificial intelligence (AI) can be used effectively in clinical laboratory diagnostics and personalized healthcare continue to emerge. Scientists in the UK recently trained an AI model using machine learning and deep learning to enable earlier, more accurate detection of 13 different types of cancer.

Researchers from the University of Cambridge and Imperial College London used their AI model to identify specific DNA methylation signatures that can denote the presence of certain cancers with 98.2% accuracy. 

DNA stores genetic information in sequences of four nucleotide bases: A (adenine), T (thymine), G (guanine) and C (cytosine). These bases can be modified through DNA methylation. There are millions of DNA methylation markers in every single cell, and they change in the early stages of cancer development.

One common characteristic of many cancers is an epigenetic phenomenon called aberrant DNA methylation. Modifications in DNA can influence gene expression and are observable in cancer cells. A methylation profile can differentiate tumor types and subtypes and changes in the process often come before malignancy appears. This renders methylation very useful in catching cancers while in the early stages. 

However, deciphering slight changes in methylation patterns can be extremely difficult. According to the scientists, “identifying the specific DNA methylation signatures indicative of different cancer types is akin to searching for a needle in a haystack.”

Nevertheless, the researchers believe identifying these changes could become a useful biomarker for early detection of cancers, which is why they built their AI models.

The UK researcher team published its findings in the Oxford journal Biology Methods and Protocols titled, “Early Detection and Diagnosis of Cancer with Interpretable Machine Learning to Uncover Cancer-specific DNA Methylation Patterns.”

“Computational methods such as this model, through better training on more varied data and rigorous testing in the clinic, will eventually provide AI models that can help doctors with early detection and screening of cancers,” said Shamith Samarajiwa, PhD (above), Senior Lecturer and Group Leader, Computational Biology and Genomic Data Science, Imperial College London, in a news release. “This will provide better patient outcomes.” With additional research, clinical laboratories and pathologists may soon have new cancer diagnostics based on these AI models. (Photo copyright: University of Cambridge.)

Understanding Underlying Mechanisms of Cancer

To perform their research, the UK team obtained methylation microarray data on 13 human cancer types and 15 non-cancer types from The Cancer Genome Atlas (TCGA) of the National Cancer Institute (NCI) Center for Cancer Genomics. The DNA fragments they examined came from tissue samples rather than blood-based samples. 

The researchers then used a combination of machine learning and deep learning techniques to train an AI algorithm to examine DNA methylation patterns of the collected data. The algorithm identified and differentiated specific cancer types, including breast, liver, lung and prostate, from non-cancerous tissue with a 98.2% accuracy rate. The team evaluated their AI model by comparing the results to independent research. 

In their Biology Methods and Protocols paper, the authors noted that their model does require further training and testing and stressed that “the important aspect of this study was the use of an explainable and interpretable core AI model.” They also claim their model could help medical professionals understand “the underlying mechanisms that contribute to the development of cancer.” 

Using AI to Lower Cancer Rates Worldwide

According to the Centers for Disease Control and Prevention (CDC), cancer ranks as the second leading cause of death in the United States with 608,371 deaths reported in 2022.  The leading cause of death in the US is heart disease with 702,880 deaths reported in the same year. 

Globally cancer diagnoses and death rates are even more alarming. World Health Organization (WHO) data shows an estimated 20 million new cancer cases worldwide in 2022, with 9.7 million persons perishing from various cancers that year.

The UK researchers are hopeful their new AI model will help lower those numbers. They state in their paper that “most cancers are treatable and curable if detected early enough.”

More research and studies are needed to confirm the results of this study, but it appears to be a very promising line of exploration and development of using AI to detect, identify, and diagnose cancer earlier. This type of probing could provide pathologists with improved tools for determining the presence of cancer and lead to better patient outcomes. 

—JP Schlingman

Related Information:

New AI Detects 13 Deadly Cancers with 98% Accuracy from Tissue Samples

Will it Soon Be Possible for Doctors to Use AI to Detect and Diagnose Cancer?

Early Detection and Diagnosis of Cancer with Interpretable Machine Learning to Uncover Cancer-specific DNA Methylation Patterns

Study Suggests AI May Soon Be Able to Detect Cancer

AI Analyzes DNA Methylation for Early Cancer Detection

Aberrant DNA Methylation as a Cancer-Inducing Mechanism

Global Cancer Burden Growing, Amidst Mounting Need for Services

Aberrant DNA Methylation as a Cancer-inducing Mechanism

University College London Researchers Develop Carbon Beads That Slow the Progress of Liver Disease and Improve Gut Microbiome

As this therapeutic approach gains regulatory approval, clinical laboratory tests to determine condition of patient’s gut microbiota and monitor therapy will be needed

Some developments in the clinical laboratory industry are less about diagnostic tests and more about novel approaches to therapy. Such is the case with a new carbon bead technology developed by researchers from University College London (UCL) and the Royal Free Hospital intended to remove harmful bacteria toxins from the gut before they leak to the liver. The macroporous beads, which come in small pouches, are delivered orally and could be utilized in the future to treat a number of diseases.

Why is this relevant? Once a new treatment is accepted for clinical use, demand increases for a clinical laboratory test that confirms the therapy will likely work and to monitor its progress.

In collaboration with Yaqrit, a UK-based life sciences company that develops treatments for chronic liver disease, the UCL and Royal Free Hospital scientists engineered the carbon beads—known as CARBALIVE—to help restore gut health. They measured the technology’s impact on liver, kidney, and brain function in both rats and mice.

“The influence of the gut microbiome on health is only just beginning to be fully appreciated,” said Rajiv Jalan, PhD, Professor of Hepatology at UCL in a press release. “When the balance of the microbiome is upset, ‘bad’ bacteria can proliferate and out-compete the ‘good’ bacteria that keeps the gut healthy.

“One of the ways [the ‘bad’ bacteria] do this is by excreting endotoxin, toxic metabolites, and cytokines that transform the gut environment to make it more favorable to them and hostile to good bacteria,” he continued. “These substances, particularly endotoxin, can trigger gut inflammation and increase the leakiness of the gut wall, resulting in damage to other organs such as the liver, kidneys, and brain.”

The researchers published their findings in Gut, a journal of the British Society of Gastroenterology, titled, “Clinical, Experimental and Pathophysiological Effects of Yaq-001: A Non-absorbable, Gut-restricted Adsorbent in Models and Patients with Cirrhosis.”

“I have high hopes that the positive impact of these carbon beads in animal models will be seen in humans, which is exciting not just for the treatment of liver disease but potentially any health condition that is caused or exacerbated by a gut microbiome that doesn’t work as it should,” said Rajiv Jalan, PhD (above), Professor of Hepatology, University College London, in a press release. “This might include conditions such as irritable bowel syndrome (IBS), for example, which is on the rise in many countries.” Though not a clinical laboratory diagnostic test, new therapies like CARBALIVE could be a boon to physicians treating patients with IBS and other gastrointestinal conditions.

Developing the Carbon Beads

The team discovered CARBALIVE is effective in the prevention of liver scarring and injury in animals with cirrhosis when ingested daily for several weeks. They also found a reduced mortality rate in test animals with acute-on-chronic-liver-failure (ACLF).

After achieving success with CARBALIVE in animals, the researchers tested the technology on 28 cirrhosis patients. The carbon beads proved to be safe for humans and had inconsequential side effects.

“In cirrhosis, a condition characterized by scarring of the liver, it is known that inflammation caused by endotoxins can exacerbate liver damage,” Jalan explained. “Part of the standard treatment for cirrhosis is antibiotics aimed at controlling bad bacteria, but this comes with the risk of antibiotic resistance and is only used in late-stage disease.”

The beads, which are smaller than a grain of salt, contain an exclusive physical structure that absorbs large and small molecules in the gut. They are intended to be taken with water at bedtime as harmful bacteria is more likely to circulate through the body at night which could result in damage. The carbon beads do not kill bacteria, which decreases the risk of antibiotic resistance. They eventually pass through the body as waste.

“They work by absorbing the endotoxins and other metabolites produced by ‘bad’ bacteria in the gut, creating a better environment for the good bacteria to flourish and helping to restore microbiome health,” said Michal Kowalski, M.Sc.Eng, Director and VP of Operations at Yaqrit, in the UCL news release.

“This prevents these toxins from leaching into other areas of the body and causing damage, as they do in cirrhosis,” he added. “The results in animal models are very positive, with reduction in gut permeability, liver injury, as well as brain and kidney dysfunction.”

Additional Research

The researchers plan to perform further clinical trials in humans to determine if the carbon beads are effective at slowing the progression of liver disease. If the benefits that were observed in lab animals prove to be compelling in humans, the technology may become an invaluable tool for the treatment of liver disease and other diseases associated with poor microbiome health in the future.

According to the American Liver Foundation, 4.5 million adults in the US have been diagnosed with liver disease. However, it is estimated that 80 to 100 million adults have some form of fatty liver disease and are unaware of it. Liver disease was the 12th leading cause of death in the US in 2020 with 51,642 adults perishing from the disease that year.

According to BMC Public Health, globally there were 2.05 million new cases of liver cirrhosis diagnosed in 2019. In that year, 1.47 million people around the world died from the disease.

More research and clinical studies are needed before this novel technology can be used clinically. When and if that happens, the demand for clinical laboratory tests that measure microbiome deficiencies and monitor patient progress during therapy will likely be high.

—JP Schlingman

Related Information:

Carbon Beads Help Restore Healthy Gut Microbiome and Reduce Liver Disease Progression

Clinical, Experimental and Pathophysiological Effects of Yaq-001: A Non-absorbable, Gut-restricted Adsorbent in Models and Patients with Cirrhosis

Tiny Beads of Carbon Could Save Lives

UCL Study Reveals Carbon Beads Could Help Reduce Progression of Liver Disease

How Many People Have Liver Disease?

Global Epidemiology of Cirrhosis—Aetiology, Trends and Predictions

Global Burden of Liver Cirrhosis and Other Chronic Liver Diseases Caused by Specific Etiologies from 1990 to 2019

Acute-on-Chronic Liver Failure: Definition, Prognosis and Management

In Vitro Diagnostics Companies Race to Develop Blood-based Tests for Alzheimer’s Disease, Data Suggest a Worldwide Growing Market

As new diagnostic assays are cleared by regulators, clinical laboratories will play a key role in identifying appropriate patients for new less-invasive Alzheimer’s tests

With multiple companies racing to develop a blood-based test for Alzheimer’s disease (AD), clinical laboratories may soon have new less-invasive diagnostic assays for AD on their menus.

Why a race? Because a less-invasive clinical laboratory test that uses a venous blood draw (as opposed to a spinal tap)—and which has increased sensitivity/specificity—has a potentially large market given the substantial numbers of elderly predicted to develop Alzheimer’s over the next decade. It has the potential to be a high volume, high dollar diagnostic test.

In fact, Mordor Intelligence estimates that the market for Alzheimer’s disease therapeutics will grow from $7.7 billion in 2024 to $10.10 billion by 2029.

Alzheimers.gov, an official website of the US government, says, “Researchers have made significant progress in developing, testing, and validating biomarkers that detect signs of the disease process. For example, in addition to PET scans that detect abnormal beta-amyloid plaques and tau tangles [abnormal forms of tau protein] in the brain, NIH-supported scientists have developed the first commercial blood test for Alzheimer’s. This test and others in development can not only help support diagnosis but also be used to screen volunteers for research studies.”

Several test developers presented their research at a recent Alzheimer’s Association   International Conference. They shared data about blood-based assay accuracy in diagnosis of Alzheimer’s as compared to current practices that involve a lumbar puncture (spinal tap) to collect cerebrospinal fluid (CSF).

Additionally, the US Food and Drug Administration (FDA) is clearing new Alzheimer’s drugs for clinical use. The pharma companies behind these drugs need clinical laboratory tests that accurately diagnosis the disease and confirm that it would be appropriate for the patient to receive the new therapeutic drugs, a key element of precision medicine.

“The big promise for blood tests is that they will eventually be accessible, hopefully, cost-effective, and noninvasive,” Rebecca Edelmayer, PhD (above), Vice President, Scientific Engagement, Alzheimer’s Association, told USA Today. “The field is really moving forward with use of these types of tests,” she added. Clinical laboratories may soon have these new assays on their test menus. (Photo copyright: Alzheimer’s Association.)

Companies in the Race to Develop Blood-based Alzheimer’s Tests

One advancing test is the PrecivityAD2 from in vitro test developer C2N Diagnostics, St. Louis, Mo., which Dark Daily reported on in “C2N Diagnostics Releases PrecivityAD, the First Clinical Laboratory Blood Test for Alzheimer’s Disease.”

Researchers found that C2N’s blood test can detect brain amyloid status with “sensitivity, specificity, positive and negative predictive values that approximate those of amyloid positron emission tomography (PET) imaging,” according to a news release.

“The PrecivityAD2 blood test is intended for use in patients aged 55 and older with signs or symptoms of mild cognitive impairment or dementia who are undergoing evaluation of Alzheimer’s disease or dementia. Only a healthcare provider can order the PrecivityAD2 test,” the news release noted.

A study published in Alzheimer’s and Dementia, a journal of the Alzheimer’s Association, used “mass spectrometry-based assays to measure %p-tau217 and amyloid beta 42/40 ratio in blood samples from 583 individuals with suspected AD.”

“The PrecivityAD2 blood test showed strong clinical validity with excellent agreement with brain amyloidosis by PET,” the researchers wrote.

The PrecivityAD2 test, which is mailed directly by C2N to doctors and researchers, is performed at the company’s CLIA-certified lab, according to USA Today, which added that the cost of $1,450 is generally not covered by insurance plans.

Expanding Test Access with IVD Companies

ALZpath, Inc. has a different approach to the Alzheimer’s disease test market. The Carlsbad, Calif.-based company, set up an agreement with in vitro diagnostics (IVD) company Roche Diagnostics for use of its phosphorylated tau (pTau)217 antibody “to develop and commercialize an Alzheimer’s disease diagnostic blood test that will be offered on the Roche Elecsys platform,” according to a news release.

Roche received FDA breakthrough device designation on the Elecsys pTau217 test earlier this year and will work with pharmaceutical company Eli Lilly to commercialize the test.

Estimates show 75% of dementia cases go undetected—a number which could grow to 140 million by 2050, according to data shared by Roche with Fierce Biotech.

“We plan to leverage our installed base of diagnostic systems, which is the largest in the world, to ensure we are able to create access to this test for those who need it the most,” Matt Sause, CEO, Roche Diagnostics, told Fierce Biotech.

Another IVD company, Beckman Coulter, recently signed an agreement to use ALZpath’s pTau217 antibody test in its DxI 9000 Immunoassay Analyzer. In a news release, Kathleen Orland, SVP and General Manager of the Clinical Chemistry Immunoassay Business Unit at Beckman Coulter, said that the test had “high performance in detecting amyloid pathology” and could “integrate into our advanced DxI 9000 platform to support broad-based testing.”

Clinical Laboratory Participation

The FDA is drafting new guidance titled, “Early Alzheimer’s Disease: Developing Drugs for Treatment” that is “intended to assist sponsors in the clinical development of drugs for the treatment of the stages of sporadic Alzheimer’s disease (AD) that occur before the onset of overt dementia.” 

Pharma companies intent on launching new drugs for Alzheimer’s will need medical laboratory tests that accurately diagnosis the disease to confirm the medications would be appropriate for specific patients.

Given development of the aforementioned pTau217 antibody tests, and others featuring different diagnostic technologies, it’s likely clinical laboratories will soon be performing new assays for diagnosing Alzheimer’s disease.

—Donna Marie Pocius

Related Information:

Alzheimer’s Diagnosis and Drugs Market

How New Blood Testing Technology Could Change Alzheimer’s Treatment Forever

New Research Shows the PrecivityAD2 Blood Test Has High Accuracy Compared to Amyloid PET Scans in Individuals with Cognitive Impairment

Clinical Validation of the PrecivityAD2 Blood Test: A Mass Spectrometry-Based Test with Algorithm Combing %p-tau217 and Aβ42/40 Ratio to Identify Presence of Brain Amyloid

ALZpath Announces Licensing Agreement with Roche for Use of ALZpath’s Proprietary

Alzheimer’s Blood Test from Roche, Eli Lilly Nabs FDA Breakthrough Tag

ALZpath Signs Licensing Agreement with Beckman Coulter Diagnostics to Provide Proprietary pTau217 Antibody to Develop a Diagnostic Test for Alzheimer’s Disease

Diagnostic Accuracy of a Plasma Phosphorylated Tau 217 Immunoassay for Alzheimer Disease Pathology

Groundbreaking Alzheimer’s Blood Test Proves Highly Effective in Primary Healthcare

Blood Biomarkers to Detect Alzheimer Disease in Primary Care and Secondary Care

C2N Diagnostics Releases PrecivityAD, the First Clinical Laboratory Blood Test for Alzheimer’s Disease

;