News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

University College London Study Shows Direct-to-Consumer DNA Tests Not Reliable in Assessing Disease Risk

Regulatory agencies in UK and US have yet to address dangers inherent in customer misunderstanding of DTC medical laboratory genetic test results

Direct-to-consumer (DTC) medical laboratory genetic tests are gaining popularity across the globe. But recent research out of the United Kingdom questions the reliability of these tests. The study, according to The Guardian, found that “Over the counter genetic tests in the UK that assess the risk of cancer or heart problems fail to identify 89% of those in danger of getting killer diseases.”

Researchers at University College London (UCL) examined 926 polygenic scores for risk of 310 different diseases from details retrieved from the Polygenic Score (PGS) Catalog. This catalog is an open-access database of published polygenic scores.

According the PGS website, “each PGS in the catalog is consistently annotated with relevant metadata; including scoring files (variants, effect alleles/weights), annotations of how the PGS was developed and applied, and evaluations of their predictive performance.”

However, the researchers told The Guardian, “Polygenic risk scores performed poorly in population screening, individual risk prediction, and population risk stratification. Strong claims about the effect of polygenic risk scores on healthcare seem to be disproportionate to their performance.”

The UCL researchers published their findings in the journal BMJ Medicine titled, “Performance of Polygenic Risk Scores in Screening, Prediction, and Risk Stratification: Secondary Analysis of Data in the Polygenic Source Catalog.”

“Strong claims have been made about the potential of polygenic risk scores in medicine, but our study shows that this is not justified,” Aroon Hingorani, PhD (above), Professor of Genetic Epidemiology at UCL and lead author of the study, told The Guardian. “We found that, when held to the same standards as employed for other tests in medicine, polygenic risk scores performed poorly for prediction and screening across a range of common diseases.” Consumer misunderstanding of DTC medical laboratory genetic tests is a real danger. (Photo copyright: University College London.)

Polygenic Scores Not Beneficial to Cancer Screening

To complete their study, the UCL researchers compared PGS genetic risk data to conventional clinical laboratory testing methods and discovered some troubling results. They include:

  • On average, only 11% of individuals who developed a disease had been identified by the tests.
  • A 5% false positive rate where people were informed that they would get a disease within 10 years but did not.
  • PGS only identified 10% of people who later developed breast cancer.
  • PGS only identified 12% of individuals who later developed coronary artery disease.

The researchers state in their BMJ Medicine paper that polygenic risk scores are not the same as testing for certain gene mutations, which could be critical in screening for some cancers. They also wrote that discovering genetic variants associated with the risk for disease is still crucial for drug development.

“It has been suggested that polygenic risk scores could be introduced early on to help prevent breast cancer and heart disease but, in the examples we looked at, we found that the scores contributed little, if any, health benefit while adding cost and complexity,” research physician and epidemiologist Sir Nicholas Wald, FRS, FRCP, FMedSci, Professor of Preventive Medicine at UCL Institute of Health Informatics and co-author of the study, told the Jersey Evening Post

“Our results build on evidence that indicates that polygenic risk scores do not have a role in public health screening programs,” Wald added.

“This research study rightly highlights that for many health conditions genetic risk scores alone may have limited usefulness, because other factors such as deprivation, lifestyles, and environment are also important,” clinical epidemiologist Raghib Ali, MD, CEO, Chief Investigator and Chief Medical Officer, Our Future Health UK, told The Guardian

Our Future Health is a collaboration between public, non-profit, and private sectors to create the UK’s largest health research program. The researchers in this endeavor intend to recruit over five million volunteers and use polygenic risk scores to develop innovative ways to prevent, detect, and treat disease. This program is funded by the UK’s National Health System (NHS).

“[Our] research program will be developing integrated risk scores that will take in all the important risk factors,” Ali explained. “We hope these integrated risk scores can identify people more likely to develop diseases, but this is a relatively new area of science and there are still unanswered questions around it.”

Danger of Misunderstanding DTC Genetic Tests

Here in the US, there have been news stories in recent years about the unreliability of certain genetic tests. Dark Daily covered these stories in previous ebriefs. News stories about the unreliability of genetic tests, particularly those marketed directly to consumers, reveal the problems that existing regulatory schemes have yet to address.

In “Consumer Reports Identifies ‘Potential Pitfalls’ of Direct-to-Consumer Genetic Tests,” we covered CR’s findings that though clinical laboratory and pathology professionals understand the difference between a doctor-ordered genetic health risk (GHR) test and a direct-to-consumer (DTC) genetic test, the typical genetic test customer may not. And that, misunderstanding the results of a DTC at-home genetic test can lead to confusion, loss of privacy, and potential harm.

Scientific American also covered the dangers of DTC testing in “The Problem with Direct-to-Consumer Genetic Tests,” in which the author notes that “despite caveats in ads and on packages, users can fail to understand their limitations,” and that “consumer-grade products are easily misconstrued as appropriate medical tests and create false reassurances in patients who could be at legitimate risk.”

Most clinical laboratory managers and pathologists are probably not surprised that the research performed at UCL shows that there are still issues surrounding genetic tests, particularly those marketed directly to consumers. While direct-to-consumer DNA tests can have some benefits, at this time, they are not always the best option for individuals seeking information about their personal risk for hereditary diseases.

—JP Schlingman

Related Information:

Over the Counter Genetic Tests in UK ‘Fail to Identify 89%’ of Those at Serious Risk

Performance of Polygenic Risk Scores in Screening, Prediction, and Risk Stratification: Secondary Analysis of Data in the Polygenic Score Catalog

3 Things to Know about At-home DNA Testing Kits

What Can At-home Genetic Tests Tell Me about My Health?

What are the Benefits and Risks of Direct-to-consumer Genetic Testing?

Genetic Risk Scores ‘Do Not Have a Place in Public Health Screening’

Consumer Reports Identifies ‘Potential Pitfalls’ of Direct-to-Consumer Genetic Tests

The Problem with Direct-to-Consumer Genetic Tests

Harvard and Google Scientists Studying Connectomics Create Massive Highly Detailed 3D Nanoscale Model of Human Neural Tissue

Ten year collaboration between Google and Harvard may lead to a deeper understanding of the brain and new clinical laboratory diagnostics

With all our anatomic pathology and clinical laboratory science, we still do not know that much about the structure of the brain. But now, scientists at Harvard University and Google Research studying the emerging field of connectomics have published a highly detailed 3D reconstruction of human brain tissue that allows visualization of neurons and their connections at unprecedented nanoscale resolutions.

Further investigation of the nano-connections within the human brain could lead to novel insights about the role specific proteins and molecules play in the function of the brain. Though it will likely be years down the road, data derived from this study could be used to develop new clinical laboratory diagnostic tests.

The data to generate the model came from Google’s use of artificial intelligence (AI) algorithms to color-code Harvard’s electron microscope imaging of a cubic millimeter of neural tissue—equivalent to a half-grain of rice—that was surgically removed from an epilepsy patient.

“That tiny square contains 57,000 cells, 230 millimeters of blood vessels, and 150 million synapses, all amounting to 1,400 terabytes of data,” according to the Harvard Gazette, which described the project as “the largest-ever dataset of human neural connections.”

“A terabyte is, for most people, gigantic, yet a fragment of a human brain—just a minuscule, teeny-weeny little bit of human brain—is still thousands of terabytes,” said neuroscientist Jeff W. Lichtman, MD, PhD, Jeremy R. Knowles Professor of Molecular and Cellular Biology, whose Lichtman Lab at Harvard University collaborated on the project with researchers from Google. The two labs have been working together for nearly 10 years on this project, the Harvard Gazette reported.

Lichtman’s lab focuses on the emerging field of connectomics, defined “as understanding how individual neurons are connected to one another to form functional networks,” said neurobiologist Wei-Chung Allen Lee, PhD, Assistant Professor of Neurology, Harvard Medical School, in an interview with Harvard Medical News. “The goal is to create connectomes—or detailed structural maps of connectivity—where we can see every neuron and every connection.” Lee was not involved with the Harvard/Google Research study.

The scientists published their study in the journal Science titled, “A Petavoxel Fragment of Human Cerebral Cortex Reconstructed at Nanoscale Resolution.”

“The human brain uses no more power than a dim incandescent light bulb, yet it can accomplish feats still not possible with the largest artificial computing systems,” wrote Google Research scientist Viren Jain, PhD (above), in a blog post. “To understand how requires a level of understanding more profound than knowing what part of the brain is responsible for what function. The field of connectomics aims to achieve this by precisely mapping how each cell is connected to others.” Google’s 10-year collaboration with Harvard University may lead to new clinical laboratory diagnostics. (Photo copyright: Google Research.)

Study Data and Tools Freely Available

Along with the Science paper, the researchers publicly released the data along with analytic and visualization tools. The study noted that the dataset “is large and incompletely scrutinized,” so the scientists are inviting other researchers to assist in improving the model.

“The ability for other researchers to proofread and refine this human brain connectome is one of many ways that we see the release of this paper and the associated tools as not only the culmination of 10 years of work, but the beginning of something new,” wrote Google Research scientist Viren Jain, PhD, in a blog post that included links to the online resources.

One of those tools—Neuroglancer—allows any user with a web browser to view 3D models of neurons, axons, synapses, dendrites, blood vessels, and other objects. Users can rotate the models in xyz dimensions.

Users with the requisite knowledge and skills can proofread and correct the models by signing up for a CAVE (Connectome Annotation Versioning Engine) account.

Researchers Found Several Surprises

To perform their study, Lichtman’s team cut the neural tissue into 5,000 slices, each approximately 30 nanometers thick, Jain explained in the blog post. They then used a multibeam scanning electron microscope to capture high-resolution images, a process that took 326 days.

Jain’s team at Google used AI tools to build the model. They “stitched and aligned the image data, reconstructed the three dimensional structure of each cell, including its axons and dendrites, identified synaptic connections, and classified cell types,” he explained.

Jain pointed to “several surprises” that the reconstruction revealed. For example, he noted that “96.5% of contacts between axons and their target cells have just one synapse.” However, he added, “we found a class of rare but extremely powerful synaptic connections in which a pair of neurons may be connected by more than 50 individual synapses.”

In their Science paper, the researchers suggest that “these powerful connections are not the result of chance, but rather that these pairs had a reason to be more strongly connected than is typical,” Jain wrote in the blog post. “Further study of these connections could reveal their functional role in the brain.”

Mysterious Structures

Another anomaly was the presence of “axon whorls,” as Jain described them, “beautiful but mysterious structures in which an axon wraps itself into complicated knots.”

Because the sample came from an epilepsy patient, Jain noted that the whorls could be connected to the disease or therapies or could be found in all brains.

“Given the scale and complexity of the dataset, we expect that there are many other novel structures and characteristics yet to be discovered,” he wrote. “These findings are the tip of the iceberg of what we expect connectomics will tell us about human brains.”

The researchers have a larger goal to create a comprehensive high-resolution map of a mouse’s brain, Harvard Medical News noted. This would contain approximately 1,000 times the data found in the 1-cubic-millimeter human sample.

Dark Daily has been tracking the different fields of “omics” for years, as research teams announce new findings and coin new areas of science and medicine to which “omics” is appended. Connectomics fits that description.

Though the Harvard/Google research is not likely to lead to diagnostic assays or clinical laboratory tests any time soon, it is an example of how advances in technologies are enabling researchers to investigate smaller and smaller elements within the human body.

—Stephen Beale

Related Information:

Researchers Publish Largest-Ever Dataset of Neural Connections

A Petavoxel Fragment of Human Cerebral Cortex Reconstructed at Nanoscale Resolution

Ten Years of Neuroscience at Google Yields Maps of Human Brain

Groundbreaking Images Reveal the Human Brain at Nanoscale Resolution

A New Field of Neuroscience Aims to Map Connections in the Brain

Johns Hopkins Research Team Uses Machine Learning on DNA “Dark Matter” in Blood to Identify Cancer

Findings could lead to new biomarkers clinical laboratories would use for identifying cancer in patients and monitoring treatments

As DNA “dark matter” (the DNA sequences between genes) continues to be studied, researchers are learning that so-called “junk DNA” (non-functional DNA) may influence multiple health conditions and diseases including cancer. This will be of interest to pathologists and clinical laboratories engaged in cancer diagnosis and may lead to new non-invasive liquid biopsy methods for identifying cancer in blood draws.

Researchers at Johns Hopkins Kimmel Cancer Center in Baltimore, Md., developed a technique to identify changes in repeat elements of genetic code in cancerous tissue as well as in cell-free DNA (cf-DNA) that are shed in blood, according to a Johns Hopkins news release.

The Hopkins researchers described their machine learning approach—called ARTEMIS (Analysis of RepeaT EleMents in dISease)—in the journal Science Translational Medicine titled, “Genomewide Repeat Landscapes in Cancer and Cell-Free DNA.”

ARTEMIS “shows potential to predict cases of early-stage lung cancer or liver cancer in humans by detecting repetitive genetic sequences,” Genetic Engineering and Biotechnology News (GEN) reported.

This technique could enable non-invasive monitoring of cancer treatment and cancer diagnosis, Technology Networks noted.

“Our study shows that ARTEMIS can reveal genomewide repeat landscapes that reflect dramatic underlying changes in human cancers,” said study co-leader Akshaya Annapragada (above), an MD/PhD student at the Johns Hopkins University School of Medicine, in a news release. “By illuminating the so-called ‘dark genome,’ the work offers unique insights into the cancer genome and provides a proof-of-concept for the utility of genomewide repeat landscapes as tissue and blood-based biomarkers for cancer detection, characterization, and monitoring.” Clinical laboratories may soon have new biomarkers for the detection of cancer. (Photo copyright: Johns Hopkins University.)

Detecting Early Lung, Liver Cancer

Artemis is a Greek word meaning “hunting goddess.” For the Johns Hopkins researchers, ARTEMIS also describes a technique “to analyze junk DNA found in tumors” and which float in the bloodstream, Financial Times explained.

“It’s like a grand unveiling of what’s behind the curtain,” said geneticist Victor Velculescu, MD, PhD, Professor of Oncology and co-director of the Cancer Genetics and Epigenetics Program at Johns Hopkins Kimmel Cancer Center, in the news release.

“Until ARTEMIS, this dark matter of the genome was essentially ignored, but now we’re seeing that these repeats are not occurring randomly,” he added. “They end up being clustered around genes that are altered in cancer in a variety of different ways, providing the first glimpse that these sequences may be key to tumor development.”

ARTEMIS could “lead to new therapies, new diagnostics, and new screening approaches for cancer,” Velculescu noted.

Repeats of DNA Sequences Tough to Study

For some time technical limitations have hindered analysis of repetitive genomic sequences by scientists. 

“Genetic changes in repetitive sequences are a hallmark of cancer and other diseases, but characterizing these has been challenging using standard sequencing approaches,” the study authors wrote in their Science Translational Medicine paper.

“We developed a de novo k-mer (short sequences of DNA)-finding approach called ARTEMIS to identify repeat elements from whole-genome sequencing,” the researchers wrote.

The scientists put ARTEMIS to the test in laboratory experiments.

The first analysis involved 1,280 types of repeating genetic elements “in both normal and tumor tissues from 525 cancer patients” who participated in the Pan-Cancer Analysis of Whole Genomes (PCAWG), according to Technology Networks, which noted these findings:

  • A median of 807 altered elements were found in each tumor.
  • About two-thirds (820) had not “previously been found altered in human cancer.”

Second, the researchers explored “genomewide repeat element changes that were predictive of cancer,” by using machine learning to give each sample an ARTEMIS score, according to the Johns Hopkins news release. 

The scoring detected “525 PCAWG participants’ tumors from the healthy tissues with a high performance” overall Area Under the Curve (AUC) score of 0.96 (perfect score being 1.0) “across all cancer types analyzed,” the Johns Hopkins’ release states.

Liquid Biopsy Deployed

The scientists then used liquid biopsies to determine ARTEMIS’ ability to noninvasively diagnose cancer. Researchers used blood samples from:

Results, according to Johns Hopkins:

  • ARTEMIS classified patients with lung cancer with an AUC of 0.82.
  • ARTEMIS detected people with liver cancer, as compared to others with cirrhosis or viral hepatitis, with a score of AUC 0.87.

Finally, the scientists used their “ARTEMIS blood test” to find the origin of tumors in patients with cancer. They reported their technique was 78% accurate in discovering tumor tissue sources among 12 tumor types.

“These analyses reveal widespread changes in repeat landscapes of human cancers and provide an approach for their detection and characterization that could benefit early detection and disease monitoring of patients with cancer,” the researchers wrote in Science Translational Medicine.

Large Clinical Trials Planned

Velculescu said more research is planned, including larger clinical trials.

“While still at an early stage, this research demonstrates how some cancers could be diagnosed earlier by detecting tumor-specific changes in cells collected from blood samples,” Hattie Brooks, PhD, Research Information Manager, Cancer Research UK (CRUK), told Financial Times.

Should ARTEMIS prove to be a viable, non-invasive blood test for cancer, it could provide pathologists and clinical laboratories with new biomarkers and the opportunity to work with oncologists to promptly diagnosis cancer and monitor patients’ response to treatment.

—Donna Marie Pocius

Related Information:

“Junk DNA” No More: Johns Hopkins Investigators Develop Method of Identifying Cancers from Repeat Elements of Genetic Code

Genomewide Repeat Landscapes in Cancer and Cell-Free DNA

AI Detects Cancer VIA DNA Repeats in Liquid Biopsies

Genetic “Dark Matter” Could Help Monitor Cancer

AI Explores “Dark Genome” to Shed Light on Cancer Growth

University of Ghent Belgium Research Team Finds Stool Transplants Improve Motor Symptoms in Early-stage Parkinson’s Disease Patients

Findings could lead to clinical laboratory tests that help physicians identify microbes lacking in the microbiomes of their Parkinson patients

Microbiologists and clinical laboratory scientists know that gut microbiome can be involved in the development of Parkinson’s disease, a progressive neurological disorder that affects the nervous system due to damage caused to nerve cells in the brain. There is no cure for the illness. But a new treatment developed by researchers at the VIB Center for Inflammation Research at the University of Ghent in Belgium, may help to alleviate the symptoms.

During a clinical trial, VIB Center for Inflammation Research (VIB-IRC) scientists discovered that fecal microbiota transplantation (FMT), also known as a stool transplant, can improve motor skills in some Parkinson’s patients, according to Neuroscience News.

Parkinson’s disease (PD) develops when a protein called alpha-synuclein misfolds and forms into bundled clusters damaging nerve cells in the brain that produce dopamine. These formations, which are believed to appear in the gastrointestinal wall in the early stages of PD, then reach the brain via the vagus nerve leading to typical PD symptoms in patients.

Dopaminergic medication, deep brain stimulation, and speech and occupational therapy are some of the treatments currently available to people with Parkinson’s disease, but researchers are constantly on the lookout for more and better treatments,” Medical News Today reported.

The scientists published their findings in eClinicalMedicine titled, “Safety and Efficacy of Fecal Microbiota Transplantation in Patients with Mild to Moderate Parkinson’s Disease (GUT-PARFECT): A Double-Blind, Placebo-Controlled, Randomized, Phase 2 Trial.”

“Our study provides promising hints that FMT can be a valuable new treatment for Parkinson’s disease,” Roosmarijn Vandenbroucke, PhD (above), Principal Investigator, VIB-UGent Center for Inflammation Research and full professor, UGent Department of Biomedical molecular biology, Faculty of Sciences, told Neuroscience News. “More research is needed, but it offers a potentially safe, effective, and cost-effective way to improve symptoms and quality of life for millions of people with Parkinson’s disease worldwide.” Clinical laboratories will likely be involved in identifying the best microbes for the FMT treatments. (Photo copyright: University of Ghent.)

Correlation between Gut Microbiome and Neurogenerative Disease

To perform their clinical study—referred to as GUT-PARFECT—the IRC researchers first recruited patients with early-stage PD and healthy donors who provided stool samples to the Ghent Stool Bank. The PD patients received the healthy stool via a tube inserted into the nose which led directly into the small intestine.

The FMT procedures were performed on 46 patients with PD between December 2020 and December 2021. The participants in this group ranged in ages from 50 to 65. There were 24 PD patients in the placebo group, and a total of 22 donors provided the healthy stool. Clinical evaluations were performed at baseline, three, six, and 12 months.

After 12 months, the group that received the transplants showed a reduction in symptoms compared to the placebo group. Their motor score on the Movement Disorder Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) improved by a mean of 5.8 points. The improvement registered on the same scale for the placebo group was 2.7 points.

Developed in the 1980s, the MDS-UPDRS is a scale utilized to evaluate various aspects of PD by measuring patient responses via a questionnaire rating several issues (such as cognitive impairment, apathy, depression, and anxiousness) common in PD patients from normal to severe. It is divided into four parts:

  • Part I: Non-motor experiences of daily living.
  • Part II: Motor experiences of daily living.
  • Part III: Motor examination.
  • Part IV: Motor complications.

During the final six months of the research, the improvement in motor symptoms became even greater. To the VIB-IRC researchers this implied that an FMT may have long-lasting effects on PD patients. The FMT study group also experienced less constipation, a condition that can be bothersome for some PD patients.

“Our results are really encouraging!” said the study’s first author, Arnout Bruggeman, MD, PhD student, VIB-UGent Center for Inflammation Research, in a UGent News release. “After twelve months, participants who received the healthy donor stool transplant showed a significant improvement in their motor score, the most important measure for Parkinson’s symptoms.”

Findings Could Lead to Other Targeted Therapies for PD

The VIB-IRC researchers believe there is a correlation between the gut microbiome and Parkinson’s disease.

“Our findings suggested a single FMT induced mild, but long-lasting beneficial effects on motor symptoms in patients with early-stage PD. These findings highlight the potential of modulating the gut microbiome as a therapeutic approach and warrant a further exploration of FMT in larger cohorts of patients with PD in various disease stages,” the IRC researchers wrote in eClinicalMedicine.  

“Our next step is to obtain funding to determine which bacteria have a positive influence. This could lead to the development of a ‘bacterial pill’ or other targeted therapy that could replace FMT in the future,” Debby Laukens, PhD, Associate Professor, Ghent University, told Neuroscience News.

According to the Parkinson’s Foundation website, nearly one million people in the US live with PD. It is second only to Alzheimer’s disease in the category of neurodegenerative diseases.

More research and studies are needed before the VIB-IRC’s stool transplant treatment can be used in clinical care. As researchers learn more about which specific strains of bacteria are doing the beneficial work in PD patients, that data could eventually lead to clinical laboratory tests performed to help physicians identify which microbes are lacking in the microbiomes of their PD patients, and if fecal transplants could help those patients.

—JP Schlingman

Related Information:

Fecal Bacteria Transplant May Improve Parkinson’s Symptoms

Safety and Efficacy of Fecal Microbiota Transplantation in Patients with Mild to Moderate Parkinson’s Disease (GUT-PARFECT): A Double-Blind, Placebo-Controlled, Randomized, Phase 2 Trial

Stool Transplantation Shows Promise For Parkinson’s Disease

Fecal Microbiota Transplant Eases Parkinson’s Symptoms in Trial

Stool Transplant Could Improve Motor Symptoms in Parkinson’s Disease

In Conversation: Why Parkinson’s Research is Zooming in on the Gut

Clinical Trial Shows New Laboratory Developed Blood Test 83% Effective at Detecting Colorectal Cancer

Accurate blood-based clinical laboratory testing for cancer promises to encourage more people to undergo early screening for deadly diseases

One holy grail in diagnostics is to develop less-invasive specimen types when screening or testing for different cancers. This is the motivation behind the creation of a new assay for colorectal (colon) cancer that uses a blood sample and that could be offered by clinical laboratories. The data on this assay and its performance was featured in a recent issue of the New England Journal of Medicine(NEJM).

The company developing this new test recognized that more than 50,000 people will die in 2024 from colon cancer, according to the American Cancer Society. That’s primarily because people do not like colonoscopies even though the procedure can detect cancer in its early stages. Similarly, patients tend to find collecting their own fecal samples for colon cancer screening tests to be unpleasant.

But the clinical laboratory blood test for cancer screening developed by Guardant Health may make diagnosing the deadly disease less invasive and save lives. The test “detects 83% of people with colorectal cancer with specificity of 90%,” a company press release noted.

“Early detection could prevent more than 90% of colorectal cancer-related deaths, yet more than one third of the screening-eligible population is not up to date with screening despite multiple available tests. A blood-based test has the potential to improve screening adherence, detect colorectal cancer earlier, and reduce colorectal cancer-related mortality,” the study authors wrote in the NEJM.

As noted above, this is the latest example of test developers working to develop clinical laboratory tests that are less invasive for patients, while equaling or exceeding the sensitivity and specificity of existing diagnostic assays for certain health conditions.

“I do think having a blood draw versus undergoing an invasive test will reach more people, My hope is that with more tools we can reach more people,” Barbara H. Jung, MD (above), President of the American Gastroenterological Association, told NPR. Clinical laboratory blood tests for cancer may encourage people who do not like colonoscopies to get regular screening. (Photo copyright: American Gastroenterology Association.)

Developing the Shield Blood Test

Colorectal cancer is the “third most common cancer among men and women in the US,” according to the American Gastrological Association (AGA). And yet, millions of people do not get regular screening for the disease.

To prove their Shield blood test, Guardant Health, a precision oncology company based in Redwood City, Calif., enrolled more than 20,000 patients between the ages of 45-84 from across the US in a prospective, multi-site registrational study called ECLIPSE (Evaluation of ctDNA LUNAR Assay In an Average Patient Screening Episode).

“We assessed the performance characteristics of a cell-free DNA (cfDNA) blood-based test in a population eligible for colorectal cancer screening. The coprimary outcomes were sensitivity for colorectal cancer and specificity for advanced neoplasia (colorectal cancer or advanced precancerous lesions) relative to screening colonoscopy. The secondary outcome was sensitivity to detect advanced precancerous lesions,” the study authors wrote in the NEJM.

In March, Guardant completed clinical trials of its Shield blood test for detecting colorectal cancer (CRC) in men and women. According to the company press release, the test demonstrated:

  • 83% sensitivity in detecting individuals with CRC.
  • 88% sensitivity in detecting pathology-confirmed Stages I-III.

Additionally, the Shield test showed sensitivity by stage of:

  • 65% for pathology-confirmed Stage I,
  • 55% for clinical Stage I,
  • 100% for Stage II, and
  • 100% for Stage III.

“The results of the study are a promising step toward developing more convenient tools to detect colorectal cancer early while it is more easily treated,” said molecular biologist and gastroenterologist William M. Grady, MD, Medical Director, Gastrointestinal Cancer Prevention Program at Fred Hutchinson Cancer Center and corresponding author of the ECLIPSE study in the press release. “The test, which has an accuracy rate for colon cancer detection similar to stool tests used for early detection of cancer, could offer an alternative for patients who may otherwise decline current screening options.”

Are Colonoscopies Still Needed?

“More than three out of four Americans who die from colorectal cancer are not up to date with their recommended screening, highlighting the need for a more convenient and less invasive screening method that can overcome barriers associated with traditional options,” Daniel Chung, MD, gastroenterologist at Massachusetts General Hospital and Professor of Medicine at Harvard Medical School, said in the Guardant press release.

Barbara H. Jung, MD, President of the American Gastroenterological Association, says that even if Guardant’s Shield test makes it to the public the “dreaded colonoscopy” will still be needed because the procedure is used to locate and test polyps. “And when you find those you can also remove them, which in turn prevents the cancer from forming,” she told NPR.

There is hope that less invasive clinical laboratory testing will encourage more individuals to get screened for cancer earlier and regularly, and that the shift will result in a reduction in cancer rates.

“Colorectal cancer is highly treatable if caught in the early stages,” said Chris Evans, President of the Colon Cancer Coalition, in the Guardant press release.

Guardant Health’s ECLIPSE study is a prime example of the push clinical laboratory test developers are making to create user-friendly test options that make it easier for patients to follow through with regular screening for early detection of diseases. It echoes a larger effort in the medical community to think outside the box and come up with creative solutions to reach wider audiences in the name of prevention.

—Kristin Althea O’Connor

Related Information:

Guardant Health ECLIPSE Study Data Demonstrating Efficacy of Shield Blood-based Test for Colorectal Cancer Screening to be Published in The New England Journal of Medicine

A Cell-free DNA Blood-Based Test for Colorectal Cancer Screening

Guardant Health Announces Positive Results from Pivotal ECLIPSE Study Evaluating a Blood Test for the Detection of Colorectal Cancer

A Simple Blood Test Can Detect Colorectal Cancer Early, Study Finds

Key Statistics for Colorectal Cancer

Colorectal Cancer Facts and Statistics

Cancer Stat Facts: Colorectal Cancer

New Zealand Blood Service Workers and Junior Doctors Hit the Picket Line Once Again to Fight against Pay Disparities and Poor Working Conditions

As before, the ongoing strikes continue to cause delays in critical clinical laboratory blood testing and surgical procedures

After seven months of failed negotiations, New Zealand’s blood workers, clinical laboratory technicians, and medical scientists, are once again back on strike. According to Star News, hundreds of lab workers walked off the job on May 31, 2024, with another longer walkout planned for June to protest pay disparities.

New Zealand Blood Service (NZBS) workers, who are represented by the Public Service Association or PSA (Māori: Te Pūkenga Here Tikanga Mahi), collect and process blood and tissue samples from donors to ensure they are safe for transfer.

“Our colleagues at Te Whatu Ora [Health New Zealand] are being paid up to 35% more than us and we want to be paid too. We want fair pay,” Esperanza Stuart, a New Zealand Blood Service scientist, told Star News.

“The stall in negotiations is largely attributed to a lack of movement from NZBS on the principal issue of parity with Te Whatu Ora laboratory workers rates of pay. There is currently a 21-28% pay differential between NZBS and Te Whatu Ora laboratory workers, despite both groups of workers performing essentially the same work,” NZ Doctor noted.

Health New Zealand is the country’s government-run healthcare system.

The first strike took place on May 31 from 1-5 pm. A second 24-hour strike is planned for June 4. The strikers outlined the rest of their strike schedule as follows:

  • No work outside paid hours (5/29-6/6)
  • Refusal to conduct duties associated with processing AHF [antihemophilic factor] plasma (5/29-6/6)
  • No overtime or extra shifts (6/6-6/19)

The PSA union claims that the pay disparity workers are experiencing is pushing veteran workers out and complicating recruitment of new workers.

New Zealand Blood Service workers and junior doctors are once again back on the picket line to protest wage cuts and pay disparities. “I think it should be a signal that things are not right in our health system when there are multiple groups of workers going on strike simultaneously,” said PSA union organizer Alexandra Ward. Clinical laboratory workers in the US are closely monitoring the goings on in New Zealand as pressure over staff shortages and working conditions continue to mount in this country as well. (Photo copyright: RNZ.)

Clinical Laboratory Worker Strikes Ongoing in New Zealand

This is far from the first time New Zealand lab workers have hit the picket line.

In “Medical Laboratory Workers Again on Strike at Large Clinical Laboratory Company Locations around New Zealand,” Dark Daily reported on a medical laboratory workers strike that took place in 2023 in New Zealand’s South Island and Wellington regions. The workers walked off the job after a negotiated agreement was not reached between APEX, a “specialist union representing over 4,000 allied, scientific, and technical health professionals,” according to the union’s website, and Awanui Labs, one of the country’s largest hospital and clinical laboratory services providers.

And in “Four Thousand New Zealand Medical Laboratory Scientists and Technicians Threatened to Strike over Low Pay and Poor Working Conditions,” we covered a series of walkouts in 2022 sparked by an unprecedented surge in PCR COVID-19 testing that pushed the country’s 10,000 healthcare workers—including 4,000 medical laboratory scientists and technicians—to the breaking point.

This latest strike is likely to cause delays in vital surgeries and risk the nation’s critical blood supply. All of these strikes were spurred on by low pay, negative working conditions and worker burnout. Similar issues have caused labor actions in the United Kingdom’s National Health Service in recent years.  

Junior Doctors Join Blood Service Workers on Picket Line

Blood service workers aren’t the only healthcare employees in New Zealand’s medical community taking action. In May about half of the nation’s junior doctors walked off the job for 25 hours to protest proposed pay cuts, NZ Herald reported.

In a letter to the nation’s public hospitals, Sarah Morley, PhD, NZBS’s Chief Medical Officer, “warned [that] even high priority planned surgeries should be deferred because they did not meet the definition of a ‘life-preserving service,’” and that “only surgeries where there is less than a 5% risk that patients may need a transfusion should be carried out,” RNZ reported.

According to an internal memo at Mercy Ascot, NZBS “did not consider cancers and cardiac operations in private hospitals to be a life-preserving service,” RNZ noted.

The situation may be more dangerous than officials are letting on, NZ Herald noted. A senior doctor at Waikato Hospital told reporters, “There are plenty of elective services cancelled today—clinics, surgery, day stay procedures etc. … And although I can only speak for my department, we are really tight for cover from SMO [senior medical officers] staff for acute services and pretty much all elective work has been cancelled. So, it’s actually pretty dire, and if next week’s planned strike goes ahead it’s going to be worse. I’d go as far as to say that it’s bordering on unsafe.”

The strike did take place, and the junior doctors went back on strike at the end of May as well, according to RNZ.

Support from Patients

Eden Hawkins, a junior doctor on strike at Wellington Hospital told RNZ that patient wellbeing is a top concern of striking workers and that patients have shown support for the doctors.

“When patients have brought it up with me on the wards or in other contexts there seems to be a bolstering sense of support around us, which is really reassuring and heartening because there’s obviously a conflict within ourselves when we strike, we don’t want to be doing that,” she said. Hawkins also makes the argument that striking workers can improve patient wellbeing in the long run. Improvement of pay and conditions could lessen staff turnover and overall improve the standard of care.

New Zealand healthcare workers haven’t been shy when it comes to fighting for the improved working conditions and fair pay. And their problems are far from unique. American healthcare workers have been struggling with worker burnout, pay disparities, high turnover as well. Clinical laboratory and other healthcare professionals in the US would be wise to keep an eye on their Kiwi counterparts.

—Ashley Croce

Related Information:

Fed-Up Blood Service Workers Go on Strike

NZ Blood Workers Plan 24-Hour Strike for Pay Parity

New Zealand Blood Service Laboratory Workers to Strike after 7 Months of Stalled Pay Negotiations

Significant Risk to Blood Supply as Blood Service Lab Workers Strike

Junior Doctors to Strike for 25 Hours, May Postpone Treatments

‘Pretty Dire’ Situation for Patients as Junior Doctors Strike Over Pay Cuts

Junior Doctors Go on Strike Again, More Surgeries Deferred

Medical Laboratory Workers Again on Strike at Large Clinical Laboratory Company Locations around New Zealand

Four Thousand New Zealand Medical Laboratory Scientists and Technicians Threatened to Strike over Low Pay and Poor Working Conditions

;