Drone company Zipline delivers medical supplies and clinical laboratory specimens on four continents and is used in the US by several major healthcare networks and retail organizations
Unmanned aerial vehicles (UAVs), commonly referred to as drones, continue to demonstrate their value in the medical industry. In February, WellSpan Health announced it will soon begin using drones to deliver prescriptions to patients and to transport medical supplies and clinical laboratory specimens between its facilities located in Pennsylvania.
WellSpan Health, one of the leading healthcare systems in Southern Pennsylvania and Northern Maryland, is partnering with Zipline, a supplier of drone logistic services, in the endeavor.
“We’re making our [healthcare] system lower cost, faster, and more sustainable by bringing this exceptional technology to South Central Pennsylvania,” said Roxanna Gapstur, PhD, RN, President and CEO, WellSpan Health, in a news release. “We know the easier it is to access care the healthier people can be. With Zipline, we’re connecting healthcare straight to your front door.”
Zipline’s Platform 2 (P2 Zip) drone will be used for the venture. The drone is designed to fly in almost all weather conditions. If true, this would be a boon to the drone delivery service industry.
Previous attempts to implement drone delivery services have been hampered by a typical drone’s low performance in bad weather such as heavy rain and high winds. This seems to be what has held back wide adoption of drone delivery in the US.
“WellSpan continues to reimagine what healthcare can look like for our patients. With Zipline, we’re creating a future for our patients, where getting a prescription filled is as simple as pressing a button,” said Roxanna Gapstur, PhD, RN (above), President and CEO, WellSpan Health, in a news release. WellSpan Health’s drone delivery customers will be able to receive text notifications tracking the progress of their medical supplies and clinical laboratory specimens on their smartphones. (Photo copyright: WellSpan Health.)
Delivery of Medical Supplies Direct to Patients’ Front Door
ABC27 reported that “WellSpan will be the first health service in the state of Pennsylvania that will introduce this type of technology and delivery system.”
According to the drone company’s website, Zipline:
Serves more than 4,000 health centers worldwide and more than 45 million people.
Has completed more than one million deliveries.
Plans to operate more flights annually than almost all the major US airlines by next year.
Delivers 75% of Rwanda’s blood supply outside Kigali, the country’s capital city.
Additionally, Zipline’s all-electric, zero-emission drones reduce carbon emissions by an average of 97% when compared to gas-driven vehicles.
Each P2 Zip drone features Zipline’s autonomous airspace Detect and Avoid (DAA) deconfliction technology and contains fully redundant flight systems.
“This acoustic system is composed of a series of small, lightweight acoustic microphones and onboard processors used to navigate airspace and grant 360-degree awareness with a range of up to 2,000 meters,” DRONELIFE reported. “This innovative onboard system enables the aircraft to autonomously detect and maneuver around other aircraft and obstacles in real-time, making large scale autonomous commercial operations more feasible.”
According to a fact sheet, the P2 Zip drone can carry loads up to eight pounds and has a cruising speed of 70 miles/hour. It’s service range is either a 10-mile radius or a one-way trip of 24 miles. It only requires two feet of open space to execute a delivery and can hover at more than 300 feet above the ground while delivering a package.
“Zipline has been improving access to healthcare for eight years. Together with WellSpan Health we will bring prescriptions and medical products right to patients’ doorsteps with fast, sustainable, and convenient delivery,” stated Keller Rinaudo Cliffton, co-founder and CEO of Zipline, in the news release.
Other Healthcare Drone Delivery Services
Dark Daily has published many ebriefs about drones being used for medical supply and clinical laboratory specimen deliveries.
As drone delivery technology continues to improve, UAVs are more likely to be used in healthcare situations. If the issue of bad weather has been resolved, it’s reasonable to assume that within a short period of time clinical laboratories may begin receiving many more samples to test via drones.
Lack of regular clinical laboratory screenings in this age group at least partially to blame, researchers say
While cervical cancer rates have seen a 50-year decline overall, that trend is shifting among 30- to 40 year-olds who have experienced a near 2% increase from 2012-2019. This finding comes from a 2024 American Cancer Society (ACS) report that is eyeing the timeline of the human papillomavirus (HPV) vaccines and the lack of clinical laboratory cancer screenings as possible contributors to this new trend.
Though a 2% increase is significant, the study, which was published in CA: ACancer Journal for Clinicians, titled “Cancer Statistics, 2024,” noted that these cancers were “mostly early, curable tumors,” epidemiologist Ahmedin Jemal DVM, PhD, Senior Vice President Surveillance and Health Equity Science at ACS, and senior author of the new report, told NBC News.
To understand how the increase in cancer rates impacts this age group, consider the numbers: “About 13,800 American women are diagnosed with cervical cancer each year and 4,360 die from the disease,” NBC reported.
US vaccination programs for youths have lagged behind nations that have embraced HPV vaccination to positive results.
Australia, for example, has vaccinated a high proportion of its youth since the vaccine was first released in 2006. In 2023, the nation created its National Strategy for the Elimination of Cervical Cancer in Australia program and expects cervical cancer to be fully eliminated there by 2035.
For lab professionals, this demonstrates how new technologies like the HPV test and vaccine can alter how individuals are screened for diseases, and how vaccines can reduce and even eliminate diseases that were once common.
“We need to make sure we are not forgetting about that generation that was a little too old for HPV vaccination,” Jennifer Spencer, PhD (above), Assistant Professor, Department of Population Health and Department Internal Medicine, Dell Medical School, University of Texas at Austin, told NBC News. “The onus is on the healthcare system to think about who is slipping through the cracks,” she added. Lack of clinical laboratory screenings among the 30-40 age group may be contributing to the increase in cervical cancer rates. (Photo copyright: Dell Medical School.)
Lack of Clinical Laboratory Screenings
Research points to a lag in cervical cancer screenings as a possible cause for the recent rise in cases. Timely screening allows doctors to both identify and remove any worrisome lesions before they become cancerous, Jennifer Spencer, PhD, Assistant Professor of the Department of Population Health, Dell Medical School, University of Texas at Austin, told NBC News.
Screenings for women ages 21-65 have fallen 15% since 2000, according to data from the National Cancer Institute. Also, more than half of women with cervical cancer have “either never been screened or haven’t been screened in the past five years, according to the Centers for Disease Control and Prevention,” NBC reported.
The US Preventative Services Task Force recommends that women 21-29 years of age should receive Pap smears every three years. Women 30-65 years of age should do the same, or every five years with an HPV test or combo test.
Despite a decrease in cervical cancer, 29% of women in their 20s are overdue to get screening, NBC noted. This was the age group most likely to be lagging on getting screened. Spencer says that this delay in screening could explain the resulting increase in cervical cancer among the 30-40 age group.
Causes for Lack in Screenings
Regardless of age group, women who were uninsured, in a rural area, non-white, or identifying as lesbian, bisexual, or gay were also more likely to be overdue on screenings, according to Spencer’s study.
In addition, women who just moved to the United States may have missed their screenings, thus increasing risk, epidemiologist Nicholas Wentzensen, MD, PhD, Deputy Director, Senior Investigator, and Head of the Clinical Epidemiology Unit at the National Cancer Institute, told NBCNews.
Additionally, Spencer found in her research that confusion exists by both patients and doctors on when cervical screening should take place. Some participants in her study did not have screening recommended by their doctors, while others simply did not recognize it was necessary.
“When women in one of Spencer’s studies were asked why they hadn’t been screened recently, they commonly said that they didn’t know they needed to be screened or that a health provider hadn’t recommended it. Only 1% [of] women ages 21 to 29 said they had skipped screening because they had received the HPV shot,” NBC News reported.
A 2022 Journal of American Medicine (JAMA) report also looked at screenings as a possible cause. Those researchers found that “only 73% of women with abnormal screening results received follow-up care,” NBC reported.
“If the increase (in cases) is real, it could be a result of missed screening opportunities at earlier ages, as suggested by the increase in squamous cell carcinoma and localized disease. It may also stem from a decrease in screening at younger ages,” the JAMA study authors wrote.
HPV Vaccine and Cervical Cancer Prevention
The HPV vaccine is another important area of research to be considered. Approved in 2006, HPV vaccines were beneficial because HPV “causes six types of cancer, including cervical cancer,” NBC reported.
Women in their early 20s at that time were the first generation to benefit from HPV vaccines, NBC noted. It may be that they continue to benefit in a decrease in cervical cancer among their cohort.
Countries that have emphasized HPV vaccines and stringent screenings in their cancer prevention efforts are reaping the benefits of that policy.
Though cancer screening and the HPV vaccine are important first steps women should take to prevent cervical cancer, follow-through clinical laboratory testing and diagnosis is crucial, Spencer added. This would include additional testing and treatment for any abnormal results of the cancer screening.
However, according to Spencer, “only 73% of women with abnormal screening results received follow-up care,” NBC reported.
Healthcare policymakers today are emphasizing the need for providers to identify and close gaps in care as a way to improve patient outcomes and help control the cost of care. Women who are overdue for a cervical cancer screening test—whether an HPV test or Pap smear—have this care gap. This creates an opportunity for clinical labs to add value.
Clinical laboratories could be helpful during this period by looking at patient files to note which patients are overdue for screenings and then alerting their doctors. Medical labs also could work directly with doctors to establish a program to reach out to patients. Labs would thus be adding value as well as benefitting patients.
This may be a new ‘sign of the times’ as hospitals, clinical laboratories, and other healthcare providers working with AI find they also need to hire their own prompt engineers
AI “prompting,” according to Florida State University, “refers to the process of interacting with an AI system by providing specific instructions or queries to achieve a desired outcome.”
According to workable.com, prompt engineers specialize “in developing, refining, and optimizing AI-generated text prompts to ensure they are accurate, engaging, and relevant for various applications. They also collaborate with different teams to improve the prompt generation process and overall AI system performance.”
Healthcare institutions are getting more serious about using AI to improve daily workflows and clinical care, including in the clinical laboratory and pathology departments. But adopting the new technology can be disruptive. To ensure the implementation goes smoothly, hospitals are now seeking prompt engineers to guide the organization’s strategy for using AI.
When Boston Children’s Hospital leaders set out to find such a person, they looked for an individual who had “a clinical background [and] who knows how to use these tools. Someone who had experience coding for large language models and natural language processing, but who could also understand clinical language,” according to MedPage Today.
“We got many, many applications, some really impressive people, but we were looking for a specific set of skills and background,” John Brownstein, PhD, Chief Innovation Officer at Boston Children’s Hospital and Professor of Biomedical Informatics at Harvard Medical School, told MedPage Today.
“It was not easy to find [someone]—a bit of a unicorn-type candidate,” noted Brownstein, who is also a medical contributor to ABC News.
After a four-month search, the hospital hired Dinesh Rai, MD, emergency room physician and AI engineer, for the position. According to Brownstein, Rai had “actually practiced medicine, lived in a clinical environment,” and had “successfully launched many [AI] applications on top of large language models,” MedPage Today reported.
“Some of the nuances I bring to the table in terms of being a physician and having worked clinically and understanding really deeply the clinical workflows and how we can implement the [AI] technology—where its limits are, where it can excel, and the quickest way to get things [done],” Dinesh Rai, MD (above), told MedPage Today. “I’m happy to be able to help with all of that.” Hospital clinical laboratory and pathology managers may soon by engaging with prompt engineers to ensure the smooth use of AI in their departments. (Photo copyright: LinkedIn.)
Prompt Engineers are like F1 Drivers
“It’s kind of like driving a car, where basically anyone can drive an automatic car, and anyone can go onto ChatGPT, write some text, and get a pretty solid response,” said Rai, describing the act of AI prompting to MedPage today.
Then, there are “people who know how to drive manual, and there are people who will know different prompting techniques, like chain-of-thought or zero-shot prompting,” he added. “Then you have those F1 drivers who are very intimate with the mechanics of their car, and how to use it most optimally.”
The American Hospital Association (AHA) believes that AI “holds great promise in helping healthcare providers gain insights and improve health outcomes.” In an article titled, “How AI Is Improving Diagnostics, Decision-Making and Care,” the AHA noted that, “Although many questions remain regarding its safety, regulation, and impact, the use of AI in clinical care is no longer in its infancy and is expected to experience exponential growth in the coming years.
“AI is improving data processing, identifying patterns, and generating insights that otherwise might elude discovery from a physician’s manual effort. The next five years will be critical for hospitals and health systems to build the infrastructure needed to support AI technology, according to the recently released Futurescan 2023,” the AHA wrote.
The graphic above is taken from the American Hospital Association’s article about Futurescan’s 2023 survey results on AI in healthcare. “Healthcare executives from across the nation were asked how likely it is that by 2028 a federal regulatory body will determine that Al for clinical care delivery augmentation (e.g., assisted diagnosis and prescription, personalized medication and care) is safe for use by our hospital or health systems,” AHA stated. This would include the use of AI in clinical laboratories and pathology group practices. (Graphic copyright: American Hospital Association.)
The AHA listed the top three opportunities for AI in clinical care as:
Clinical Decision Tools: “AI algorithms analyze a vast amount of patient data to assist medical professionals in making more informed decisions about care.”
Diagnostic and Imaging: The use of AI “allows healthcare professionals to structure, index, and leverage diagnostic and imaging data for more accurate diagnoses.”
Patient Safety: The use of AI improves decision making and optimizes health outcomes by evaluating patient data. “Systems that incorporate AI can improve error detection, stratify patients, and manage drug delivery.”
The hiring of a prompt engineer by Boston Children’s Hospital is another example of how AI is gaining traction in clinical healthcare. According to the Futurescan 2023 survey, nearly half of hospital CEOs and strategy leaders believe that health systems will have the infrastructure in place by 2028 to successfully utilize AI in clinical decision making.
“I’m lucky to [be] in an organization that has recognized the importance of AI as part of the future practice of medicine,” Rai told MedPage Today.
Pathologists and managers of clinical laboratories and genetic testing companies will want to track further advancements in artificial intelligence. At some point, the capabilities of future generations of AI solutions may encourage labs to hire their own prompt engineers.
Trifecta of forces at work that will affect the clinical laboratory and pathology industries have been described as a ‘perfect storm’ requiring lab and practice managers to be well informed
Digital pathology, artificial intelligence (AI) in healthcare, and the perfect storm of changing federal regulations, took centerstage at the 29th Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management in New Orleans this week, where more than 1,000 clinical laboratory and pathology leaders convened over three days.
This was the largest number of people ever onsite for what has become the world’s largest event focused exclusively on lab management topics and solutions. Perhaps the highlight of the week was the federal Food and Drug Administration’s (FDA’s) announcement of its final rule on Laboratory Developed Tests (LDTs). Overall, the conference featured more than 120 speakers, many of them national thought leaders on the topic of clinical lab and pathology management. More than 65% of the audience onsite were executive level lab managers.
“The level of interest in the annual Executive War College is testimony to the ongoing need for dynamic, engaging, and highly relevant conference events,” said Robert Michel (above), Editor-in-Chief of Dark Daily and its sister publication The Dark Report, and founder of the Executive War College. “These in-person gatherings present great opportunities for clinical laboratory and pathology managers and leaders to network and speak with people they otherwise might not meet.” (Photo copyright: Dark Intelligence Group.)
Demonstrating Clinical Value
For those who missed the action onsite, the following is a synopsis of the highlights this week.
Lâle White, Executive Chair and CEO of XiFin, spoke about the future of clinical laboratory testing and the factors reshaping the industry. There are multiple dynamics impacting healthcare economics and outcomes—namely rising costs, decreasing reimbursements, and the move to a more consumer-focused healthcare. But it is up to labs, she said, to ensure their services are not simply viewed as a commodity.
“Laboratory diagnostics have the potential to change the economics of healthcare by really gaining efficiencies,” she noted. “And it’s up to labs to demonstrate clinical value by helping physicians manage two key diagnostic decision points—what tests to order, and what to do with the results.”
But even as labs find ways to increase the value offered to clinicians, there are other disruptive factors in play. Consumer-oriented tech companies such as Google, Apple, and Amazon are democratizing access to patient data in unforeseen ways, and Medicare Advantage plans are changing the way claims are processed and paid.
Clinical labs are fundamental components of the public health infrastructure. So, the CDC plans on focusing on delivering high-quality laboratory science, supported by reliable diagnostics and informatics for disease outbreaks and exposures, and engaging with public and private sector partners.
The history of MolDX and Z-Codes were the topics discussed by Gabriel Bien-Willner, MD, PhD, Chief Medical Officer for healthcare claims and transaction processing company Palmetto GBA. Molecular testing is highly complex, and the lack of well-defined billing codes and standardization makes it difficult to know if a given test is reasonable and necessary.
Z-Codes were established to clarify what molecular testing was performed—and why—prompting payers to require both Z-Codes and Current Procedural Terminology (CPT) codes when processing molecular test claims. Medicare’s MolDX program further streamlines the claims process by utilizing expertise in the molecular diagnostics space to help payers develop coverage policies and reimbursement for these tests.
FDA Final Rule on LDT Regulation
Timothy Stenzel, MD, PhD, CEO of Grey Haven Consulting and former director of the FDA’s Office of In Vitro Diagnostics reviewed the latest updates from the FDA’s Final Rule on LDT (laboratory developed test) regulation. Prior to the FDA releasing its final rule, some experts suggested that the new regulations could result in up to 90% of labs discontinuing their LDT programs, impacting innovation, and patient care.
However, the final rule on LDTs is very different from the original proposed rule which created controversy. The final rule actually lowers the regulatory burden to the point that some labs may not have to submit their LDTs at all. The FDA is reviewing dozens of multi-cancer detection assays, some of which have launched clinically as LDTs. The agency is likely to approve those that accurately detect cancers for which there is no formal screening program.
Stenzel explained the FDA’s plan to down-classify most in vitro diagnostic tests, changing them from Class III to Class II, and exempting more than 1,000 assays from FDA review. He also discussed the highlights of the Quality Management System Regulation (QMSR). Launched in January, the QMSR bought FDA requirements in line with ISO 13485, making compliance easier for medical device manufacturers and test developers working internationally.
Looming Perfect Storm of Regulatory Changes
To close out Day 1, Michel took to the stage again with a warning to clinical laboratories about the looming “Perfect Storm” trifecta—the final FDA ruling on LDTs, Z-Code requirements for genetic testing, and updates to CLIA ’92 that could result in patient data being considered a specimen.
Laboratory leaders must think strategically if their labs are to survive the fallout, because the financial stress felt by labs in recent years will only be exacerbated by macroeconomic trends such as:
Staff shortages,
Rising costs,
Decreasing and delayed reimbursements, and
Tightening supply chains.
Lab administrators looking for ways to remain profitable and prosperous should look beyond the transactional Clinical Lab 1.0 fee-for-service model and adopt Clinical Lab 2.0, which embraces HEDIS (Healthcare Effectiveness Data and Information Set) scores and STAR ratings to offer more value to Medicare Advantage and other payers.
Wednesday’s General Session agenda was packed with information about the rise of artificial intelligence, big data, and precision medicine in healthcare. Taking centerstage on the program’s final day was Michael Simpson, President and CEO of Clinisys. Simpson gave a global perspective on healthcare data as the new driver of innovation in diagnostics and patient care.
“The timing of EWC with the release of this policy couldn’t be better,” CEO and founder of Momentum ConsultingValerie Palmieri told Dark Daily in an interview at Monday night’s opening reception. “It’s a great conference to not only catch up with colleagues but really hear and have those difficult discussions about where we are today, where we’re going, and where we need to be.”
Final LDT rule ‘radically’ different than draft
Tim Stenzel, MD, PhD, former director of the FDA’s Office of In Vitro Diagnostics called the finalized rule “radically different” from the proposed rule. In some ways it is less complex: “The bar is lower,” he said, noting that he was voicing his personal views and not those of the federal agency. “I was convinced that there would be lawsuits, but I’m now not sure if that’s advisable.”
Still, laboratory teams will have to parse the more than 500-page document to determine how the final rule relates to their specific circumstances. After that, it won’t be as challenging, Stenzel said.
His advice: First, read the rule. Second, reach out to FDA for help—he’s sure, he said, that the office is geared up to respond to a “ton of questions” about the implications for individual labs and are standing by to answer emails from labs. And, he added in a discussion session, emailing the agency is free.
The final rule will be in force 60 days after it’s published. Stenzel provided a timeline for some of the milestones:
1 Year: Comply with MD(AE) reporting and reporting of corrections and removals.
2 Years: Comply with labeling, registration and listing, and investigational use requirements.
3 Years: QS records and, in some cases, design controls and purchasing controls.
3.5 Years: Comply with high risk (class III) premarket review requirements.
4 Years: Comply with moderate and low-risk premarket review requirements.
Executive Chair and CEO of XiFin, Inc.Lâle White welcomed the audience with a morning keynote entitled “Big Changes in Healthcare” on new regulations and diagnostics players poised to reshape lab testing.
The diagnostics business is in constant flux, she noted, from payer requirements to greater regulatory and compliance burdens on labs. Other factors include the growing senior population and increasingly complex health conditions, rising costs throughout the healthcare ecosystem, falling funding and reimbursement, and staffing shortages.
As for the economic challenges, consumers are increasingly making decisions based on cost, convenience and quality. The population is shifting to Medicare advantage, which is more cost effective. But changes to the star ratings system will mean lower pay for payer organizations. Those companies will, in turn, mitigate their losses by making changes to pre-authorizations and tightening denials, even for clean claims.
Still, White said, more money isn’t the answer.
White urged the audience to use technology, including artificial intelligence and advances in genetic testing, to manage these and other industry changes.
“We need to optimize the tests we order,” she said. “And if we did that, lab diagnostics really has the potential to change the economics of health and improve outcomes.”
The FDA, Stenzel added, is “very interested” in stimulating innovation, building on the laboratory industry’s success in responding swiftly to the COVID pandemic and outbreaks of Monkey Pox, for example.
He shared lessons learned from recent public health emergencies, talked about CDC’s efforts to engage with clinical labs to improve future public health readiness and response and provided an overview of the CDC’s first laboratory-specific center.
“Laboratories are fundamental to public health,” he said. The industry is on the “front lines” when it comes to identifying threats, responding to them, and preparing for future responses.
Robert Michel, Editor-in-Chief of The Dark Report wrapped up the day’s regulatory discussions with a general session on the “regulatory trifecta” that includes the LDT final rule, CLIA regulations, and private payers’ policies for genetic claims.
In a follow-up story, investigative news team in Boston sends a reporter’s cheek swab sample to the same pet DNA testing lab: report states the reporter is part Malamute, Shar Pei, and Labrador Retriever
One pet DNA testing company returned results from human cheek swabs showing two different people were in fact part dog. The resulting local reporting calls into question the accuracy of DNA testing of our beloved furry friends and may impact the trust people have in clinical laboratory genetic testing as well.
Pet DNA analysis is nearly as popular as human DNA analysis. The market is expected to exceed $700 million by the end of the decade, according to Zion Market Research. But are customers getting their money’s worth? One CBS news station in Boston decided to find out.
Last year, the WBZ I-Team, the investigative part of a CBS News station in Boston, looked into the accuracy of pet DNA testing. They reported on a pet owner who questioned the DNA test results she received for her German Shepard. The report indicated that her dog had DNA from more than 10 breeds, besides German Shepard.
During their research, the WBZ investigative reporters learned that pet owners order these tests to reveal what one pet DNA testing company described as understanding “your dog’s unique appearance, behavior, and health.”
“So, the WBZ-TV I-Team came with more tests from different companies to compare. All came back with some German Shepherd, but the percentages ranged from 65% to just 29%. Aside from that, the three companies showed a puzzling hodgepodge of other breeds. One included Great Pyrenees, another came back with Siberian Husky, another listed Korean Jindo, and the list goes on,” WBZ News reported.
The owner of the German Shepard then sent two swab samples from her own cheeks to one of the pet DNA testing companies. The test results indicated that she was 40% Border Collie, 32% Cane Corso, and 28% Bulldog.
The company that performed that DNA testing—DNA My Dog—insisted to the WBZ I-Team that one of the pet owner’s cheek samples contained dog DNA, WBZ News reported.
“The second sample did in fact yield canine DNA. … The results provided would not be possible on a human sample,” Jessica Barnett, Director of Service Operations, DNA My Dog, told WBZ News.
This must have come as a shock to the pet owner, who is probably sure she is not part dog.
“I think that is a red flag for sure,” Lisa Moses, VMD (above), a veterinarian and bioethicist with Harvard Medical School, told WBZ News. “A company should know if they’ve in any basic way analyzed a dog’s DNA, that that is not a dog,” she said. One wonders what might happen if a dog’s DNA was secretly sent to a clinical laboratory performing human genetic testing. What might the results be? (Photo copyright: Harvard Medical School.)
Two Times is the Charm
To continue its investigation into this odd occurrence, the WBZ I-Team decided to repeat the test this year. They sent a cheek saliva sample from one of their own reporters to three different dog DNA testing companies.
According to the I-Team report, one company, Orivet, said the sample “failed to provide the data necessary to perform breed ID analysis. Another company, Wisdom Panel stated the sample “didn’t provide enough DNA to produce a reliable result.”
However, DNA My Dog once again reported that the human sample belonged to a canine. This time the company’s test reported that the DNA sample was 40% Alaskan Malamute, 35% Shar Pei, and 25% Labrador Retriever.
DNA My Dog did not respond to WBZ I-Team’s attempt to contact them for a comment, WBZ News reported.
Wild West of DNA Testing
“I personally do have concerns about the fact that, from a consumer standpoint, you don’t always know what you’re getting when you work with those companies,” said geneticist Elinor Karlsson, PhD, Director of the Vertebrate Genomics Group at the Broad Institute of MIT and Harvard, told WBZ News. “There’s not a lot of rules in this space.”
Karlsson is also founder and Chief Scientist at Darwin’s Ark, a nonprofit organization that combines dog genetics and behavior to advance the understanding of complex canine diseases. People participating in the initiative contribute data about their dogs to an open source database, which is then shared with researchers around the globe. To date, more than 44,000 dogs have been registered with the project.
She hopes that reports like the one from the WBZ I-Team will not dissuade interest in pet genetics, as the science does have significant value when performed correctly.
“We might be able to figure out which dogs are at risk of getting cancer, and screen them more often and be able to diagnose it earlier,” Karlsson said. “We might be able to develop new treatments for that cancer.”
“There isn’t necessarily a gold standard answer for what your dog is,” veterinarian and bioethicist Lisa Moses, VMD, co-director of the Capstone Program for the Master of Science in Bioethics Program at Harvard Medical School, told WBZ News. “A breed is something that we’ve decided, which is based upon essentially the way a dog looks. But that doesn’t necessarily mean that we’re going to know what their genes look like.”
DNA My Dog Awarded ‘Best Budget Dog DNA Test’
In February, US News and World Report published an article rating the best dog DNA tests of 2024. The magazine ranked the DNA My Dog Essential Breed ID Test as the “best budget dog DNA test on the market.” The test sells for $79.99. According to the company’s website, a simple cheek swab yields:
A complete breed breakdown,
Genetic health concerns,
Unique personality traits, and
Bonding tips for dogs and their owners.
“I worry about people making medical decisions … based on one of these tests,” Moses told WBZ News, which added that, “She and some of her colleagues have called on lawmakers to set standards and regulations for pet DNA labs, and to require them to share their databases with each other, for more consistent results.”
The investigation into pet DNA testing by the television news reporters in Boston is a reminder to clinical lab managers and pathologists that DNA testing can be problematic in many ways. Also, when consumers read news stories like this one about inaccurate canine DNA testing, it can cause them to question the accuracy of other types of DNA testing.