Federal class action lawsuit looms as genetics company searches for what went wrong; a reminder to clinical laboratories of the importance of protecting patient information
Several years ago, security experts warned that biotechnology and genomics company 23andMe, along with other similar genetics companies, would be attacked by hackers. Now those predictions appear to have come true, and it should be a cautionary tale for clinical laboratories. In an October 6 blog post, the genetic testing company confirmed that private information from thousands of its customers was exposed and may be being sold on the dark web.
According to Wired, “At least a million data points from 23andMe accounts appear to have been exposed on BreachForums.” BreachForums is an online forum where users can discuss internet hacking, cyberattacks, and database leaks, among other topics.
“Hackers posted an initial data sample on the platform BreachForums earlier this week, claiming that it contained one million data points exclusively about Ashkenazi Jews,” Wired reported, adding that “hundreds of thousands of users of Chinese descent” also appear to be impacted.
The leaked information included full names, dates of birth, sex, locations, photos, and both genetic and ancestry results, Bleeping Computer reported.
For its part, 23andMe acknowledges the data theft but claims “it does not see evidence that its systems have been breached,” according to Wired.
Anne Wojcicki (above) is the co-founder and CEO of genetics company 23andMe, which on October 24 told its customers in an email, “There was unauthorized access to one or more 23andMe accounts that were connected to you through DNA Relatives. As a result, the DNA Relatives profile information you provided in this feature was exposed to the threat actor.” Clinical laboratories must work to ensure their patient data is fully secured from similar cyber theft. (Photo copyright: TechCrunch.)
23andMe Claims Data Leak Not a Security Incident
The data leaked has been confirmed by 23andMe to be legitimate. “Threat actors used exposed credentials from other breaches [of other company’s security] to access 23andMe accounts and steal the sensitive data. Certain 23andMe customer profile information was compiled through access to individual 23andMe.com accounts,” a 23andMe spokesperson told Bleeping Computer.
However, according to the company, the leak does not appear to be a data security incident within the 23andMe systems. “The preliminary results of this investigation suggest that the login credentials used in these access attempts may have been gathered by a threat actor from data leaked during incidents involving other online platforms where users have recycled login credentials,” the spokesperson added.
What the genetics company has determined is that compromised accounts were from users choosing the DNA Relative feature on their website as a means to find and connect to individuals related to them. Additionally, “the number of accounts sold by the cybercriminal does not reflect the number of 23andMe accounts breached using exposed credentials,” Bleeping Computer noted.
Price of Private Information
Following the 23andMe data leak, the private genetic information was quickly available online … for a price.
“On October 4, the threat actor offered to sell data profiles in bulk for $1-$10 per 23andMe account, depending on how many were purchased,” Bleeping Computer reported.
Stolen medical records are becoming hotter than credit card information, the experts say. “Stolen records sell for as much as $1,000 each,” according to credit rating agency Experian, Bleeping Computer noted.
In its 2018 Global Security Report, “cybersecurity firm Trustwave pegged the black-market value of medical records at $250 each. Credit card numbers, on the other hand, sell for around $5 each on the dark web … while Social Security numbers can be purchased for as little as $1 each,” Fierce Healthcare reported.
Clinical laboratory managers and pathologists should take note of the value that the dark web places on the medical records of a patient, compared to the credit card numbers of the same individual. From this perspective, hacking a medical laboratory to steal patient health data can be much more lucrative than hacking the credit card data from a retailer.
“Victims of the breach are now at increased risk of fraud and identity theft, and have suffered damages in the form of invasion of privacy, lost time and out-of-pocket expenses incurred responding to the breach, diminished value of their personal information, and lost benefit of the bargain with 23andMe,” according to court documents.
“The lawsuit brings claims of negligence, breach of implied contract, invasion of privacy/intrusion upon seclusion, unjust enrichment, and declaratory judgment,” Bloomberg Law noted. Additionally, the claim states that 23andMe “failed to provide prompt and adequate notice of the incident.”
Plaintiffs are “seeking actual damages, compensatory damages, statutory damages, punitive damages, lifetime credit-monitoring services, restitution, disgorgement, injunctive relief, attorneys’ fees and costs, and pre-and post-judgment interest,” Bloomberg Law reported.
Preventing Future Data Leaks
Years of experts warning genetics companies like 23andMe that they need more strict data security have proven to be true. “This incident really highlights the risks associated with DNA databases,” Brett Callow, a threat analyst at data security firm Emsisoft, told Wired. “The fact that accounts had reportedly opted into the ‘DNA Relatives’ feature is particularly concerning as it could potentially result in extremely sensitive information becoming public.”
“Callow notes that the situation raises broader questions about keeping sensitive genetic information safe and the risks of making it available in services that are designed like social networks to facilitate sharing. With such platforms come all of the data privacy and security issues that have plagued traditional social networks, including issues related to data centralization and scraping,” Wired noted.
Clinical laboratory databases are full of protected health information (PHI). Wise lab managers will work to ensure that their medical lab’s patient data is secure from today’s cyberthreats.
Studying gut bacteria continues to intrigue investors, but can the results produce viable diagnostic data for healthcare providers?
Even as microbiologists and clinical pathologists closely watch research into the human microbiome and anticipate study findings that could lead to new medical laboratory tests based on microbiome testing, there are entrepreneurs ready to tout the benefits of microbiome testing to consumers. That’s the impetus behind an announced deal between a microbiome testing company and a national pharmacy chain.
That deal involves health startup Viome Life Sciences, which recently closed a $86.5 million Series C funding round to support research and development of its consumer health at-home test kits, and CVS, which will sell Viome’s Gut Intelligence Test at 200 of the pharmacy company’s retail locations nationwide, according to an August press release.
“Founded seven years ago by serial entrepreneur Naveen Jain, Viome sells at-home kits that analyze the microbial composition of stool samples and provide food recommendations, as well as supplements and probiotics. Viome says it is the first company to sell gut tests at CVS, both online and in-store. The tests will sell for $179,” GeekWire reported.
Investors appear to be intrigued by these types of opportunities. To date, Viome has raised a total of $175 million.
“In a world where healthcare has often been reactive, treating symptoms and targeting diseases only after they manifest, Viome is pioneering a transformative shift by harnessing the innate power of food and nutrition,” stated Naveen Jain (above), Founder and CEO of Viome, in a press release. “Our mission is not just to prolong life but to enrich it, enabling everyone to thrive in health and vitality.” But some microbiologists and clinical laboratory scientists would consider that the current state of knowledge about the human microbiome is not well-developed enough to justify offering direct-to-consumer microbiology tests that encourage consumers to purchase nutritional products. (Photo copyright: Viome Life Sciences.)
Empowering People to Make Informed Decisions about Their Health
Established in 2016, Bellevue, Washington-based Viome produces and sells, among other tests, its Gut Intelligence at-home test kit, which analyzes the microbial composition of stool samples. This kit relies on RNA sequencing to detect bacteria and other elements present in the gut, such as yeasts and viruses.
The genetic data is then entered into an artificial intelligence (AI) algorithm to provide individuals with information regarding their personal gut health. Viome partnered with Los Alamos National Laboratory to create their AI platform. The company has collected more than 600,000 test samples to date.
“We are the only company that looks at the gene expression and what these microbes are doing,” said Naveen Jain, Founder and CEO of Viome in the press release.
Viome uses technology combined with science to determine the optimal outcomes for each individual consumer based on his or her unique human and microbial gene expression. The data derived from the microbiome is also utilized to offer nutritional recommendations and supplement advice to test takers.
“At Viome, we’re empowering our customers with an individualized nutrition strategy, cutting through the noise of temporary trends and one-size-fits-all advice,” Jain added. “We’re on a journey to redefine aging itself, and we’re invigorated by the support of our investors and customers. Together, we’re building pathways to wellness that hold the potential to enhance the lives of billions of fellow humans across the globe.”
Manipulating Microbiome through Diet
Some scientists, however, are not sold on the idea of microbiome test kits and the data they offer to healthcare providers for treating illnesses.
“The best thing anybody can do for their microbiome is to eat a healthy diet. That’s the best way of manipulating your microbiome,” David Suskind, MD, a gastroenterologist at Seattle Children’s Hospital and Professor of Pediatrics at the University of Washington, told GeekWire.
Verdu, GeekWire reported, added that “there needs to be standardization of protocols and better understanding of microbiome function in health and disease.”
“Recommendations for such commercial kits would have to be based on evidence-based guidelines, which currently do not exist,” she told GeekWire.
Nevertheless, Jain remains positive about the value of microbiome testing. “The future of medicine will be delivered at home, not at the hospital. And the medicines of the future are going to come from a farm, not a pharmacy,” he told GeekWire.
Other Viome At-home Tests
According to a paper published in the journal Therapeutic Advances in Gastroenterology titled, “Role of the Gut Microbiota in Health and Chronic Gastrointestinal Disease: Understanding a Hidden Metabolic Organ,” the human gut contains trillions of microbes, and no two people share the exact same microbiome composition. This complex community of microbial cells influences human physiology, metabolism, nutrition and immune function, and performs a critical role in overall health.
CVS currently sells Viome’s “Gut Intelligence Health Insights Plus Personalized Nutrition Plan” on its website for $149.99. Prices may vary from online to in-store. The test is intended for individuals who want to monitor and address gut imbalances or health symptoms, such as:
Constipation
Diarrhea
Stomach pain
Bloating
Heartburn
Itchy skin
Trouble maintaining a healthy weight
Viome sells the Gut Intelligence Test for $179 on its own website, as well as the following health tests:
Viome also sell precision probiotics and prebiotics, as well as supplements and oral health lozenges.
Gut microbiome testing kits, such as the one from Viome, typically require the collection of a stool sample. Healthcare consumers have in the past been reluctant to perform such testing, but as more information regarding gut health is published, that reluctance may diminish.
Clinical laboratories also have a stake in the game. Dynamic direct to consumer at-home testing has the potential to generate revenue for clinical laboratories, while helping consumers who want to monitor different aspects of their health. But this would be an adjunct to the primary mission of medical laboratories to provide testing services to local physicians and their patients.
Federal prosecutors allege that this nurse practitioner ordered more genetic tests for Medicare beneficiaries than any other provider during 2020
Cases of Medicare fraud involving clinical laboratory testing continue to be prosecuted by the federal Department of Justice. A jury in Miami recently convicted a nurse practitioner (NP) for her role in a massive Medicare fraud scheme for millions of dollars in medically unnecessary genetic testing and durable medical equipment. She faces 75 years in prison when sentenced in December.
In their indictment, federal prosecutors alleged that from August 2018 through June 2021 Elizabeth Mercedes Hernandez, NP, of Homestead, Florida, worked with more than eight telemedicine and marketing companies to sign “thousands of orders for medically unnecessary orthotic braces and genetic tests, resulting in fraudulent Medicare billings in excess of $200 million,” according to a US Department of Justice (DOJ) news release announcing the conviction.
“Hernandez personally pocketed approximately $1.6 million in the scheme, which she used to purchase expensive cars, jewelry, home renovations, and travel,” the press release noted.
Hernandez was indicted in April 2022 as part of a larger DOJ crackdown on healthcare fraud related to the COVID-19 outbreak.
“Throughout the pandemic, we have seen trusted medical professionals orchestrate and carry out egregious crimes against their patients all for financial gain,” said Assistant Director Luis Quesada (above) of the FBI’s Criminal Investigative Division, in a DOJ press release. Clinical laboratory managers would be wise to monitor these Medicare fraud cases. (Photo copyright: Federal Bureau of Investigation.)
Nurse Practitioner Received Kickbacks and Bribes
Federal prosecutors alleged that the scheme involved telemarketing companies that contacted Medicare beneficiaries and persuaded them to request genetic tests and orthotic braces. Hernandez, they said, then signed pre-filled orders, “attesting that she had examined or treated the patients,” according to the DOJ news release.
In many cases, Hernandez had not even spoken with the patients, prosecutors said. “She then billed Medicare as though she were conducting complex office visits with these patients, and routinely billed more than 24 hours of ‘office visits’ in a single day,” according to the news release.
In total, Hernandez submitted fraudulent claims of approximately $119 million for genetic tests, the indictment stated. “In 2020, Hernandez ordered more cancer genetic (CGx) tests for Medicare beneficiaries than any other provider in the nation, including oncologists and geneticists,” according to the news release.
The indictment noted that because CGx tests do not diagnose cancer, Medicare covers them only “in limited circumstances, such as when a beneficiary had cancer and the beneficiary’s treating physician deemed such testing necessary for the beneficiary’s treatment of that cancer. Medicare did not cover CGx testing for beneficiaries who did not have cancer or lacked symptoms of cancer.”
In exchange for signing the orders, Hernandez received kickbacks and bribes from companies that claimed to be in the telemedicine business, the indictment stated.
“These healthcare fraud abuses erode the integrity and trust patients have with those in the healthcare industry … the FBI, working in coordination with our law enforcement partners, will continue to investigate and pursue those who exploit the integrity of the healthcare industry for profit,” said Assistant Director Luis Quesada of the Federal Bureau of Investigation’s Criminal Investigative Division, in the DOJ press release.
Conspirators Took Advantage of COVID-19 Pandemic
Prosecutors alleged that as part of the scheme, she and her co-conspirators took advantage of temporary amendments to rules involving telehealth services—changes that were enacted by Medicare in response to the COVID-19 pandemic.
The indictment noted that prior to the pandemic, Medicare covered expenses for telehealth services only if the beneficiary “was located in a rural or health professional shortage area,” and “was in a practitioner’s office or a specified medical facility—not at a beneficiary’s home.”
But in response to the pandemic, Medicare relaxed the restrictions to allow coverage “even if the beneficiary was not located in a rural area or a health professional shortage area, and even if the telehealth services were furnished to beneficiaries in their home.”
Hernandez was convicted of:
One count of conspiracy to commit healthcare fraud and wire fraud.
Four counts of healthcare fraud.
Three counts of making false statements.
Medscape noted that she was acquitted of two counts of healthcare fraud. The trial lasted six days, Medscape reported.
Hernandez’s sentencing hearing is scheduled for Dec. 14.
Co-Conspirators Plead Guilty
Two other co-conspirators in the case, Leonel Palatnik and Michael Stein, had previously pleaded guilty and received sentences, the Miami Herald reported.
Palatnik was co-owner of Panda Conservation Group LLC, which operated two genetic testing laboratories in Florida. Prosecutors said that Palatnik paid kickbacks to Stein, owner of 1523 Holdings LLC, “in exchange for his work arranging for telemedicine providers to authorize genetic testing orders for Panda’s laboratories,” according to a DOJ press release. The kickbacks were disguised as payments for information technology (IT) and consulting services.
“1523 Holdings then exploited temporary amendments to telehealth restrictions enacted during the pandemic by offering telehealth providers access to Medicare beneficiaries for whom they could bill consultations,” the press release states. “In exchange, these providers agreed to refer beneficiaries to Panda’s laboratories for expensive and medically unnecessary cancer and cardiovascular genetic testing.”
Palatnik pleaded guilty to his role in the kickback scheme in August 2021 and was sentenced to 82 months in prison, a DOJ press release states.
Stein pleaded guilty in April and was sentenced to five years in prison, the Miami Herald reported. He was also ordered to pay $63.3 million in restitution.
These federal cases involving clinical laboratory genetic testing and other tests and medical equipment indicate a commitment on the DOJ’s part to continue cracking down on healthcare fraud.
Plans by several national retail pharmacy chains to expand primary care services and even some clinical laboratory test offerings may be delayed because of financial woes
Times are tough for the nation’s retail pharmacy chains. Rite Aid Corporation, headquartered in Philadelphia, closed 25 stores this year and has now filed for bankruptcy. In a press release, the retail pharmacy company announced it has “initiated a voluntary-court supervised process under Chapter 11 of the US Bankruptcy Code,” and that it plans to “significantly reduce the company’s debt” and “resolve litigation claims in an equitable manner.”
Rite Aid may eventually close 400 to 500 of its 2,100 stores, Forbes reported.
Meanwhile, other retail pharmacy chains are struggling as well. CVS Health, headquartered in Woonsocket, Rhode Island, and Walgreens Boots Alliance of Deerfield, Illinois, are each closing hundreds of stores, according to the Daily Mail.
They are each experiencing problems with labor costs, theft, being disintermediated for prescriptions by pharmacy benefit managers (PBMs), and probably building too many stores in most markets.
This is a significant development, in the sense that Walgreens, CVS, and Walmart are each working to open and operate primary care clinics in their stores. This is a way to offset the loss of filling prescriptions, which has migrated to PBMs. Primary care clinics are important to the revenue of local clinical laboratories, but retail pharmacy chains do not yet operate enough primary care clinics in their retail pharmacies to be a major influence on the lab testing marketplace.
“With the support of our lenders, we look forward to strengthening our financial foundation, advancing our transformation initiatives, and accelerating the execution of our turnaround strategy,” said Jeffrey Stein (above), Rite Aid’s CEO/Chief Restructuring Officer, in a press release. Clinical laboratory leaders may want to closely monitor the activities of the retail pharmacies in their areas. (Photo copyright: Rite Aid.)
Multiple Pharmacy Companies at Financial Risk
Rite Aid Corporation (NYSE: RAD) confirmed it continues to operate its retail and online platforms and has received from lenders $3.45 billion in financing to support the company through the bankruptcy process.
However, according to the Associated Press (AP), Rite Aid has experienced “annual losses for several years” and “faces financial risk from lawsuits over opioid prescriptions,” adding that the company reported total debts of $8.6 billion.
Additionally, the US Department of Justice (DOJ) filed a complaint “alleging that Rite Aid knowingly filled unlawful prescriptions for controlled substances,” explained a DOJ press release.
Rite Aid is not the only retail pharmacy brand dealing with unwelcome developments. Fortune reported last year that Walgreens and CVS paid a combined $10 billion to 12 states for “involvement in the opioid epidemic.”
Walgreens intends to close 150 US and 300 United Kingdom locations, its former Chief Financial Officer James Kehoe shared in a third quarter 2023 earnings call transcribed by Motley Fool.
And in a news release, CVS announced plans to close 900 stores between 2022 and 2024.
Pharmacy Companies’ Investment in Primary Care
Though they are experiencing difficulties on the retail side, Walgreens and CVS have significantly invested in primary care.
In that same ebrief, we reported on CVS’ acquisition of Oak Street Health, a Chicago-based primary care company, for $10.6 billion. CVS plans to have more than 300 healthcare centers by 2026.
“We looked at our business, and we said, ‘We’re seeing an aging population.’ We know people don’t have access to primary care. We know that value-based care is where it’s going. We know that there’s been a renaissance in home (care). So that’s kind of how we approached our acquisitions,” Karen Lynch, CVS Chief Executive Officer told Fortune.
Other Challenges to Retail Pharmacies
It could be that these major pharmacy chains are hoping entry into primary care will offset the loss of sales from prescriptions that have migrated to PBM organizations.
In addition to reimbursement challenges, retail pharmacies are reportedly experiencing:
High labor costs,
Competition from online, bricks-and-mortar, and grocery businesses, and
Effects from the work-at-home trend, among other struggles.
“I think there’s a number of challenges which are coming to a head. One, you have ongoing reimbursement pressure. The reimbursement level for drugs continues to decrease, so profit margin on the core part of the business is under pressure,” Rodey Wing, a partner in the health and retail practices of global strategy and management consulting firm Kearney, told Drug Store News.
Additionally, the pharmacy’s drug sales need to be high enough to retain pharmacists, who are difficult to recruit in a post-pandemic market, Drug Store News explained.
And in the retail space where products are displayed, some pharmacies struggle to compete with Amazon on convenience and with “dollar” stores on price. And with more people working from home, retail pharmacies are seeing less foot traffic, Drug Store News noted.
Retail pharmacy companies also have competition from pharmacies conveniently situated in grocery and big-box stores, Forbes reported. These include:
Walmart, for its part, reduced operating hours of pharmacies at more than 4,500 sites, Daily Mail reported.
Thus, medical laboratory leaders would be wise to keep an eye on market changes in their local retail pharmacies. Some locations are equipped with clinical laboratory services and a closure could give local labs an opportunity to reach out to patients and physicians who need access to a new testing provider.
Many clinical laboratory professionals are aware of the significant amount of waste going into landfills from spent COVID-19 rapid PCR tests that use biosensors to produce results. These biosensor systems “use printed circuit boards, or PCBs, the same materials used in computers. PCBs are difficult to recycle and slow to biodegrade, using large amounts of metal, plastic, and non-eco-friendly materials,” according to a Penn Engineering Today blog post.
UPenn’s new test does not use PCBs. Instead, its biosensor uses “bacterial cellulose (BC), an organic compound synthesized from several strains of bacteria,” the blog post noted.
“This new BC test is non-toxic, naturally biodegradable and both inexpensive and scalable to mass production, currently costing less than $4.00 per test to produce. Its cellulose fibers do not require the chemicals used to manufacture paper, and the test is almost entirely biodegradable,” the blog post continued.
“There is a need for biodegradable diagnostic testing,” said Cesar de la Fuente, PhD (above), Presidential Assistant Professor in the Psychiatry Department at the University of Pennsylvania’s Perelman School of Medicine. “We will be continuing to perfect this technology, which could hopefully help many people in the future, while also looking to expand it to other emerging pathogens in anticipation of future pandemics.” Clinical laboratories engaged in SARS-CoV-2 testing during the COVID-19 pandemic can attest to the massive amounts of waste generated by traditional PCR testing. (Photo copyright: University of Pennsylvania.)
Evolution of Improvement for SARS-CoV-2 Diagnostic Assays
Cesar de la Fuente, PhD, is Presidential Assistant Professor in the Psychiatry Department at the Perelman School of Medicine. His lab has been hard at work since the start of the pandemic to improve COVID-19 testing. The recent study was a collaboration between University of Pennsylvania’s de la Fuente Lab and William Reis de Araujo, Professor in Analytical Chemistry at the State University of Campinas (UNICAMP) in São Paulo, Brazil.
De Araujo leads the Portable Chemical Sensors Lab and has been pairing his electrochemistry expertise with de la Fuente’s lab for years, Penn Engineering Today noted.
The team wanted to combine the speed and cost-effectiveness of previous rapid tests with an eco-friendly biodegradable substrate material.
Bacterial cellulose (BC) was a great choice because it “naturally serves as a factory for the production of cellulose, a paper-like substance which can be used as the basis for biosensors,” Penn Engineering Today reported.
Additionally, BC has an excellent track record for a variety of uses, such as regenerative medicine, wound care, and point-of-care (POC) diagnostics, the blog post noted. UPenn’s test offers speed and accuracy without needing costly equipment making it desirable for clinical laboratories preparing to fight the next pandemic.
The test has shown to be capable of “correctly identifying multiple variants in under 10 minutes. This means that the tests won’t require ‘recalibration’ to accurately test for new variants,” Penn Engineering Today added.
Innovation Born from Inspiration
Though rapid tests are essential to help curb the spread of COVID-19, the negatives that come with these tests didn’t sit well with the UPenn team. This spurred them to strive for improvements.
PCR tests “are hampered by waste [metal, plastic, and the aforementioned PCBs]. They require significant time [results can take up to a day or more] as well as specialized equipment and labor, all of which increase costs,” Penn Engineering Today noted.
Additionally, “Sophistication of PCR tests makes them harder to tweak and therefore slower to respond to new variants,” the blog post concluded.
“There’s a tension between these two worlds of innovation and conservation,” de la Fuente told Penn Engineering Today. “When we create new technology, we have a responsibility to think through the consequences for the planet and to find ways to mitigate the environmental impact.”
Need for Biodegradable Diagnostic Tests
“COVID-19 has led to over 6.8 million deaths worldwide and continues to affect millions of people, primarily in low-income countries and communities with low vaccination coverage,” the Cell Reports Physical Science paper noted.
“There is a need for biodegradable diagnostic testing,” de la Fuentes told Penn Engineering Today. “We will be continuing to perfect this technology, which could hopefully help many people in the future, while also looking to expand it to other emerging pathogens in anticipation of future pandemics.”
While UPenn’s test will require clinical trials and FDA approval before it can become available to clinical laboratories and for point-of-care testing, it promises a bright, eco-friendly future for rapid viral testing.
Pathologists and clinical laboratory managers will want to stay alert to the concerns voiced by tech experts about the need to exercise caution when using generative AI to assist medical diagnoses
GPTs are an integral part of the framework of a generative artificial intelligence that creates text, images, and other media using generative models. These neural network models can learn the patterns and structure of inputted information and then develop new data that contains similar characteristics.
Through their proposal, the AMA has developed principles and recommendations surrounding the benefits and potentially harmful consequences of relying on AI-generated medical advice and content to advance diagnoses.
“We’re trying to look around the corner for our patients to understand the promise and limitations of AI,” said Alexander Ding, MD (above), AMA Trustee and Associate Vice President for Physician Strategy and Medical Affairs at Humana, in a press release. “There is a lot of uncertainty about the direction and regulatory framework for this use of AI that has found its way into the day-to-day practice of medicine.” Clinical laboratory professionals following advances in AI may want to remain informed on the use of generative AI solutions in healthcare. (Photo copyright: American Medical Association.)
Preventing Spread of Mis/Disinformation
GPTs are “a family of neural network models that uses the transformer architecture and is a key advancement in artificial intelligence (AI) powering generative AI applications such as ChatGPT,” according to Amazon Web Services.
In addition to creating human-like text and content, GPTs have the ability to answer questions in a conversational manner. They can analyze language queries and then predict high-quality responses based on their understanding of the language. GPTs can perform this task after being trained with billions of parameters on massive language datasets and then generate long responses, not just the next word in a sequence.
“AI holds the promise of transforming medicine,” said diagnostic and interventional radiologist Alexander Ding, MD, AMA Trustee and Associate Vice President for Physician Strategy and Medical Affairs at Humana, in an AMA press release.
“We don’t want to be chasing technology. Rather, as scientists, we want to use our expertise to structure guidelines, and guardrails to prevent unintended consequences, such as baking in bias and widening disparities, dissemination of incorrect medical advice, or spread of misinformation or disinformation,” he added.
The AMA plans to work with the federal government and other appropriate organizations to advise policymakers on the optimal ways to use AI in healthcare to protect patients from misleading AI-generated data that may or may not be validated, accurate, or relevant.
Advantages and Risks of AI in Medicine
The AMA’s proposal was prompted by AMA-affiliated organizations that stressed concerns about the lack of regulatory oversight for GPTs. They are encouraging healthcare professionals to educate patients about the advantages and risks of AI in medicine.
“AI took a huge leap with large language model tool and generative models, so all of the work that has been done up to this point in terms of regulatory and governance frameworks will have to be treated or at least reviewed with this new lens,” Sha Edathumparampil, Corporate Vice President, Digital and Data, Baptist Health South Florida, told Healthcare Brew.
According to the AMA press release, “the current limitations create potential risks for physicians and patients and should be used with appropriate caution at this time. AI-generated fabrications, errors, or inaccuracies can harm patients, and physicians need to be acutely aware of these risks and added liability before they rely on unregulated machine-learning algorithms and tools.”
According to the AMA press release, the organization will propose state and federal regulations for AI tools at next year’s annual meeting in Chicago.
In a July AMA podcast, AMA’s President, Jesse Ehrenfeld, MD, stressed that more must be done through regulation and development to bolster trust in these new technologies.
“There’s a lot of discomfort around the use of these tools among Americans with the idea of AI being used in their own healthcare,” Ehrenfeld said. “There was a 2023 Pew Research Center poll [that said] 60% of Americans would feel uncomfortable if their own healthcare provider relied on AI to do things like diagnose disease or recommend a treatment.”
WHO Issues Cautions about Use of AI in Healthcare
In May, the World Health Organization (WHO) issued a statement advocating for caution when implementing AI-generated large language GPT models into healthcare.
A current example of such a GPT is ChatGPT, a large language-based model (LLM) that enables users to refine and lead conversations towards a desired length, format, style, level of detail and language. Organizations across industries are now utilizing GPT models for Question and Answer bots for customers, text summarization, and content generation and search features.
“Precipitous adoption of untested systems could lead to errors by healthcare workers, cause harm to patients, erode trust in AI, and thereby undermine (or delay) the potential long-term benefits and uses of such technologies around the world,” commented WHO in the statement.
WHO’s concerns regarding the need for prudence and oversight in the use of AI technologies include:
Data used to train AI may be biased, which could pose risks to health, equity, and inclusiveness.
LLMs generate responses that can appear authoritative and plausible, but which may be completely incorrect or contain serious errors.
LLMs may be trained on data for which consent may not have been given.
LLMs may not be able to protect sensitive data that is provided to an application to generate a response.
LLMs can be misused to generate and disseminate highly convincing disinformation in the form of text, audio, or video that may be difficult for people to differentiate from reliable health content.
Tech Experts Recommended Caution
Generative AI will continue to evolve. Therefore, clinical laboratory professionals may want to keep a keen eye on advances in AI technology and GPTs in healthcare diagnosis.
“While generative AI holds tremendous potential to transform various industries, it also presents significant challenges and risks that should not be ignored,” wrote Edathumparampil in an article he penned for CXOTECH Magazine. “With the right strategy and approach, generative AI can be a powerful tool for innovation and differentiation, helping businesses to stay ahead of the competition and better serve their customers.”
GPT’s may eventually be a boon to healthcare providers, including clinical laboratories, and pathology groups. But for the moment, caution is recommended.