News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Teladoc Reports $13.7B Loss for 2022, Just Two Years after Livongo Acquisition

Loss could indicate an industrywide slowdown in digital health adoption and suggests medical laboratories will want to continue developing a virtual care strategy

Only two years after Teladoc Health (NYSE:TDOC) completed acquisition of Livongo, a data-based health coaching company, the virtual healthcare provider reported a 2022 net loss of $13.7 billion, a company press release announced.

The loss, which has been described as “historic,” is “mostly from a write-off related to the plummeting value of its Livongo acquisition. … By comparison, in 2021 [just a year earlier], Teladoc posted a net loss of $429 million,” Fierce Healthcare reported.

However, during Teladoc’s fourth quarter earnings call, CEO Jason Gorevic said, “We are pleased with the strong fourth quarter and full-year operating results. Despite a challenging macro environment, we were able to expand our product offerings and enhance the level of care delivered across our integrated whole-person platform.” Teladoc Health’s 2022 revenue was $2,406,840 compared to $2,032,707 in 2021. That’s an 18% increase over last year’s revenue, according to the earnings report. Nevertheless, a month before the earnings call Teladoc laid off 300 non-clinician employees, Fierce Healthcare noted.

Jason Gorevic

“Teladoc Health has been at the forefront of the adoption curve, and we believe that our scale, breadth of product offering, and proven outcomes will enable us to maintain and expand our position in the market,” said Teladoc Health CEO Jason Gorevic during February’s earnings call. Clinical laboratory leaders may view the company’s $13B loss as indication that adoption in telehealth by physicians, healthcare providers, and patients of digital-based health services is not happening as swiftly has been predicted. (Photo copyright: The Business Journals.) 

Predictions in Telehealth Adoption Fall Short

Teladoc Health, based in Purchase, New York, acquired Livongo of Mountain View, California, in October 2020 for $18.5 billion. 

A news release at that time declared that the merger was “a transformational opportunity to improve the delivery, access, and experience of healthcare for consumers around the world.

“The highly complementary organizations,” the release stated, “will combine to create substantial value across the healthcare ecosystem, enabling clients everywhere to offer high quality, personalized, technology-enabled longitudinal care that improves outcomes and lowers costs across the full spectrum of health.”

The deal was hailed as advancing telemedicine and digital health services. As it turned out, though, the demand for those types of services fell far short of the Teladoc’s expectations. One way to interpret the cause of the multi-billion dollar write-down is that adoption of digital health services by physicians, healthcare providers, and consumers is not happening as fast as Teladoc projected.

It may also be that companies allocated too much money to deals during the COVID-19 pandemic, an unstable period of time for making major business decisions.

In fact, worldwide digital health funding fell 57% in 2022 after a high in 2021, according to a CB Insights State of Digital Health 2022 Report.

Teladoc to Reduce Costs while Pursuing Increased Adoption of Virtual Care

Gorevic told analysts during the earnings call that the company needs to reduce costs and reach a market that is “in the early innings.” Year-over-year growth of 6% to 11% is expected in 2023, he said.

“You should expect us to balance growth and margin with an increased focus on efficiency going forward. Part of that approach is rightsizing the cost structure to reflect the current growth rates of the business,” Gorevic said. “The more balanced approach does not mean that we will stop relentlessly pursing growth and increased adoption of virtual care across the industry. Virtual care’s role within the healthcare industry remains underpenetrated, and we will continue to invest to expand our leadership position,” he added.

Digital Health Investing Falls Off

However, citing digital health market data in the new CB Insights report, Becker’s Hospital Review(Becker’s) suggested the digital health bubble may have “popped,” and that funding by investors is falling fast from the “Golden Age” of 2021.  

The digital health category grew by 79% in 2021 to $57.2 billion, a record high, according to data cited by Becker’s. In the fourth quarter of 2021, there were 13 new digital health companies with valuations of at least $1 billion each. But by the end of 2022, digital health funding dropped to $3.4 billion. That’s “a five-year low,” Becker’s reported.

“The drop in funding in digital health companies I feel is a response to the volatility in healthcare where over 50% of hospitals and healthcare providers have posted losses for 2022 and a bleak outlook for 2023,” Darrell Bodnar, Chief Information Officer at North Country Healthcare in Lancaster, New Hampshire, told Becker’s.

And, in a statement about hospitals’ financial health, Fitch Ratings said providers in 2022 reported “weaker profitability and liquidity” as compared to 2021. For most providers, a “rapid financial recovery” is not expected, Fitch noted.

Labs Need Telehealth Strategies

All of this uncertainty in the telehealth/virtual care markets may ultimately benefit clinical laboratories and lab investors who delayed investing in technology that enables supporting physicians and patients using telemedicine visits. Still, it would be smart for medical laboratory leaders to develop a digital health strategy to meet consumer demand for lab testing services in tandem with virtual care visits with healthcare providers. 

—Donna Marie Pocius

Related Information:

Teladoc Health Reports Fourth Quarter and Full Year 2022 Results

Teladoc Sinks $13.7B Loss in 2022 Tied to Plummeting Value of Livongo Acquisition

Teladoc Health and Livongo Merge to Create New Standard in Global Healthcare Delivery, Access, and Experience

State of Digital Health 2022 Report

What is Digital Health?

Teladoc Health Reports $13B Loss in 2022

Early Not-for-Profit Hospital Medians Show Expected Deterioration, Will Worsen

Did the Digital Health Bubble Pop? CIOs Weight In

US and UK Researchers Simultaneously Develop New Tests to Detect Prostate Cancer

Though still in trials, early results show tests may be more accurate than traditional clinical laboratory tests for detecting prostate cancer

Within weeks of each other, different research teams in the US and UK published findings of their respective efforts to develop a better, more accurate clinical laboratory prostate cancer test. With cancer being a leading cause of death among men—second only to heart disease according to the Centers for Disease Control and Prevention (CDC)—new diagnostics to identify prostate cancer would be a boon to precision medicine treatments for the deadly disease and could save many lives.

Researchers at the University of East Anglia (UEA) in Norwich, England, were working to improve the accuracy of the widely-used and accepted prostate-specific antigen (PSA) test. By contrast, researchers at Cedars-Sinai Cancer in Los Angeles, pursued a new liquid biopsy approach to identifying prostate cancer that uses nanotechnology.

Thus, these are two different pathways toward the goal of achieving earlier, more accurate diagnosis of prostate cancer, the holy grail of prostate cancer diagnosis.

Dmitry Pshezhetskiy, PhD

“There is currently no single test for prostate cancer, but PSA blood tests are among the most used, alongside physical examinations, MRI scans, and biopsies,” said Dmitry Pshezhetskiy, PhD (above), Professorial Research Fellow at University of East Anglia and one of the authors of the UEA study. “However, PSA blood tests are not routinely used to screen for prostate cancer, as results can be unreliable. Only about a quarter of people who have a prostate biopsy due to an elevated PSA level are found to have prostate cancer. There has therefore been a drive to create a new blood test with greater accuracy.” With the completion of the US and UK studies, clinical laboratories may soon have a new diagnostic test for prostate cancer. (Photo copyright: University of East Anglia.)

East Anglia’s Research into a More Accurate Blood Test

Scientists at the University of East Anglia (UEA) worked with researchers from Imperial College in London, Imperial College NHS Trust, and Oxford BioDynamics to develop a new precision medicine blood test that can detect prostate cancer with greater accuracy than current methods.

The epigenetic blood test they developed, called Prostate Screening EpiSwitch (PSE), can identify cancer-specific chromosome conformations in blood samples. The test works in tandem with the standard prostate-specific antigen (PSA) blood test to diagnose prostate cancer, according to an Oxford BioDynamics press release.

The researchers evaluated their test in a pilot study involving 147 patients. They found their testing method had a 94% accuracy rate, which is higher than that of PSA testing alone. They discovered their test significantly improved the overall detection of prostate cancer in men who are at risk for the disease. 

“When tested in the context of screening a population at risk, the PSE test yields a rapid and minimally invasive prostate cancer diagnosis with impressive performance,” Dmitry Pshezhetskiy, PhD, Professorial Research Fellow at UEA and one of the authors of the study told Science Daily. “This suggests a real benefit for both diagnostic and screening purposes.”

The UK scientists hope their test can eventually be used in everyday clinical practice as there is a need for a highly accurate method for prostate cancer screening that does not subject patients to unnecessary, costly, invasive procedures. 

The UEA researchers published their findings in the peer-reviewed journal Cancers, titled, “Circulating Chromosome Conformation Signatures Significantly Enhance PSA Positive Predicting Value and Overall Accuracy for Prostate Cancer Detection.”

Cedars-Sinai’s Research into Nanotechnology Cancer Testing

Researchers from Cedars-Sinai Cancer took a different approach to diagnosing prostate cancer by developing a nanotechnology-based liquid biopsy test that detects the disease even in microscopic amounts.  

Their test isolates and identifies extracellular vesicles (EVs) from blood samples. EVs are microscopic non-reproducing protein and genetic material shed by all cells. Cedars-Sinai’s EV Digital Scoring Assay accurately extracts EVs from blood and analyzes them faster than similar currently available tests.

“This research will revolutionize the liquid biopsy in prostate cancer,” said oncologist Edwin Posadas, MD, Medical Director of the Urologic Oncology Program and co-director of the Experimental Therapeutics Program in Cedars-Sinai Cancer in a press release. “The test is fast, minimally invasive and cost-effective, and opens up a new suite of tools that will help us optimize treatment and quality of life for prostate cancer patients.”

The researchers tested blood samples from 40 patients with prostate cancer. They found that their EV test could distinguish between cancer localized to the prostate and cancer that has spread to other parts of the body.

Microscopic cancer deposits, called micrometastases, are not always detectable, even with advanced imaging methods. When these deposits spread outside the prostate area, focused radiation cannot prevent further progression of the disease. Thus, the ability to identify cancer by locale within the body could lead to new precision medicine treatments for the illness.

“[The EV Digital Scoring Assay] would allow many patients to avoid the potential harms of radiation that isn’t targeting their disease, and instead receive systemic therapy that could slow disease progression,” Posadas explained.

The Cedars-Sinai researchers published their findings in Nano Today, titled, “Prostate Cancer Extracellular Vesicle Digital Scoring Assay: A Rapid Noninvasive Approach for Quantification of Disease-relevant mRNAs.”

Other Clinical Laboratory Tests for Prostate Cancer Under Development

According to the American Cancer Society, the number of prostate cancer cases is increasing. One out of eight men will be diagnosed with the illness during his lifetime. Thus, developers have been working on clinical laboratory tests to accurately detect the disease and save lives for some time.

In “University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test,” Dark Daily reported on a urine test also developed by scientists at the University of East Anglia that clinical laboratories can use to not only accurately diagnose prostate cancer but also determine whether it is an aggressive form of the disease.

And in “UPMC Researchers Develop Artificial Intelligence Algorithm That Detects Prostate Cancer with ‘Near Perfect Accuracy’ in Effort to Improve How Pathologists Diagnose Cancer ,” we outlined how researchers at the University of Pittsburgh Medical Center (UPMC) working with Ibex Medical Analytics in Israel had developed an artificial intelligence (AI) algorithm for digital pathology that can accurately diagnose prostate cancer. In the initial study, the algorithm—dubbed the Galen Prostate AI platform—accurately detected prostate cancer with 98% sensitivity and 97% specificity.

More research and clinical trials are needed before the new US and UK prostate cancer testing methods will be ready to be used in clinical settings. But it’s clear that ongoing research may soon produce new clinical laboratory tests and diagnostics for prostate cancer that will steer treatment options and allow for better patient outcomes.  

—JP Schlingman

Related Information:

The New Prostate Cancer Blood Test with 94 Percent Accuracy

Circulating Chromosome Conformation Signatures Significantly Enhance PSA Positive Predicting Value and Overall Accuracy for Prostate Cancer Detection

Invention: A Blood Test to Unlock Prostate Cancer Mysteries

Prostate Cancer Extracellular Vesicle Digital Scoring Assay: A Rapid Noninvasive Approach for Quantification of Disease-relevant mRNAs

Could a Urine Test Detect Pancreatic and Prostate Cancer? Study Shows 99% Success Rate

University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test

UPMC Researchers Develop Artificial Intelligence Algorithm That Detects Prostate Cancer with ‘Near Perfect Accuracy’ in Effort to Improve How Pathologists Diagnose Cancer

Clarapath Acquires Crosscope, Bridging Histology Automation with Digital Pathology

Clarapath is working to automate manual processes in histology while also capturing data to better inform clinical laboratories

Looking to provide an end-to-end digital pathology solution, medical robotics maker Clarapath has acquired Crosscope, a medical artificial intelligence (AI) software company that develops AI-powered telepathology for medical image information extraction and precision medicine diagnostics.

The deal will enable Crosscope’s digital pathology platform to layer around Clarapath’s histology automation hardware, a combination that could improve quality and efficiencies in diagnostic services for future customers, according to a Clarapath press release.

Clarapath’s goal with its products is to automate certain manual processes in histology laboratories, while at the same time reducing variability in how specimens are processed and produced into glass slides. In an exclusive interview with Dark Daily, Eric Feinstein, CEO and President at Clarapath said he believes the resulting data about these activities can drive further changes.

“A histotechnologist turns a microtome wheel and makes decisions about a piece of tissue in real time,” noted Feinstein, who will speak at the Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management on April 25-26 in New Orleans. “All of that real-time data isn’t captured. Imagine if we could take all of that data from thousands of histotechnologists who are cutting every day and aggregate it. Then you could start drawing definitive conclusions about best practices.”

Eric Feinstein

“Clarapath’s foundation is about creating consistency and standardizing steps in histology—and uncovering the data that you need in order to accomplish those goals as a whole system,” Eric Feinstein (above), CEO and President at Clarapath told Dark Daily. “A histology lab’s workflow—from when the tissue comes in to when the glass slide is produced—should all be connected.” Many processes in histology and anatomic pathology continue to be manual. Automated solutions can contribute to improved productivity and reducing variability in how individual specimens are processed. (Photo copyright: Clarapath.)

Details Behind Clarapath’s Deal to Acquire Crosscope

As part of its acquisition, Clarapath of Hawthorne, New York, has retained all of Crosscope’s employees, who are located in Mountain View, California, and Bombay, India. Financial terms of the deal were not disclosed.

Clarapath’s flagship histology automation product is SectionStar, a tissue sectioning and transfer system designed to automate inefficient and manual activities in slide processing. The device offers faster and more efficient sample processing while reducing human involvement. Clarapath expects SectionStar be on the market in 2023. The company is currently taking pre-orders. 

Meanwhile, Crosscope developed Crosscope Dx, a turnkey digital pathology solution that provides workflow tools and slide management as well as AI and machine learning to assist pathologists with their medical decision-making and diagnoses.

Adoption of Digital Pathology and Automation Can Be Challenging

Digital pathology has experienced growing popularity in the post-COVID-19 pandemic world. This is not only because remote pathology case reviews have become increasingly acceptable to physicians but also because of the ongoing shortages in clinical laboratory staffing.

“A pain point today for clinicians and laboratories is labor. That’s across the board,” Feinstein said. “We can help solve that with SectionStar.”

In “Recent Separate Business Transactions by Fujifilm and GE Healthcare Suggest Bullish Outlook for Faster Adoption of Digital Pathology,” Dark Daily reported that vendors have their eyes open for deals and partnerships in digital pathology.

Feinstein does not believe adoption of digital pathology and histology automation is proceeding slowly, but he does acknowledge barriers to healthcare organizations installing the technologies.

“There are lots of little things that—from a workflow perspective—people have outsized expectations about,” he explained. “Clinicians and administrators are not used to innovating in a product sense. They may be innovating on how they deliver care or treatment pathways, but they’re not used to developing an engineering product and going through alpha and beta stages. That makes adopting new technology challenging.”

Medical laboratory managers and pathologists interested in pursuing histology automation and digital pathology should first determine what processes are sub-optimal or would benefit from the standardization hardware and software can offer. Being able to articulate those gains can help build the case for a return on investment to decision-makers.

Another resource to consider: Feinstein will speak about innovations for remote histology laboratory workers at the upcoming Executive War College for Clinical Laboratory, Diagnostics, and Pathology Management on April 25-26 in New Orleans. His session is titled, “Re-engineering the Classic Histology Laboratory: Enabling the Remote Histotechnologist with New Tools That Improve Productivity, Automate Processes, and Protect Quality.”

Scott Wallask

Related Information:

Clarapath Acquires Crosscope and Combines Tissue Processing Robotics with AI Powered Digital Pathology for Building the Lab of the Future

Histopathology is Ripe for Automation

UCLA’s Virtual Histology Could Eliminate Need for Invasive Biopsies for Some Skin Conditions and Cancers

2023 Executive War College on Diagnostics, Clinical Laboratory, and Pathology Management Announced for April 25-26

England’s National Health Service to Offer Widespread Rapid Whole Genome Sequencing for Children and Babies

Research in the UK and US into how rapid WGS can prevent deaths and improve outcomes for kids with rare genetic diseases may lead to more genetic testing based in local clinical laboratories

Genetic scientists with the National Health Service (NHS) in England have embarked on an ambitious plan to offer rapid whole genome sequencing (rWGS) for children and babies with serious illnesses, as part of a larger initiative to embrace genomic medicine in the United Kingdom (UK).

The NHS estimates that the plan will benefit more than 1,000 children and babies each year, including newborns with rare diseases such as cancer, as well as kids placed in intensive care after being admitted to hospitals. Instead of waiting weeks for results from conventional tests, clinicians will be able to administer a simple blood test and get results within days, the NHS said in a press release.

The press release notes that about 75% of rare genetic diseases appear during childhood “and are responsible for almost a third of neonatal intensive care deaths.”

Here in the United States, pathologists and clinical laboratory managers should see this development as a progressive step toward expanding access to genetic tests and whole genome sequencing services. The UK is looking at this service as a nationwide service. By contrast, given the size of the population and geography of the United States, as this line of medical laboratory testing expands in the US, it will probably be centered in select regional centers of excellence.

The NHS laid out its implementation plan in a strategy paper published on NHS England’s website titled, “Accelerating Genomic Medicine in the NHS.”

“This strategy sets out how more people will be empowered to take preventative action following risk-based predictions, receive life-changing diagnoses, and get the support needed to live with genomically-informed diagnoses alongside improved access to cutting-edge precision [medicine] treatments. It also outlines how the NHS will accelerate future high-quality genomic innovation that can be adopted and spread across the country, leading to positive impacts for current and future generations,” the NHS wrote.

Amanda Pritchard

“This global first is an incredible moment for the NHS and will be revolutionary in helping us to rapidly diagnose the illnesses of thousands of seriously ill children and babies—saving countless lives in the years to come,” said NHS chief executive Amanda Pritchard (above) in a press release announcing the program. (Photo copyright: Hospital Times.)

New Rapid Whole Genome Sequencing Service

The NHS announced the plan following a series of trials last year. In one trial, a five-day old infant was admitted to a hospital in Cheltenham, Gloucester, with potentially deadly levels of ammonia in his blood. Whole genome sequencing revealed that changes in the CPS1 gene were preventing his body from breaking down nitrogen, which led to the spike in ammonia. He was given life-saving medication in advance of a liver transplant that doctors believed would cure the condition. Without the rapid genetic test, doctors likely would have performed an invasive liver biopsy.

Following sample collection at NHS locations, the genetic tests will be performed at the new National Rapid Whole Genome Sequencing Service, part of the South West NHS Genomic Laboratory Hub run by the Royal Devon University Healthcare NHS Foundation Trust in Exeter, UK.

Using a simple blood test, the new newborn genetic screening service in England is expected to benefit more than 1,000 critically ill infants each year, potentially saving their lives. “The rapid whole genome testing service will transform how rare genetic conditions are diagnosed,” explained Emma Baple, PhD, Professor of Genomic Medicine at University of Exeter Medical School and leader of the National Rapid Whole Genome Sequencing Service in the press release. “We know that with prompt and accurate diagnosis, conditions could be cured or better managed with the right clinical care, which would be life-altering—and potentially life-saving—for so many seriously unwell babies and children,” Precision Medicine Institute reported.

According to The Guardian, test results will be available in two to seven days.

Along with the new rWGS testing service, the NHS announced a five-year plan to implement genomic medicine more broadly. The provisions include establishment of an ethics advisory board, more training for NHS personnel, and an expansion of genomic testing within the existing NHS diagnostic infrastructure. The latter could include using NHS Community Diagnostics centers to collect blood samples from family members to test for inherited diseases.

UK’s Longtime Interest in Whole Genome Sequencing

The UK government has long been interested in the potential role of WGS for delivering better outcomes for patients with genetic diseases, The Guardian reported.

In 2013, the government launched the 100,000 Genomes Project to examine the usefulness of the technology. In November 2021, investigators with the project reported the results of a large pilot study in which they analyzed the genomes of 4,660 individuals with rare diseases. The study, published in the New England Journal of Medicine (NEJM) titled, “100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care—Preliminary Report,” found “a substantial increase in yield of genomic diagnoses made in patients with the use of genome sequencing across a broad spectrum of rare disease.”

The study’s findings suggest that use of WGS “could save the NHS millions of pounds,” The Guardian reported.

Whole Genome Sequencing System for Newborns in the US

Researchers in the United States are also looking at the potential for WGS to improve health outcomes in children with genetic conditions. Last August, a research team led by Stephen F. Kingsmore, MD, DSc, President/CEO of Rady Children’s Institute for Genomic Medicine in San Diego, authored a study published in the American Journal of Human Genetics (AJHG) titled, “A Genome Sequencing System for Universal Newborn Screening, Diagnosis, and Precision Medicine for Severe Genetic Diseases,” that described a scalable prototype for a newborn screening system.

“This NBS-rWGS [newborn screening by rapid whole genome sequencing] system is designed to complement the existing newborn screening process and has the potential to eliminate the diagnostic and therapeutic odyssey that many children and parents face,” Kingsmore said in a press release. “Currently, only 35 core genetic disorders are recommended for newborn screening in the United States, but there are more than 7,200 known genetic diseases. Outcomes remain poor for newborns with a genetic disease because of the limited number of recommended screenings. With NBS-rWGS, we can more quickly expand that number and therefore potentially improve outcomes through precision medicine.”

A more recent 2023 study which examined 112 infant deaths at Rady Children’s Hospital found that 40% of the babies had genetic diseases. In seven infants, genetic diseases were identified post-mortem, and in five of them “death might have been avoided had rapid, diagnostic WGS been performed at time of symptom onset or regional intensive care unit admission,” the authors wrote.

“Prior etiologic studies of infant mortality are generally retrospective, based on electronic health record and death certificate review, and without genome information, leading to underdiagnosis of genetic diseases,” said Christina Chambers, PhD, co-author of the study, in a press release. “In fact, prior studies show at least 30% of death certificates have inaccuracies. By implementing broad use of genome sequencing in newborns we might substantially reduce infant mortality.” 

Pioneering work with whole genome sequencing for newborns, such as that being conducted by the clinical laboratory and genetic teams at Rady Children’s Hospital and the UK’s NHS, could allow doctors to make timely interventions for our most vulnerable patients.

—Stephen Beale

Related Information:

Study Suggests DNA Sequencing Could Reduce Infant Deaths, Often Caused by Genetic Disease

Novel Newborn Screening System Uses Rapid Whole Genome Sequencing and Acute Management Guidance to Screen and Diagnosis Genetic Diseases

Study Finds Association of Genetic Disease and Infant Mortality Higher than Previously Recognized: 41% of Infant Deaths Associated with Genetic Diseases

Genome Sequencing Could Prevent Infant Deaths

A Genome Sequencing System for Universal Newborn Screening, Diagnosis, and Precision Medicine for Severe Genetic Diseases

Genetic Testing in the PICU Prompts Meaningful Changes in Care

Major Policy Event in United Kingdom Aligns National Genetic Screening Program Using Rapid Whole Genome Sequencing

World-First National Genetic Testing Service to Deliver Rapid Life-Saving Checks for Babies and Kids

Genome Sequencing Trial to Test Benefits of Identifying Genetic Diseases at Birth

New NHS Genetic Testing Service ‘Could Save Thousands of Children’ in England

NHS England Completes Move Towards Rapid Whole Genome Sequencing of All Critically Ill Infants

Whole Genome Sequencing for Children: An Information Guide for Parents, Carers, and Families

Cedars-Sinai Researchers Determine Smartphone App Can Assess Stool Form as Well as Gastroenterologists and Better than IBS Patients

Artificial intelligence performs BSS assessments with higher sensitivity and specificity than human diagnosticians

In a recent study conducted by scientists at Cedars-Sinai Medical Center in Los Angeles, researchers evaluated a smartphone application (app) that uses artificial intelligence (AI) to assess and characterize digital images of stool samples. The app, it turns out, matched the accuracy of participating gastroenterologists and exceeded the accuracy of study patients’ self-reports of stool specimens, according to a news release.

Though smartphone apps are technically not clinical laboratory tools, anatomic pathologists and medical laboratory scientists (MLSs) may be interested to learn how health information technology (HIT), machine learning, and smartphone apps are being used to assess different aspects of individuals’ health, independent of trained healthcare professionals.

The issue that the Cedars Sinai researchers were investigating is the accuracy of patient self-reporting. Because poop can be more complicated than meets the eye, when asked to describe their bowel movements patients often find it difficult to be specific. Thus, use of a smartphone app that enables patients to accurately assess their stools in cases where watching the function of their digestive tract is relevant to their diagnoses and treatment would be a boon to precision medicine treatments of gastroenterology diseases.

The scientists published their findings in the American Journal of Gastroenterology, titled, “A Smartphone Application Using Artificial Intelligence Is Superior to Subject Self-Reporting when Assessing Stool Form.”

Mark Pimentel, MD

“This app takes out the guesswork by using AI—not patient input—to process the images (of bowel movements) taken by the smartphone,” said gastroenterologist Mark Pimentel, MD (above), Executive Director of Cedars-Sinai’s Medically Associated Science and Technology (MAST) program and principal investigator of the study, in a news release. “The mobile app produced more accurate and complete descriptions of constipation, diarrhea, and normal stools than a patient could, and was comparable to specimen evaluations by well-trained gastroenterologists in the study.” (Photo copyright: Cedars-Sinai.)

Pros and Cons of Bristol Stool Scale

In their paper, the scientists discussed the Bristol Stool Scale (BSS), a traditional diagnostic tool for identifying stool forms into seven categories. The seven types of stool are:

  • Type 1: Separate hard lumps, like nuts (difficult to pass).
  • Type 2: Sausage-shaped, but lumpy.
  • Type 3: Like a sausage, but with cracks on its surface.
  • Type 4: Like a sausage or snake, smooth and soft (average stool).
  • Type 5: Soft blobs with clear cut edges.
  • Type 6: Fluffy pieces with ragged edges, a mushy stool (diarrhea).
  • Type 7: Watery, no solid pieces, entirely liquid (diarrhea). 

In an industry guidance report on irritable bowel syndrome (IBS)and associated drugs for treatment, the US Food and Drug Administration (FDA) said the BSS is “an appropriate instrument for capturing stool consistency in IBS.”

But even with the BSS, things can get murky for patients. Inaccurate self-reporting of stool forms by people with IBS and diarrhea can make proper diagnoses difficult.

“The problem is that whenever you have a patient reporting an outcome measure, it becomes subjective rather than objective. This can impact the placebo effect,” gastroenterologist Mark Pimentel, MD, Executive Director of Cedars-Sinai’s Medically Associated Science and Technology (MAST) program and principal investigator of the study, told Healio.

Thus, according to the researchers, AI algorithms can help with diagnosis by systematically doing the assessments for the patients, News Medical reported.

30,000 Stool Images Train New App

To conduct their study, the Cedars-Sinai researchers tested an AI smartphone app developed by Dieta Health. According to Health IT Analytics, employing AI trained on 30,000 annotated stool images, the app characterizes digital images of bowel movements using five parameters:

  • BSS,
  • Consistency,
  • Edge fuzziness,
  • Fragmentation, and
  • Volume.

“The app used AI to train the software to detect the consistency of the stool in the toilet based on the five parameters of stool form, We then compared that with doctors who know what they are looking at,” Pimentel told Healio.

AI Assessments Comparable to Doctors, Better than Patients

According to Health IT Analytics, the researchers found that:

  • AI assessed the stool comparable to gastroenterologists’ assessments on BSS, consistency, fragmentation, and edge fuzziness scores.
  • AI and gastroenterologists had moderate-to-good agreement on volume.
  • AI outperformed study participant self-reports based on the BSS with 95% accuracy, compared to patients’ 89% accuracy.

Additionally, the AI outperformed humans in specificity and sensitivity as well:

  • Specificity (ability to correctly report a negative result) was 27% higher.
  • Sensitivity (ability to correctly report a positive result) was 23% higher.

“A novel smartphone application can determine BSS and other visual stool characteristics with high accuracy compared with the two expert gastroenterologists. Moreover, trained AI was superior to subject self-reporting of BSS. AI assessments could provide more objective outcome measures for stool characterization in gastroenterology,” the Cedars-Sinai researchers wrote in their paper.

“In addition to improving a physician’s ability to assess their patients’ digestive health, this app could be advantageous for clinical trials by reducing the variability of stool outcome measures,” said gastroenterologist Ali Rezaie, MD, study co-author and Medical Director of Cedars-Sinai’s GI Motility Program in the news release.

The researchers plan to seek FDA review of the mobile app.

Opportunity for Clinical Laboratories

Anatomic pathologists and clinical laboratory leaders may want to reach out to referring gastroenterologists to find out how they can help to better serve gastro patients. As the Cedars-Sinai study suggests, AI smartphone apps can perform BSS assessments as good as or better than humans and may be useful tools in the pursuit of precision medicine treatments for patient suffering from painful gastrointestinal disorders.

—Donna Marie Pocius

Related Information:

Smartphone Application Using Artificial Intelligence is Superior to Subject Self-Reporting When Assessing Stool Form

Study: App More Accurate than Patient Evaluation of Stool Samples

Industry Guidance Report: Irritable Bowel Syndrome—Clinical Evaluation of Drugs

Artificial Intelligence-based Smartphone App for Characterizing Stool Form

AI Mobile App Improves on “Subjective” Patient-Reported Stool Assessment in IBS

Artificial Intelligence App Outperforms Patient-Reported Stool Assessments

Does Giving a Patient a $75 Gift Card to Send in a Clinical Laboratory Test Specimen Violate Federal Fraud Laws? A Whistleblower Lawsuit Argues ‘Yes!’

Novel scheme by medical laboratory company to induce patients to collect and return their own specimen for testing is central to a federal whistleblower case alleging violations of the Anti-Kickback Statute

Handing out gift cards only to patients who return a specimen to a clinical laboratory company for colorectal cancer screening is a unique approach that is now at the center of a federal qui tamcase filed by a retired Indiana pathologist.

The defendant in this whistleblower lawsuit is Exact Sciences Laboratories and its parent company Exact Sciences Corporation (NASDAQ:EXAS). Last month, a federal judge ruled the court case will proceed following attempts by the defendant’s attorneys to have the case dismissed.

The plaintiffs (United States of America ex rel. Niles Rosen, MD) allege Exact Sciences Laboratories violated the Federal Anti-Kickback Statute (AKS) and False Claims Act by offering $75 gift cards to induce patients to return self-collected fecal samples for the lab’s Cologuard at-home colon cancer screening kit through its Patient Compliance Program. 

Exact Sciences refuted the allegations and moved to have the case dismissed claiming it “had a good faith belief that its [Patient Compliance Program] complied with the law and thus lacked the requisite intent for a violation of the AKS,” according to court documents. The court denied Exact Sciences’ motion to dismiss.

Brian Boynton, JD

“We are grateful for the hard work and courage of those private citizens who bring evidence of fraud to the Department’s attention, often putting at risk their careers and reputations,” said Brian Boynton, JD (above), Principal Deputy Assistant Attorney General and head of the federal Department of Justice (DOJ) Civil Division in a February 7, 2023, DOJ statement. “Our ability to protect citizens and taxpayer funds continues to benefit greatly from their actions.” Clinical laboratory managers will want to follow this and other qui tam cases claiming violation of anti-kickback laws. (Photo copyright: Department of Justice.)

.

Was Exact Sciences’ Patient Compliance Program a Kickback?

Cologuard is a non-invasive testing kit utilized by people to screen for colorectal cancer in the privacy of their own homes. It is intended for those over the age of 45 who are at low or average risk for the disease. Exact Sciences regularly runs television advertisements urging individuals to be screened for colorectal cancer using the Cologuard test.

Following a physician’s order, and after receiving the testing kit in the mail, individuals collect a stool sample using the specimen container in the kit and return the sample to Exact Sciences Laboratories (ESL) for analysis. The test works by looking for certain DNA markers and blood in the stool sample. 

According to Report on Medicare Compliance from the Health Care Compliance Association (HCCA), in 2017, a gastroenterologist ordered the Cologuard kit for Rosen, the whistleblower, but Rosen chose not to return a stool sample to ESL. A few months later, ESL sent Rosen a letter offering him a $75 Visa gift card if he performed the at-home specimen collection and then returned it to ESL by March 22, 2018. Persuaded by the offer, Rosen collected a sample, returned it to ESL, and received the gift card. 

As part of its Patient Compliance Program, ESL analyzed Rosen’s sample and received $499 from Medicare for performing the test. The complaint filed against Exact Sciences states Medicare paid Exact Sciences more than $160 million for a total of 334,424 Cologuard tests in 2018 while the company offered “unlawful cash equivalent inducements directly to Medicare beneficiaries,” COSMOS reported.

“It was a straight-up kickback,” Rosen’s attorney Marlan Wilbanks, JD, Senior Partner at Atlanta law firm Wilbanks and Gouinlock, told COSMOS. “You can’t offer cash or cash equivalents to anyone to induce them to use a government service.”

DOJ Elects to Not Intervene in Lawsuit

In February 2020, Exact Sciences received a civil investigation demand by the US Department of Justice (DOJ) regarding the gift card incentive. The DOJ later filed a notice that it had elected to decline intervention in the lawsuit. This action did not prevent Rosen from continuing with the lawsuit. Accordingly, in April of 2021, he filed an amended complaint against Exact Sciences alleging violations of the Federal Anti-Kickback Statute and False Claims Act. 

Rosen is seeking a monetary award for himself, and on behalf of the US government, for civil penalties, treble damages, fees, and costs. 

According to Report on Medicare Compliance, Exact Sciences “refuted the allegations and asserted, among other things, that the arrangement qualifies for the preventive care safe harbor to the anti-kickback statute (AKS) and that the complaint fails for many reasons.”

Exact Sciences also noted in its motion to dismiss that “encouraging a patient to have a medical service that was already ordered by a provider isn’t an inducement under the AKS.”  

At this time, the case remains unresolved and continues in federal court.

DOJ Recovers Billions of Taxpayer Dollars from AKS Violations

A qui tam lawsuit or action is a method available for individuals to help the government circumvent fraud and recover money for taxpayers. Types of fraud included in these cases often pertain to Medicare and Medicaid services, defense contractor fraud, and procurement fraud.

According to the DOJ, over $1.9 billion was recovered as a result of qui tam lawsuits pursued by either the government or whistleblowers during fiscal year 2022. The number of these types of lawsuits has increased dramatically over the years with a total of 652 qui tam cases filed in 2022 alone.

Thus, clinical laboratory professionals should be aware that this type of novel scheme to generate more patients could possibly lead to legal issues. Dark Daily would like to credit Laboratory Economics for calling attention to this fascinating case of alleged illegal inducement involving a medical laboratory company. 

—JP Schlingman

Related Information:

Legal Corner: Niles Rosen v Exact Sciences

FCA Lawsuit Over Patient Gift Cards Survives Motion to Dismiss

United States of America ex rel. Niles Rosen, MD, v. Plaintiff, Exact Sciences Corporation and Exact Sciences Laboratories, LLC [motion to dismiss]

United States of America ex rel. Niles Rosen, MD, v. Plaintiff, Exact Sciences Corporation and Exact Sciences Laboratories, LLC [entry of an order staying discovery]

Report on Medicare Compliance

False Claims Act Settlements and Judgments Exceed $2 Billion in Fiscal Year 2022

IRS Expands Preventive Care Benefits Under High Deductible Health Plans

What Is Colorectal Cancer?

HHS: Fraud and Abuse Laws

Medicare and State Health Care Programs: Fraud and Abuse; Revisions to the Safe Harbors Under the Anti-Kickback Statute and Civil Monetary Penalty Rules Regarding Beneficiary Inducements

What It Means to Be a Clinical Laboratory Whistleblower Outlined in Newly Released ‘Tell-All’ Book by Lab Executive Chris Riedel

Biodiagnostic Laboratory Services Leaders Sentenced to Prison in $100-Million Lab Test Kickback Scheme That Also Led to Convictions of 38 Physicians

;