Damages sought include reimbursement of costs for voided clinical laboratory tests as well as an injunction ‘to prevent Theranos and Walgreens from engaging in further misrepresentations and unfair conduct’
Theranos founder and ex-CEO Elizabeth Holmes and ex-COO/President Ramesh “Sunny” Balwani have been found guilty on multiple counts of fraud and now await sentencing in federal criminal court. But the pair’s legal entanglements are not yet over. A class-action lawsuit filed on behalf of patients who purchased Theranos clinical laboratory testing services between November 2013 and June 2016 is weaving its way through the legal system.
“The lawsuit claims, among other things, that these blood testing services were not capable of producing reliable results, that the defendants concealed the blood testing services’ unreliability, that Walgreens knew that the blood testing services were unreliable and not market-ready, that the defendants conspired to commit fraud on consumers, that Theranos’ ‘tiny’ blood testing technology (blood drawn with finger pricks) was still in development, and that the customers who were subject to ‘tiny’ Theranos blood draws by Walgreens employees gave their consent to those blood draws under false pretenses,” the news release notes.
If the defendants are found liable, plaintiffs, who could number in the hundreds of thousands, could receive money or benefits. The Mercury News reported that Arizona’s attorney general had identified 175,000 consumers who purchased tests from Theranos/Walgreens at an average cost of $60 per test.
A class-action lawsuit filed on behalf of patients who purchased Theranos blood testing services at a Walgreens or Theranos location includes as defendants company founder/CEO Elizabeth Holmes (left), ex-Theranos President/COO Ramesh “Sunny” Balwani (right), as well as Theranos, Inc., Walgreens Boots Alliance, and Walgreens Arizona Drug Company. The trial is expected to begin in 2023. It will no doubt draw the attention of clinical laboratory directors and pathologists who followed the Holmes/Balwani fraud cases very closely. (Photo copyright: The Wall Street Journal.)
Federal Court Upholds Class Certification
The Top Class Actions news site notes that in 2021 Walgreens and Balwani unsuccessfully appealed to get the class-action lawsuit against them decertified.
Class: All purchasers of Theranos testing services, including consumers who paid out-of-pocket, through health insurance, or through any other collateral source between November 2013 and June 2016.
Arizona Subclass: All purchasers of Theranos testing services in Arizona between November 2013 and June 2016.
California Subclass: All purchasers of Theranos testing services in California, between September 2013 and June 2016.
Walgreens Edison Subclass: All purchasers of Theranos testing services who were subjected to “tiny” blood draws (finger pricks) by a Walgreens employee between November 2013 and March 2015.
“The lawsuit seeks damages, including reimbursement of the amounts paid by consumers for the voided tests, as well as an injunction to prevent Theranos and Walgreens from engaging in further misrepresentations and unfair conduct,” the Lieff Cabraser website states.
In its notice to potential members of the class action, JND Legal Administration states the “defendants contend that they did not do anything wrong, and they are not liable for any harm alleged by the plaintiffs.” In addition, the notice points out, “There is no money available now, and there is no guarantee that there will be.”
Where could money come from to pay plaintiffs? Likely not from Theranos or Holmes. Though Theranos reached a peak valuation of $9 billion in 2014, it owed at least $60 million to unsecured creditors when the company was dissolved in 2018, USA Today reported. After turning over its assets and intellectual property, Theranos anticipated having only $5 million to distribute to creditors.
And Forbes reported that Holmes’ net worth dropped from $3.6 billion to $0 in 2016.
However, Balwani, who netted nearly $40 million in 2000 when he sold shares of software company Commerce One, has an estimated net worth of $90 million, according to Wealthypipo. As of 2022, Walgreens Boots Alliance is ranked number 18 on the Fortune 500 rankings of the largest United States corporations by total revenue.
The Arizona Theranos Litigation website points out that the suit does not seek damages or other relief for personal injury, emotional distress, retesting costs, or medical care costs. Any Theranos/Walgreens customer intent on pursuing such legal action would need to exclude themselves from the class action case and proceed with separate litigation. The deadline to opt out of the class-action lawsuit is September 12, 2022.
And so, though clinical laboratory directors and pathologists may have thought the saga of Theranos ended following Balwani’s conviction, it apparently continues. It is anyone’s guess what is to come.
Findings could lead to new clinical laboratory involvement in diagnostics targeted at overweight patients
Does the SARS-CoV-2 coronavirus make us fat so it can better take over our bodies? It sounds like the plot for a science fiction horror movie! But a team of scientists in the Pacific Northwest say that is exactly what the virus does, and their findings could lead to clinical laboratories playing a role in evaluating how the virus highjacks fat cells to aid in its invasion of humans.
They found that certain types of lipids support replication of the COVID-19 virus. Their study illustrates how lipids may play a more important role in the human body than scientists previously understood.
“This is exciting work, but it’s the start of a very long journey,” said Fikadu Tafesse, PhD (left), Assistant Professor of Molecular Microbiology and Immunology, OHSU School of Medicine and corresponding author of the study in an OHSU press release. “We have an interesting observation, but we have a lot more to learn about the mechanisms of this disease.” Clinical laboratories may eventually be part of a new diagnostic process for overweight COVID-19 patients. (Photo copyright: Oregon Health and Science University.)
Does Obesity Promote COVID-19 Infection?
The OHSU and PNNL scientists performed their research by examining the effect of SARS-CoV-2 on more than 400 lipids in two different cell lines. They observed that individuals with a high body mass index (BMI) appear to be more sensitive to the COVID-19 virus.
The researchers discovered there is a tremendous shift in lipid levels in those cell lines when the virus was present, with some fats increasing by a massive 64 times! Nearly 80% of the fats in one cell line were changed by the virus and more than half of the fats were altered in the other cell line.
The lipids that were most affected by the COVID-19 virus were triglycerides which are critical to human health. Triglycerides are basically tiny bundles of fat that allow the body to store energy and maintain healthy cell membranes. When a body needs energy, these fat parcels are broken up into useful, raw materials to provide the required energy.
“Lipids are an important part of every cell. They literally hold us together by keeping our cells intact, and they’re a major source of energy storage for our bodies,” said Jennifer Kyle, PhD, in the OHSU press release. Kyle is a research scientist at PNNL who specializes in all stages of lipidomic research. “They are an attractive target for a virus,” she noted.
Stopping SARS-CoV-2 Replication
The scientists discovered that SARS-CoV-2 alters our fat-processing system by boosting the number of triglycerides in our cells and changing the body’s ability to utilize stored fat as fuel. The team also analyzed the effects of lipid levels in 24 of the virus’ 29 proteins. They identified several proteins that had a strong influence on triglyceride levels.
The team then searched databases and identified several compounds that interfered with the body’s fat-processing system by cutting off the flow of fatty fuel. They found that several of these compounds were successful at stopping the SARS-CoV-2 virus from replicating.
A synthetic organic compound known as GSK2194069, which selectively and potently inhibits fatty acid synthase (FAS), and a weight-loss medication called Orlistat, were both able to stop viral replication in the lab.
Although the scientists believe their work is an important step in understanding the SARS-CoV-2 coronavirus, they also note that their results occurred in cell culture (in vitro) and not in people (in vivo). Therefore, more research is needed to determine if the compounds will work in the same manner in human trials.
“As the virus replicates, it needs a continuous supply of energy. More triglycerides could provide that energy in the form of fatty acids. But we don’t know exactly how the virus uses these lipids to its advantage,” Tafesse said in the press release.
“Our findings fill an important gap in our understanding of host dependency factors of coronavirus infection. … In light of the evolving nature of SARS-CoV-2, it is critical that we understand the basic biology of its life cycle in order to illuminate additional avenues for protection and therapy against this global pandemic pathogen, which spreads quickly and mutates with ease,” the OHSU/PNNL scientists wrote in Nature Communications.
More research is needed to validate the findings of this study and to better understand the dynamic between lipids and SARS-CoV-2 infection. However, it is reasonable to assume that, in the future, some COVID-19 patients may require a clinical laboratory work-up to determine how the coronavirus may be hijacking their fat cells to exacerbate the illness.
Study may lead to clinical laboratory involvement in repurposing hormonal treatments to prevent cancer treatment resistance
Diagnosing prostate cancer and identifying which patients have aggressive forms of the cancer has been a challenge. But new insights into how aggressive cancers become resistant to drug therapies—and the discovery of a way to repurpose hormonal treatment to block or slow aggressive prostate cancer—may lead to clinical laboratories monitoring the progress of patients’ being treated with this new type of therapy.
Instead of treating tumors directly, the new approach developed by an international team of scientists would target proteins that typically regulate a cell’s circadian rhythm, but which have been found to be helping cancerous cells become resistant to treatment therapies.
“Our discovery has shown us that we will need to start thinking outside the box when it comes to new drugs to treat prostate cancer and test medicines that affect the circadian clock proteins in order to increase sensitivity to hormonal therapy in prostate cancer,” said Wilbert Zwart, PhD (above), Lead Researcher and Senior Group Leader Oncogenomics Division at NKI, in a news release. This discovery could give clinical laboratories and anatomic pathology groups an effective way to monitor new forms of cancer hormonal treatments. (Photo copyright: Netherlands Cancer Institute.)
Breakthrough Could Mean New Treatment for Aggressive Cancer
The aim of prostate cancer hormone therapy (AKA, androgen suppression therapy) is to halt signals by male hormones (usually testosterone) that stimulate tumor growth. This approach works until cancer becomes resistant to the drug therapy.
So, the challenge in metastatic prostate cancer treatment is finding a drug that prevents resistance to hormonal therapy.
In addressing the challenge, the researchers made a surprising discovery about what exactly dilutes anti-hormonal therapy’s effectiveness. Proteins that regulate the body’s sleep-wake cycle, or circadian rhythm, were found to also “dampen the effects of the anti-hormonal therapy,” according to the study.
“Prostate cancer cells no longer have a circadian rhythm. But these ‘circadian clock’ proteins acquire an entirely new function in the tumor cells upon hormonal therapy: they keep these cancer cells alive, despite treatment. This has never been seen before,” said Wilbert Zwart, PhD, Lead Researcher and Senior Group Leader Oncogenomics Division, NKI, in the news release.
The research suggests treatment for metastatic prostate cancer requires drugs “which influence the day-and-night rhythm of a cell,” and not necessarily medications that fight cancer, Technology Networks noted.
“Fortunately, there are already several therapies that affect circadian proteins, and those can be combined with anti-hormonal therapies. This lead, which allows for a form of drug repurposing, could save a decade of research,” Zwart added.
Questioning Hormonal Therapy Resistance
In their paper, the Dutch researchers acknowledged that androgen receptor (AR)-targeting agents are effective in prostate disease stages. What they wanted to learn was how tumor cells bypass AR suppression.
For the study, the scientists enrolled 56 patients with high-risk prostate cancer in a neoadjuvant clinical trial. Unlike adjuvant therapy, which works to lower the risk that cancer will return following treatment, the purpose of neoadjuvant therapy is to reduce the size of a tumor prior to surgery or radiation therapy, according to the National Institute of Health (NIH) National Cancer Institute (NCI).
The researchers performed DNA analysis of tissue samples from patients who had three months of anti-hormonal therapy before surgery. They observed that “genes keeping tumor cells alive were controlled by a protein that normally regulates the circadian (body) clock,” said Simon Linder, PhD student and researcher at NKI, in the news release.
“We performed integrative multi-omics analyses on tissues isolated before and after three months of AR-targeting enzalutamide monotherapy from patients with high-risk prostate cancer enrolled in a neoadjuvant clinical trial. Transcriptomic analyses demonstrated that AR inhibition drove tumors toward a neuroendocrine-like disease state,” the researchers wrote in Cancer Discovery.
“Understanding how prostate cancers adapt to AR-targeted interventions is critical for identifying novel drug targets to improve the clinical management of treatment-resistant disease. Our study revealed an enzalutamide-induced epigenomic plasticity toward pro-survival signaling and uncovered the circadian regulator ARNTL [Aryl hydrocarbon receptor nuclear translocator-like protein 1] as an acquired vulnerability after AR inhibition, presenting a novel lead for therapeutic development,” the scientists concluded.
More Research Planned
The scientists expressed intent to follow-up with Oncode to develop a drug therapy that would increase anti-hormonal therapy’s effectiveness in prostate cancer patients.
Given the molecular processes involved in the researchers’ discovery, there may be a supportive role for clinical laboratories and anatomic pathology groups in the future. But that can only happen after more studies and a US Food and Drug Administration (FDA) review of any potential new therapy to combat hormonal treatment resistance in prostate cancer patients.
By partnering with drug manufacturers to connect customers with clinical trials, the retail pharmacy chain believes this new venture will be the company’s “next growth engine.”
Walgreens is launching a business to connect customers with clinical drug trials, a venture that adds another offering to the retail pharmacy giants’ growing menu of healthcare services. This new venture might also mean additional test orders for clinical laboratories and pathology groups in areas that serve Walgreens customers.
Now, Walgreens is attempting to further redefine the patient experience by partnering with pharmaceutical companies to find participants for clinical trials, a business that could result in more Americans from underrepresented racial and ethnic populations enrolling in drug-development trials. With 9,021 retail pharmacies in all 50 states, it is well-positioned to know which of its customers would be candidates for different clinical trials.
“Walgreens’ trusted community presence across the nation, combined with our enterprise-wide data and health capabilities, enables us to pioneer a comprehensive solution that makes health options, including clinical trials, more accessible, convenient and equitable,” said Ramita Tandon, Walgreens’ Chief Clinical Trials Officer, in a press release.
Ramita Tandon, Walgreens’ Chief Clinical Trials Officer, believes Walgreens can play a role in solving the issues of diversity and declining enrollment in clinical trials. “Through the launch of our clinical trials services, we can provide another offering for patients with complex or chronic conditions in their care journey, while helping sponsors advance treatment options for the diverse communities we serve,” she said in a press release. (Photo copyright: Walgreens.)
Serving the Socially Vulnerable
In an interview with Fierce Healthcare, Tandon described the clinical trials business as Walgreens’ “next growth engine” of consumer-centric healthcare solutions.
According to the company press release, “Walgreens is addressing access barriers through a compliant, validated and secure decentralized clinical trial platform built on a rigorous compliance and regulatory framework to ensure patient privacy and security. This approach leverages owned and partner digital and physical assets, including select Health Corner and Village Medical at Walgreens locations, to directly engage patients at home, virtually or in-person.”
Walgreens notes that more than half of its roughly 9,000 U.S.-based stores are in “socially vulnerable areas.”
According to the Washington Examiner, a US Food and Drug Administration (FDA) study revealed that 75% of patients who participate in clinical trials are white, while just 11% are Hispanic and fewer than 10% are Asian or black. In addition, participation in clinical trials has been declining, with 80% of trials failing to attract enough participants on time.
Tandon maintains that making the process of participating in clinical trials easier is another key to increasing diversity and participation in clinical trials.
“During the clinical trial journey, we know it’s a burden for patients to visit sites. We also know that 78% of patient-consumers in the US live within five miles of a Walgreens,” she told PharmaVoice. “If a patient can complete much of the up-front clinical trial requirements at a local Walgreens, or conduct some of the visits digitally, it would make the whole clinical trial experience that much more positive and, maybe, encourage the patient to participate in new clinical trials going forward.”
Walgreens also plans to use its treasure-trove of customer data to find potential patients for its trials business.
“Understanding this detail of customer preference and segmentation can be quite useful particularly in clinical trials, for example, to create better protocols,” Tandon told PharmaVoice. “We are sitting on so much information, but we can, and need to, do a better job of using these insights in a real-world setting, which can be translated to pharma R/D or brand management organizations. We’re all about patient-centric drug development.”
FDA Seeks Diversity in Clinical Trails
Walgreens is in discussions with several drug manufacturers as it looks to launch this new venture.
“We are working very closely with them to understand their business needs and create the solution that’s going to be sort of bespoke to their specific trial needs,” Tandon told Fierce Healthcare. “Our goal is to move that needle and start to see a larger number of US patients participating and highly diverse participants that are coming into clinical trials.”
In April, an FDA press release announced new draft guidance aimed at “developing plans to enroll more participants from underrepresented racial and ethnic populations in the US into clinical trials.”
“Despite having a disproportionate burden for certain diseases, racial and ethnic minorities are frequently underrepresented in biomedical research,” the FDA stated. “Clinical trials provide a crucial base of evidence for evaluating whether a medical product is safe and effective; therefore, enrollment in clinical trials should reflect the diversity of the population that is ultimately going to use the treatment.”
Disintermediation of Retail Pharmacies
“Walgreens has a significant opportunity to create an interconnected healthcare ecosystem where we can use the physical assets of Walgreens and connect with patients and consumers at a local level to better support healthcare and healthcare equality,” Tandon said in PharmaVoice.
This is the latest example of a billion-dollar retail pharmacy chain diversifying away from simply filling prescriptions. Two types of competitors are driving the disintermediation of retail pharmacies because they end up directing patients away from the pharmacy:
Amazon.com acquired PillPack and now sends, via mail, prescriptions to patients’ homes.
Pharmacy benefit management (PBM) companies with a business model that encourage patients to get 90 days of prescriptions at once, mailed to their home.
In both cases, retail pharmacies lose access to patients. This is what is motivating several national pharmacy chains to offer primary care within their retail pharmacies (where following an office visit with a general practitioner, the patient simply crosses the store to the pharmacy to fill his/her prescription), as well as the clinical trial matching business.
As retail pharmacy chains become an increasingly disruptive force in healthcare, clinical laboratory managers and pathologists should be preparing new strategies to meet the testing needs of a changing primary care delivery model, which likely will include lab testing being offered in nontraditional medical locations.
Understanding why some mutations impair normal bodily functions and contribute to cancer may lead to new clinical laboratory diagnostics
New insight into the human genome may help explain the ageing process and provide clues to improving human longevity that can be useful to clinical laboratories and researchers developing cancer diagnostics. A recent study conducted at the Wellcome Sanger Institute in Cambridge, United Kingdom, suggests that the speed of DNA errors in genetic mutations may play a critical role in the lifespan and survival of a species.
To perform their research, the scientists analyzed genomes from the intestines of 16 mammalian species looking for genetic changes. Known as somatic mutations, these mutations are a natural process that occur in all cells during the life of an organism and are typically harmless. However, some somatic mutations can impair the normal function of a cell and even play a role in causing cancer.
“Aging is a complex process, the result of multiple forms of molecular damage in our cells and tissues. Somatic mutations have been speculated to contribute to ageing since the 1950s, but studying them had remained difficult,” said Inigo Martincorena, PhD (above), Group Leader, Sanger Institute and one of the authors of the study. Greater understanding of the role DNA mutations play in cancer could lead to new clinical laboratory tools and diagnostics. (Photo copyright: Wellcome Sanger Institute.)
Lifespans versus Body Mass
The mammalian subjects examined in the study incorporated a wide range of lifespans and body masses and included humans, giraffes, tigers, mice, and the highly cancer-resistant naked mole-rat. The average number of somatic mutations at the end of a lifespan was around 3,200 for all the species studied, despite vast differences in age and body mass. It appears that species with longer lifespans can slow down their rate of genetic mutations.
The average lifespan of the humans used for the study was 83.6 years and they had a somatic mutation rate of 47 per year. Mice examined for the research endured 796 of the mutations annually and only lived for 3.7 years.
Species with similar amounts of the mutations had comparable lifespans. For example, the small, naked mole-rats analyzed experienced 93 mutations per year and lived to be 25 years of age. On the other hand, much larger giraffes encountered 99 mutations each year and had a lifespan of 24 years.
“With the recent advances in DNA sequencing technologies, we can finally investigate the roles that somatic mutations play in ageing and in multiple diseases,” said Inigo Martincorena, PhD, Group Leader, Sanger Institute, one of the authors of the study in a press release. He added, “That this diverse range of mammals end their lives with a similar number of mutations in their cells is an exciting and intriguing discovery.”
The scientists analyzed the patterns of the mutations and found that the somatic mutations accumulated linearly over time. They also discovered that the mutations were caused by similar mechanisms and the number acquired were relatively similar across all the species, despite a difference in diet and life histories. For example, a giraffe is typically 40,000 times larger than a mouse, but both species accumulate a similar number of somatic mutations during their lifetimes.
“The fact that differences in somatic mutation rate seem to be explained by differences in lifespan, rather than body size, suggests that although adjusting the mutation rate sounds like an elegant way of controlling the incidence of cancer across species, evolution has not actually chosen this path,” said Adrian Baez-Ortega, PhD, postdoctoral researcher at the Sanger Institute and one of the paper’s authors, in the press release.
“It is quite possible that every time a species evolves a larger size than its ancestors—as in giraffes, elephants, and whales—evolution might come up with a different solution to this problem. We will need to study these species in greater detail to find out,” he speculated.
Why Some Species Live Longer than Others
The researchers also found that the rate of somatic mutations decreased as the lifespan of each species increased which suggests the mutations have a likely role in ageing. It appears that humans and animals perish after accumulating a similar number of these genetic mutations which implies that the speed of the mutations is vital in ascertaining lifespan and could explain why some species live substantially longer than others.
“To find a similar pattern of genetic changes in animals as different from one another as a mouse and a tiger was surprising. But the most exciting aspect of the study has to be finding that lifespan is inversely proportional to the somatic mutation rate,” said Alex Cagan, PhD, Postdoctoral Fellow at the Sanger Institute and one of the authors of the study in the press release.
“This suggests that somatic mutations may play a role in ageing, although alternative explanations may be possible. Over the next few years, it will be fascinating to extend these studies into even more diverse species, such as insects or plants,” he noted.
Benefit of Understanding Ageing and Death
The scientists believe this study may provide insight to understanding the ageing process and the inevitability and timing of death. They surmise that ageing is likely to be caused by the aggregation of multiple types of damage to the cells and tissues suffered throughout a lifetime, including somatic mutations.
Some companies that offer genetic tests claim their products can predict longevity, despite the lack of widely accepted evidence that such tests are accurate within an acceptable range. Further research is needed to confirm that the findings of the Wellcome Sanger Institute study are relevant to understand the ageing process.
If the results are validated, though, it is probable that new direct-to-consumer (DTC) genetic tests will be developed, which could be a new revenue source for clinical laboratories.
The federal agency shipped tests to five commercial clinical laboratory companies, augmenting efforts by public health labs
Medical laboratories in the US are ramping up their efforts to respond to an outbreak of monkeypox that has been spreading around the globe. Microbiologists and clinical laboratory scientists will be interested to learn that this infectious agent—which is new to the US—may be establishing itself in the wild rodent population in this country. If proved to be true, it means Americans would be at risk of infection from contact with rodents as well as other people.
The Centers for Disease Control and Prevention (CDC) announced on May 18 that it had identified the infection in a Massachusetts resident who had recently traveled to Canada. As of August 3, the federal agency was reporting 6,617 confirmed cases in the US.
“Because there are no other non-variola orthopoxviruses circulating in the US, a positive test result is presumed to be monkeypox,” states the APHL press release.
Commercial Labs Get Involved
Seeking to bolster testing capacity, the federal Department of Health and Human Services (HHS) announced on June 22 that the CDC had begun shipping OrthopoxvirusPCR tests to five commercial lab companies. They include:
“By dramatically expanding the number of testing locations throughout the country, we are making it possible for anyone who needs to be tested to do so,” said HHS Secretary Xavier Becerra in an HHS press release.
Labcorp was first out of the gate, announcing on July 6 that it was offering the CDC-developed test for its customers, as well as accepting overflow from public labs. “We will initially perform all monkeypox testing in our main North Carolina lab and have the capacity to expand to other locations nationwide should the need arise,” said Labcorp chief medical officer and president Brian Caveney, MD, in a press release.
Mayo Clinic Laboratories followed suit on July 11, announcing that the clinic’s Department of Laboratory Medicine and Pathology would perform the testing at its main facility in Rochester, Minnesota.
“Patients can access testing through Mayo Clinic healthcare professionals and will soon be able to access testing through healthcare professionals who use Mayo Clinic Laboratories as their reference laboratory,” Mayo stated in a press release.
Then, Quest Diagnostics announced on July 13 that it was testing for the virus with an internally developed PCR test, with plans to offer the CDC test in the first half of August.
The lab-developed test “was validated under CLIA federal regulations and is now performed at the company’s advanced laboratory in San Juan Capistrano, Calif.,” Quest stated in a press release.
Public Health Emergency?
Meanwhile, the CDC announced on June 28 that it had established an Emergency Operations Center to respond to the outbreak. A few weeks later, on July 23, World Health Organization (WHO) Secretary-General Tedros Adhanom Ghebreyesus, PhD, declared that the outbreak represented “a public health emergency of international concern.”
He noted that international health regulations required him to consider five elements to make such a declaration.
“WHO’s assessment is that the risk of monkeypox is moderate globally and in all regions, except in the European region where we assess the risk as high,” he said in a WHO news release. “There is also a clear risk of further international spread, although the risk of interference with international traffic remains low for the moment. So, in short, we have an outbreak that has spread around the world rapidly, through new modes of transmission, about which we understand too little, and which meets the criteria in the International Health Regulations.”
Still, public health authorities have made it clear that this is not a repeat of the COVID-19 outbreak.
“Monkeypox virus is a completely different virus than the viruses that cause COVID-19 or measles,” the CDC stated in a June 9 advisory. “It is not known to linger in the air and is not transmitted during short periods of shared airspace. Monkeypox spreads through direct contact with body fluids or sores on the body of someone who has monkeypox, or with direct contact with materials that have touched body fluids or sores, such as clothing or linens. It may also spread through respiratory secretions when people have close, face-to-face contact.”
The New York Times reported that some experts disagreed with the CDC’s assessment that the virus “is not known to linger in the air.” But Professor of Environmental Health Donald Milton, MD, DrPH, of the University of Maryland, told The Times it is still “not nearly as contagious as the coronavirus.”
The Massachusetts resident who tested positive in May was not the first known case of monkeypox in the US, however, previous cases involved travel from countries where the disease is more common. Two cases in 2021—one in Texas and one in Maryland—involved US residents who had recently returned from Nigeria, the CDC reported. And a 2003 outbreak in the Midwest was linked to rodents and other small mammals imported to Texas from Ghana in West Africa.
“Labcorp and Quest don’t dispute that in many cases, their phlebotomists are not taking blood from possible monkeypox patients,” according to CNN. “What remains unclear, after company statements and follow-ups from CNN, is whether the phlebotomists are refusing on their own to take blood or if it is the company policy that prevents them. The two testing giants say they’re reviewing their safety policies and procedures for their employees.”
One symptom of monkeypox, the CDC states, is a rash resembling pimples or blisters. Clinicians are advised that two swabs should be collected from each skin lesion, though “procedures and materials used for collecting specimens may vary depending on the phase of the rash.”
“Effective communication and precautionary measures between specimen collection teams and laboratory staff are essential to maximizing safety when manipulating specimens suspected to contain monkeypox virus,” the CDC notes. “This is especially relevant in hospital settings, where laboratories routinely process specimens from patients with a variety of infectious and/or noninfectious conditions.”
Perhaps the negative reaction to the CDC’s initial response to the COVID-19 outbreak in the US is driving the federal agency’s swift response to this new viral threat. Regardless, clinical laboratories and pathology groups will play a key role in the government’s plan to combat monkeypox in America.