News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Kalorama Report Analyzes Global EMR/EHR Market as Tech Giants Apple, Google, and Microsoft Prepare to Launch Their Own Offerings. Will This Alter Current Conditions for Clinical Laboratories and Pathologists?

While approaches differ between the three companies, heavy investment in EMR/EHR and other HIT solutions could signal significant changes ahead for a market currently dominated by only a few major developers

If healthcare big data is truly a disruptive force in healthcare’s transformation, then a big battle looms for control of that data. Some experts say that the companies now dominating the electronic health record (EHR) market will soon face tough competition from the world’s biggest tech companies.

Until recently, most clinical laboratories, anatomic pathology groups, hospitals, and other healthcare providers have depended on EHR systems from just a handful of health information technology (HIT) developers. But tech giants Google, Apple, and Microsoft have been filing hundreds of HIT related patents since 2013 and appear poised to compete on a large scale for a chunk of the EMR/EHR/HIT market, according to coverage in EHR Intelligence of Kalorama Information’sEMR 2018: The Market for Electronic Medical Records” report.

How this will impact medical laboratories and pathology practices remains to be seen. Labs are sure to be influenced by coming events, since clinical laboratory test data represents the largest proportion of an individual patient’s permanent medical record. It’s important to note, though, that while most EHR/HIT developers have been motivated by federal incentives, Google (NASDAQ:GOOG), Apple (NASDAQ:AAPL), and Microsoft (NASDAQ:MSFT) are motivated by consumer demand, which increasingly dictates the direction of health technology development.

Thus, they may be better positioned to compete moving forward, as patients, physicians, and hospitals turn to precision medicine and value-based care for improved outcomes and increased revenues.

“The EMR efforts have moved hospitals from paper to digital records,” Bruce Carlson (above), Publisher of Kalorama Information, told HIT Infrastructure. “The next step is for tech giants to glean the data and improve upon that infrastructure. We’ll be talking about EHR in different ways in the next ten years.” (Photo copyright: Twitter.)

EMR/EHR Market Poised for Disruption

According EHR Intelligence, as of 2017, 97% of all US non-federal acute care hospitals and 84% of US hospitals had adopted an EHR system. Of these hospitals, more than half (50.5%) use products from just two developers—Cerner or Epic. That’s according to Health Data Management’s coverage of the KLAS report “US Hospital EMR Market Share 2017.”

However, recent interest in HIT and EHR systems by major Silicon Valley tech companies could lead to potential disruptions in the current state of the market. According to The New York Times, in the first 11 months of 2017, 10 of the largest US technology companies were involved in healthcare equity deals worth $2.7-billion. This marks a drastic increase over the 2012 figure of $277-million.

Though each company is approaching the market differently, Google, Microsoft, and Apple are all working on projects that could influence how both consumers and healthcare professionals interact with and utilize medical record data.

Of the three, Apple is the most consumer-centric with their Apple Health personal health record (PHR) integration into Apple iOS for iPhones and iPads. Microsoft, however, is working on developing analytics tools and storage solutions aimed at healthcare providers in general. And Google, through its parent company Alphabet, is focusing on data processing and storage.

Amazon also is working on its own HIT project which it calls 1492. While details are scant, HIT Infrastructure reports that the project is focused on interoperability among disparate EHR systems to improve sharing of protected health information (PHI) between providers, patients, and other healthcare providers, such as clinical labs and pathology groups. HIT Infrastructure also reported on rumors of Amazon branching into telemedicine using their Amazon Echo and Alexa platforms.

Security Concerns and Opportunities for Clinical Laboratories

According to Computerworld’s coverage of IDC research, by 2020, 25% of patients are expected to be taking part in ‘bring your own data” healthcare scenarios. Tech-savvy medical laboratories could find opportunities to interact directly with patients and encourage follow-through on test orders or follow-up on routine testing.

However, shifting protected health information to devices carried by consumers is not without risks.

“How do I know the data won’t make its way to some cloud somewhere to be shared, sold, etc.” Jack Gold, Principal Analyst with J. Gold Associates, told Computerworld. “And if I rely on an app to tell me what to do—say, take my meds—and it somehow gets hacked, can it make me sick, or worse?”

These are important questions and developments, which Dark Daily has covered in other recent e-briefings. (See, “Apple Updates Its Mobile Health Apps, While Microsoft Shifts Its Focus to Artificial Intelligence. Both Will Transform Healthcare, But Which Will Impact Clinical Laboratories the Most?” July 25, 2018.)

Nevertheless, with tech giants already developing products for the consumer market and healthcare provider industry, it’s a given consumers will soon gain greater access to their own healthcare information. Whether patients will ultimately embrace it, how they will use it, and how developers will interact with the data, is still undefined. But it’s coming and clinical laboratories should be prepared.

—Jon Stone

Related Information:

Apple to Launch Health Records App with HL7’s FHIR Specifications at 12 Hospitals

How Google, Microsoft, Apple Are Impacting EHR Use in Healthcare

Microsoft, Apple, Google Secure HIT Infrastructure Patents

How Big Tech Is Going after Your Health Care

Amazon Secret Healthcare IT Tech Team Focuses on EHRs, Alexa

Apple’s Health Record API Released to Third-Party Developers; Is It Safe?

Apple, Cerner and Microsoft Are Interested in Buying AthenaHealth: Here’s Why This CEO Says They Won’t

Apple Says iOS Health Records Has over 75 Backers, Uses Open Standards

Report: Health Systems Share Apple Health Records Feedback

Apple Is Officially in the EHR Business. Now What?

Why Apple’s Move on Medical Records Marks a Tectonic Shift

Slideshow Where the Top 8 EMRs Are Deployed

Apple Updates Its Mobile Health Apps, While Microsoft Shifts Its Focus to Artificial Intelligence. Both Will Transform Healthcare, but Which Will Impact Clinical Laboratories the Most?

Apple’s Update of Its Mobile Health App Consolidates Data from Multiple EHRs and Makes It Easier to Push Clinical Laboratory Data to Patients

PwC Predicts Forces Shaping Healthcare in 2018; Some Could Impact Clinical Laboratories and Anatomic Pathology Groups

PwC’s list of 12 factors that will shape the healthcare landscape in 2018 calls attention to many new innovations Dark Daily has reported on that will impact how medical laboratories perform their tests

PwC’s Health Research Institute (HRI) issued its annual report, detailing the 12 factors expected to impact the healthcare industry the most in 2018. Dark Daily culled items from the list that will most likely impact clinical laboratories and anatomic pathology groups. They include:

How clinical laboratory leaders respond to these items could, in part, be determined by new technologies.

AI Is Everywhere, Including in the Medical Laboratory

Artificial intelligence is becoming highly popular in the healthcare industry. According to an article in Healthcare IT News, business executives who were polled want to “automate tasks such as routine paperwork (82%), scheduling (79%), timesheet entry (78%), and accounting (69%) with AI tools.” However, only about 20% of the executives surveyed have the technology in place to use AI effectively. The majority—about 75%—plan to invest in AI over the next three years—whether they are ready or not.

One such example of how AI could impact clinical laboratories was demonstrated by a recent advancement in microscope imaging. Researchers at the University of Waterloo (UW) developed a new spectral light fusion microscope that captures images in full color and is far less expensive than microscopes currently on the market.

“In medicine, we know that pathology is the gold standard in helping to analyze and diagnose patients, but that standard is difficult to come by in areas that can’t afford it,” Alexander Wong, PhD, one of the UW researchers, told CLP.

“The newly developed microscope has no lens and uses artificial intelligence and mathematical models of light to develop 3D images at a large scale. To get the same effect using current technologies—using a machine that costs several hundred thousand dollars—a technician is required to ‘stitch together’ multiple images from traditional microscopes,” CLP noted.

Healthcare Intermediaries Could Become Involved with Clinical Laboratory Data

Pricing is one of the biggest concerns for patients and government entities. This is a particular concern for the pharmaceutical sector. PwC’s report notes that “stock values for five of the largest intermediaries in the pharmacy supply chain have slumped in the last two years as demands for lower costs and better outcomes have intensified.”

Thus, according to PwC, pressure may come to bear on intermediaries such as Pharmacy Benefit Managers (PBMs) and wholesalers, to “prove value and success in creating efficiencies or risk losing their place in the supply chain.”

Similar pressures to lower costs and improve efficiency are at work in the clinical laboratory industry as well. Dark Daily reported on one such cost-cutting measure that involves shifting healthcare payments toward digital assets using blockchains. The technology digitally links trusted payers and providers with patient data, including medical laboratory test results. (See, “Blockchain Technology Could Impact How Clinical Laboratories and Pathology Groups Exchange Lab Test Data,” September 29, 2017.)

PwC 2018 Annual Report

PwC’s latest report predicts 12 forces that will continue to impact healthcare, including clinical laboratories and anatomic pathology groups, in 2018. Click on the image of the cover above to access an online version of the report. (Photo copyright: PwC/Issuu.)

The Opioid Crisis Remains at the Forefront

Healthcare will continue to feel the impact of the opioid crisis, according to the PwC report. Medical laboratories will continue to be involved in the diagnosis and treatment of opioid addition, which has garnered the full attention of the federal government and has become a multi-million-dollar industry.

Security Remains a Concern

Cybersecurity will continue to impact every facet of healthcare in 2018. Healthcare IT News reported, “While 95% of provider executives believe their organization is protected against cybersecurity attacks, only 36% have access management policies and just 34% have a cybersecurity audit process.”

Patients are aware of the risks and are often skeptical of health information technology (HIT), Dark Daily reported in June of last year. Clinical laboratories must work together with providers and healthcare organizations to audit their security measures. Recognizing the importance of the topic, the National Independent Laboratory Association (NILA) has named cybersecurity for laboratory information systems (LIS) a focus area.

Patient Experience a Priority

Although there have been significant improvements in the area of administrative tasks, there is still an enormous demand for a better patient experience, including in clinical laboratories. Healthcare providers want patients to make changes for the better that ultimately improve outcomes and the patient experience is one path toward that goal.

“Provider reimbursements will be based in part on patient engagement efforts such as promoting self-management and coaching patients between visits,” PwC noted in its report, a fact that Dark Daily has continually reported on for years. (See, “Pathologists and Clinical Lab Executives Take Note: Medicare Has New Goals and Deadlines for Transitioning from Fee-For-Service Healthcare Models to Value-Based Reimbursement,” April 1, 2015.)

Demands for Price Transparency Increase

As they follow healthcare reform guidelines to increase quality while lowering costs, state governments will continue to ramp up pressure on healthcare providers and third parties in the area of pricing. Rather than simply requiring organizations to report on pricing, states are moving towards legislating price controls, as Dark Daily reported in February.

Social Factors Affect Healthcare Access

The transition to value-based care makes the fact that patients’ socioeconomic statuses matter when it comes to their health. “The most important part of getting good results is not the knowledge of the doctors, not the treatment, not the drug. It’s the logistics, the social support, the ability to arrange babysitting,” David Berg, MD, co-founder of Redirect Health told PwC.

One such transition that is helping patients gain access to healthcare involves microhospitals and their adoption of telemedicine technologies, which Dark Daily reported on in March.

“Right now, they seem to be popping up in large urban and suburban metro areas,” Priya Bathija, Vice President, Value Initiative American Hospital Association, told NPR. “We really think they have the potential to help in vulnerable communities that have a lack of access.”

Data Collection Challenges Pharma

The 21st Century Cures Act, along with the potential exploitation of Big Data, will make it possible for organizations to gain faster, less expensive approvals from the US Food and Drug Administration (FDA). As Dark Daily noted in April, the FDA “released guidelines on how the agency intends to regulate—or not regulate—digital health, clinical-decision-support (CDS), and patient-decision-support (PDS) software applications.

“Physician decision-support software utilizes medical laboratory test data as a significant part of a full dataset used to guide caregivers,” Dark Daily noted. “Thus, if the FDA makes it easier for developers to get regulatory clearance for these types of products, that could positively impact medical labs’ ability to service their client physicians.”

Healthcare Delivery During and Following Natural Disasters

PwC predicts the long-term physical results, financial limitations, and supply chain disruptions following natural disasters will continue to affect healthcare in 2018. The devastation can prevent many people from receiving adequate, timely healthcare.

However, new laboratory-on-a-chip (LOC) and other “lab-on-a-…” testing technologies, coupled with medical drone deliver services, can bring much need healthcare to remote, unreachable areas that lack electricity and other services. (See Dark Daily, “Lab-on-a-Fiber Technology Continues to Highlight Nano-Scale Clinical Laboratory Diagnostic Testing in Point-of-Care Environments,” April 2, 2018, and, “Johns Hopkins’ Test Drone Travels 161 Miles to Set Record for Delivery Distance of Clinical Laboratory Specimens,” November 15, 2017.)

PwC’s report is an important reminder of from where the clinical laboratory/anatomic pathology industry has come, and to where it is headed. Sharp industry leaders will pay attention to the predictions contained therein.

—Dava Stewart

Related Information:

Top Health Industry Issue of 2018

PwC Health Research Institute Top Health Industry Issues of 2018 Report: Issuu Slide Presentation

12 Defining Healthcare Issues of 2018

Is Laboratory Medicine Ready for Artificial Intelligence?

Artificial Intelligence Imaging Research Facilitates Disease Diagnosis

Blockchain Technology Could Impact How Clinical Laboratories and Pathology Groups Exchange Lab Test Data

Skepticism, Distrust of HIT by Healthcare Consumers Undermines Physician Adoption of Medical Reporting Technologies, But Is Opportunity for Pathology Groups, Clinical Laboratories

Pathologists and Clinical Lab Executives Take Note: Medicare Has New Goals and Deadlines for Transitioning from Fee-For-Service Healthcare Models to Value-Based Reimbursement

Researchers Point to Cost of Services, including Medical Laboratories, for Healthcare Spending Gap Between the US and Other Developed Countries

Telemedicine and Microhospitals Could Make Up for Reducing Numbers of Primary Care Physicians in US Urban and Metro Suburban Areas

New FDA Regulations of Clinical Decision-Support/Digital Health Applications and Medical Software Has Consequences for Medical Laboratories

Lab-on-a-Fiber Technology Continues to Highlight Nano-Scale Clinical Laboratory Diagnostic Testing in Point-of-Care Environments

Johns Hopkins’ Test Drone Travels 161 Miles to Set Record for Delivery Distance of Clinical Laboratory Specimens

New FDA Regulations of Clinical Decision-Support/Digital Health Applications and Medical Software Has Consequences for Medical Laboratories

Softened FDA regulation of both clinical-decision-support and patient-decision-support software applications could present opportunities for clinical laboratory developers of such tools

Late 2017, the Food and Drug Administration (FDA) released guidelines on how the agency intends to regulate—or not regulate—digital health, clinical-decision-support (CDS), and patient-decision-support (PDS) software applications. The increased/decreased oversight of the development of these physicians’ tools could have important implications for anatomic pathology groups and clinical laboratories.

Physician decision-support software utilizes medical laboratory test data as a significant part of a full dataset used to guide caregivers. Thus, if the FDA makes it easier for developers to get regulatory clearance for these types of products, that could positively impact medical labs’ ability to service their client physicians.

Additionally, clinical pathologists have unique training in diagnosing diseases and understanding the capabilities and limitations of medical laboratory tests in supporting how physicians diagnose disease and make treatment decisions. Thus, actions by the FDA to make it easier for developers of software algorithms that can incorporate clinical laboratory data and anatomic pathology images with the goal of improving diagnoses, decisions to treat, and monitoring of patients have the potential to bring great benefit to the nation’s medical laboratories.

FDA Clarifies Role in Regulating CDS/PDS Applications

The new guidelines clarified items specified in the 21st Century Cures Act, which was enacted by Congress in December of 2016. This Act authorized $6.3 billion in funding for the discovery, development, and delivery of advanced, state-of-the art medical cures.

“Today, we’re announcing three new guidances—two draft and one final—that address, in part, important provisions of the 21st Century Cures Act, that offer additional clarity about where the FDA sees its role in digital health, and importantly, where we don’t see a need for FDA involvement,” FDA commissioner Scott Gottlieb, MD, Commissioner of Food and Drugs, noted in a statement. “We’ve taken the instructions Congress gave us under the Cures Act and [we] are building on these provisions to make sure that we’re adopting the full spirit of the goals we were entrusted with by Congress.”

Helping Doctors’ Decision-Making

The first guideline concerns clinical decision support systems that are designed to help doctors make data-driven decisions about patient care. The new guidelines make it easier for software developers to get regulatory clearance, which, the FDA hopes, will spark innovation and makes regulation more efficient.

“CDS has many uses, including helping providers, and ultimately patients, identify the most appropriate treatment plan for their disease or condition,” Gottlieb said in the FDA’s statement. “For example, such software can include programs that compare patient-specific signs, symptoms, or results with available clinical guidelines to recommend diagnostic tests, investigations or therapy.

“This type of technology has the potential to enable providers and patients to fully leverage digital tools to improve decision making,” Gottlieb continued. “We want to encourage developers to create, adapt, and expand the functionalities of their software to aid providers in diagnosing and treating old and new medical maladies.”

Identifying Digital Health Applications That Receive/Don’t Receive FDA Oversight

The second guideline discusses and delineates which digital health applications are considered low risk and, thus, will not fall under FDA regulations.

Products that are not intended to be used for the diagnosis, cure, mitigation, prevention, or treatment of a condition will not be regulated by the FDA. These technologies are not considered medical devices and may include gadgets such as weight management and mindfulness tools. They can provide value to consumers and the healthcare industry while posing a low risk to patients.

“Similarly, the CDS draft guidance also proposes to not enforce regulatory requirements for lower-risk decision support software that’s intended to be used by patients or caregivers—known as patient-decision-support software (PDS)—when such software allows a patient or a caregiver to independently review the basis of the treatment recommendation,” Gottlieb noted in the statement.

 

Scott Gottlieb

Scott Gottlieb, MD (above), FDA Commissioner of Food and Drugs, noted in a statement, “We believe our proposals for regulating CDS and PDS not only fulfill the provisions of the Cures Act, but also strike the right balance between ensuring patient safety and promoting innovation. Clinical laboratories may find opportunities to work with CDS/PDS developers and support their client physicians. (Photo copyright: FDA.)

However, products that are intended to be used for the diagnosis, cure, mitigation, prevention, or treatment of a condition are considered medical devices and will fall under FDA regulations.

“The FDA will continue to enforce oversight of software programs that are intended to process or analyze medical images, signals from in vitro diagnostic devices, or patterns acquired from a processor like an electrocardiogram that use analytical functionalities to make treatment recommendations, as these remain medical devices under the Cures Act,” noted Gottlieb.

Items such as mobile apps that are utilized to maintain and encourage a healthy lifestyle are not deemed to be medical devices and will fall outside FDA regulations. The guidelines also defined that Office of the National Coordinator for Health Information Technology (ONC)-certified electronic health record (EHR) systems are not medical devices and, thus, will not be regulated by the FDA.

Software-as-a-Medical Device Gets FDA Oversight

The third guidance document deals with the assessment of the safety, performance, and effectiveness of Software as a Medical Device (SaMD).

“This final guidance provides globally recognized principles for analyzing and assessing SaMD, based on the overall risk of the product. The agency’s adoption of these principles provides us with an initial framework when further developing our own specific regulatory approaches and expectations for regulatory oversight and is another important piece in our overarching policy framework for digital health,” Gottlieb noted in the statement.

SaMD is defined by the International Medical Device Regulators Forum (IMDRF) as “software intended to be used for one or more medical purposes that perform these purposes without being part of a hardware medical device.”

Gottlieb noted that the three important guidance documents being issued would continue to expand the FDA’s efforts to encourage innovation in the ever-changing field of digital health. “Our aim is to provide more clarity on, and innovative changes to, our risk-based approach to digital health products, so that innovators know where they stand relative to the FDA’s regulatory framework. Our interpretation of the Cures Act is creating a bright line to define those areas where we do not require premarket review,” he concluded.

What remains to be seen is how the new FDA regulations will impact clinical laboratories and anatomic pathology groups. With the expanding interest in artificial intelligence (AI) and self-learning software systems, healthcare futurists are predicting a rosy future for informatics products that incorporate these technologies. Hopefully, with these new guidelines in place, innovative clinical laboratories will have the opportunity to develop new digital products for their clients.

—JP Schlingman

Related Information:

FDA Softens Stance on Clinical-decision Support Software

Clinical and Patient Decision Support Software

FDA Issues New Guidance for Clinical and Patient Decision Support Software

Statement from FDA Commissioner Scott Gottlieb, M.D., on Advancing New Digital Health Policies to Encourage Innovation, Bring Efficiency and Modernization to Regulation

FDA Issues Three Guidances, Including Long-awaited CDS Guidelines

The Feds Just Cleared a Major Roadblock for Digital Health

FDA Unveils Clinical Decision Support, Medical Device Guidance

 

Healthcare’s Accelerating Transformation as Both Threat and Potential for Anatomic Pathologists: Useful Steps to Help Labs with Eroding Practice Finances and Unwelcome Payer Trends, Plus New Clinical Opportunities

PRESS RELEASE


Pathology Webinars, LLC
21806 Briarcliff Dr.
Spicewood, Texas 78669
512-264-7103 o
512-264-0969 f

 

FOR IMMEDIATE RELEASE

 

Media Contact: Rich Faherty
rfaherty@darkreport.com

 

AUSTIN, Texas (March 30, 2018)—As new technology is incorporated into the practice of pathology, as consolidations increase, as reimbursement models evolve, and as consumerism takes on a more important role in healthcare—the field of pathology continues to transform.

How these myriad changes affect pathology practices, and what pathologists can better do to prepare themselves is the topic of an all-new webinar being presented Wednesday, April 4 at 2 PM EDT. When participants register to attend “Why Healthcare’s Accelerating Transformation is Both Threat and Potential for Anatomic Pathologists: A Candid Look at Eroding Group Practice Finances, Unwelcome Payer Trends, Clinical Opportunities, and the Promise of Genetic Medicine,” they can listen and learn from four of the most highly regarded experts in the field of pathology who will provide a comprehensive understanding of the trends, their consequences for both private practice pathology groups and pathology labs, and clear, concise steps that can be taken to protect, and even increase, pathologist income. The esteemed faculty:

Bruce A. Friedman, MD, Emeritus Professor of Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI

Friedman was a founder of a yearly clinical lab software conference called AIMCL that was offered for 21 years in Ann Arbor under the auspices of the University of Michigan. He is credited with having named the field of pathology informatics in an article published in the American Journal of Clinical Pathology in 1990. He was a founding member, and one of the two founding presidents, of the Association for Pathology Informatics (API). Friedman has served as a consultant and advisor to in-vitro diagnostic and lab software companies as well as hospitals and academic institutions. He served as the co-director of the Pathology Informatics Summit from 2010-2012 conferences.

Robert McGonnagle, Senior Director and Publisher, College of American Pathologists, Chicago, IL

McGonnagle has been involved with the Publications Division of the College of American Pathologists publications since 1982, beginning as a freelance contractor. He is now Senior Director and Publisher of the College’s CAP Today and Archives of Pathology and Laboratory Medicine.

Al Sirmon, Co-Founder, Pathology Practice Advisors, LLC, Pawleys Island, SC

Sirmon started Pathology Practice Advisors in 2016 with Chappy Manning. PPA provides both ongoing and special one-time project support to pathology practices nationwide. Mr. Sirmon was also a co-founder of Pathology Service Associates (PSA), a management services organization and billing company for pathology practices that he grew from 10 employees and five pathology practices in 1994 to more than 500 employees and 100 pathology practices nationwide when it was acquired in 2012. Prior to PSA, Sirmon spent fifteen years in public accounting helping small business clients, and became the practice manager of a pathology practice and independent clinical lab in 1988.

Keith J. Kaplan, MD, Chief Medical Officer, Corista, Concord, MA

Since 2007, Dr. Kaplan has been publisher of The Digital Pathology Blog at tissuepathology.com, the industry’s leading pathology blog.  Kaplan is a graduate of Michigan State University and Northwestern University Feinberg School of Medicine. He completed residency training in anatomic and clinical pathology at Walter Reed Army Medical Center. While at Walter Reed, Kaplan was named Resident of the Year, and in conjunction with the Armed Forces Institute of Pathology, he founded and directed the Army Telepathology Program. This program connected 25 hospitals internationally for consultation via telepathology. Dr. Kaplan was also with Mayo Clinic as an Associate Professor of Pathology of Mayo Medical School. Since then he has served as CMO for Corista and is an active member of the CAP and executive board member of the American Pathology Foundation.

This engaging webinar, to be presented in an informal roundtable format, will have dialogue centered on four primary areas:

Consolidation: Some pathology practices are finding it increasingly difficult to match the services and support provided by larger practices. Smaller practices will learn the signs they need to look for—indicators that may tend to force them into consolidation—in order to be best prepared. Also to be discussed are the downstream effects of consolidation, including the impact of changing career paths as independent practices are absorbed by larger practices, hospital systems and the big labs.

Shift in Reimbursement Models: With a shift to patient responsibility, higher deductibles, higher co-pays, movement of procedures from hospitals to offices, and other changes in the payer universe, effects on reimbursement have been profound. Participants will learn how other pathology practices are successfully managing these issues.

Consumerism in Pathology: Pathology, like all of medicine, is moving toward patient-centricity. As diagnostics moves ever closer to consumers, the practice of pathology is being affected. Consider urgent care centers and retail clinics becoming major first tier medical centers, in addition to telemedicine, patient wearables, and home care devices—just a few of the emerging trends that have the potential to bring down reimbursement and lead to consolidation, or at the very least—force pathologists to become more specialized. Specific steps that can be taken to mitigate this shift will be covered.

Artificial Intelligence, Digital Pathology, and Genomics: These areas are huge forces in the field of pathology, and incredible tools that will enable pathologists to excel, and to provide efficiencies to counter some of the obstacles being faced. Our experts will share the latest opportunities in these areas.

For more information about Why Healthcare’s Accelerating Transformation is Both Threat and Potential for Anatomic Pathologists: A Candid Look at Eroding Group Practice Finances, Unwelcome Payer Trends, Clinical Opportunities, and the Promise of Genetic Medicine and to view webinar details including presenter biographies and pricing, click here. You may also contact Richard Faherty at 512-264-7103.

 

About Pathology Webinars, LLC

For more than five years, Pathology Webinars has produced webinars for pathologists and medical laboratories. Our topics deliver the information essential to the clinical and financial success of your pathology group and laboratory.

 

#END#

International Pilot Program Tests Whether People Would Be Willing to Exchange Clinical Laboratory Test Results and Photos of Their Bodies for Cryptocurrency

Developers believe participants will be interested in controlling how their private health data is provided to medical laboratories, drug companies, research organizations, and the federal government, while also earning an income

Bitcoins for blood tests, anyone? A new venture is examining the idea of exchanging cryptocurrency, a digital asset, for the results of weekly clinical laboratory tests and photographs of body parts from healthcare consumers. If successful, in a couple of years, people might be able to earn a “basic income” from selling their private health data to pharmaceutical companies, medical laboratories, research organizations, the federal government, and more.

Insilico Medicine, a Baltimore developer of artificial intelligence (AI) solutions for research and pharmaceutical companies, and the Bitfury Group, a blockchain technology company based in Amsterdam, Holland, are working together on the project they call Longenesis, a blockchain-based platform that uses AI to collect, store, manage, and trade data, such as medical records and health data.

Marketing Human Life Data

The two participants presented their novel idea this past November in Taipei, Taiwan, at the TaiwanChain Blockchain Summit. They published their report in Oncotarget, an open-access biomedical journal that covers oncology research. The authors of the paper believe blockchain and AI technologies could support patients and physicians in working with medical data.

“There are many companies engaged in the marketplaces of human life data with billions of dollars in turnover. However, the advances in AI and blockchain allow returning the control of this data back to the individual and make this data useful in the many new ways,” Alex Zhavoronkov, PhD, founder of Insilico Medicine, told Cryptovest.

“I would love to live in a world where I’m motivated to regularly take all kinds of medical tests for free, I get the data back, and I will be able to sell this data to the marketplace, and I earn all kinds of goods and services—primarily health related,” Zhavoronkov told Motherboard.

Alex-Zhavoronkov-PhD

Alexander Zhavoronkov, PhD, Founder and CEO of Insilico Medicine, told Motherboard, “Right now, it’s difficult to predict. But I think that if [users] submit blood tests, pictures, transcriptomes let’s say on a weekly basis, you probably will be able to earn a good universal basic income.” Zhavoronkov is describing a new business model involving clinical laboratory testing. (Photo copyright: Insilico Medicine.)

Exchanging Human Biomarkers for Digital Coin

Combining blockchain and AI technologies is one of the many emerging technological advances emerging to enhance the medical and pharmaceutical industries.

“Recent advances in machine intelligence turned almost every data into health data. The many data types can now be combined in the new ways: one data type can be inferred from another data type and systems learning to optimize the lifestyle for the desired health trajectory can now be developed using the very basic and abundant data,” noted Polina Mamoshina, research scientist at Pharma AI, a division of Insilico Medicine, during the company’s presentation at TaiwanChain. “Pollen, weather, and other data about the environment can now be combined with the human biomarkers to uncover and minimize the allergic response among the myriad of examples. People should be able to take control over this data.”

Because pharmaceutical companies rely on data mining to obtain individual demographic information and medical records, the growth potential for this type of product is huge.

Clinical Laboratory Test Results Earn LifePound Tokens

Longenesis is still being tested, but Zhavoronkov hopes it will be ready for the public within the next two years. The plan is to utilize blockchain technology to collect and store patient medical data in exchange for their cryptocurrency, known as LifePound.

According to the Longenesis website, “Longenesis is a marketplace, which uses personal health data, transformed into a LifePound token. LifePound is used inside a marketplace as a monetary system, powered by Exonum blockchain technology to keep data secure and transparent. Tokens are distributed between Longenesis marketplace members and are used for transactions between the following elements:

  • Developers;
  • Users;
  • Data providers;
  • Customers; and the,
  • Stock cryptocurrency market.

The developers believe the “Longenesis Data Marketplace will be able to provide new insights in the fields of healthcare research and development. It will provide analysis and recommendations to pharmaceutical companies to help develop new drugs.”

It’s too early to predict whether Longenesis will be successful and catch on with the public. However, the popularity of cryptocurrency, and the opportunity to earn an income from one’s clinical laboratory data, could encourage individuals to participate in this type of endeavor.

In addition, this is a highly unusual and unexpected approach to encourage consumers to undergo regular medical laboratory testing in order to earn payment by a digital currency. It is a reminder of how rapid advances in a myriad of technologies are going to make it possible for entrepreneurs to create new business models that involve clinical laboratory tests and the data produced by such tests.

—JP Schlingman

Related Information:

This Biotech Company Wants You to Give It Selfies and Blood Tests in Exchange for Cryptocurrency

A Decentralized Medical Record Marketplace Powered by Human Data

Blockchain, AI Could Spur Biomedical Research, Insilico Medicine Says

Converging Blockchain and Next-generation Artificial Intelligence Technologies to Decentralize and Accelerate Biomedical Research and Healthcare

Blockchain, Explained

;