News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Doctors in India Sound Alarm: CRE Infections are Becoming Common in India and Killing Two-Thirds of Patients Who Contract Them While Undergoing Cancer Treatment!

As infectious bacteria become even more resistant to antibiotics, chronic disease patients with weakened immune systems are in particular danger

Microbiologists and clinical laboratory managers in the United States may find it useful to learn that exceptionally virulent strains of bacteria are causing increasing numbers of cancer patient deaths in India. Given the speed with which infectious diseases spread throughout the world, it’s not surprising that deaths due to similar hospital-acquired infections (HAIs) are increasing in the US as well.

Recent news reporting indicates that an ever-growing number of cancer patients in the world’s second most populous nation are struggling to survive these infections while undergoing chemotherapy and other treatments for their cancers.

In some ways, this situation is the result of more powerful antibiotics. Today’s modern antibiotics help physicians, pathologists, and clinical laboratories protect patients from infectious disease. However, it’s a tragic fact that those same powerful drugs are making patients with chronic diseases, such as cancer, more susceptible to death from HAIs caused by bacteria that are becoming increasingly resistant to those same antibiotics.

India is a prime example of that devastating dichotomy. Bloomberg reported that a study conducted by Abdul Ghafur, MD, an infectious disease physician with Apollo Hospitals in Chennai, India, et al, concluded that “Almost two-thirds of cancer patients with a carbapenem-resistant infection are dead within four weeks, vs. a 28-day mortality rate of 38% in patients whose infections are curable.”

This news should serve as an alert to pathologists, microbiologists, and clinical laboratory leaders in the US as these same superbugs—which resist not only antibiotics but other drugs as well—may become more prevalent in this country.

 ‘We Don’t Know What to Do’

The dire challenge facing India’s cancer patients is due to escalating bloodstream infections associated with carbapenem-resistant enterobacteriaceae (CRE), a particularly deadly bacteria that has become resistant to even the most potent carbapenem antibiotics, generally considered drugs of last resort for dealing with life-threatening infections.

Lately, the problem has only escalated. “We are facing a difficult scenario—to give chemotherapy and cure the cancer and get a drug-resistant infection and the patient dying of infections.” Ghafur told Bloomberg. “We don’t know what to do. The world doesn’t know what to do in this scenario.”

Ghafur added, “However wonderful the developments in the field of oncology, they are not going to be useful, because we know cancer patients die of infections.”

Abdul Ghafur, MD (above), an infectious disease physician with Apollo Hospitals in Chennai, India, told The Better India that, “Indians, are obsessed with antibiotics and believe that they can cure almost all infections, including viral infections! Moreover, at least half of the prescriptions by Indian doctors include an antibiotic. Sadly, the public believes that whenever we get cold and cough, we need to swallow antibiotics for three days along with paracetamol [acetaminophen]! This is a myth that urgently needs to disappear!” (Photo copyright: Longitude Prize.)

The problem in India, Bloomberg reports, is exacerbated by contaminated food and water. “Germs acquired through ingesting contaminated food and water become part of the normal gut microbiome, but they can turn deadly if they escape the bowel and infect the urinary tract, blood, and other tissues.” And chemotherapy patients, who likely have weakened digestive tracts, suffer most when the deadly germs reach the urinary tract, blood, and surrounding tissues.

“Ten years ago, carbapenem-resistant superbug infections were rare. Now, infections such as carbapenem-resistant klebsiella bloodstream infection, urinary infection, pneumonia, and surgical site infections are a day-to-day problem in our (Indian) hospitals. Even healthy adults in the community may carry these bacteria in their gut in Indian metropolitan cities; up to 5% of people carry these superbugs in their intestines,” Ghafur told The Better India.

What are CRE and Why Are They So Deadly?

CRE are part of the enterobacteriaceae bacterial family, which also includes Escherichia coli (E. coli) and Klebsiella pneumoniae. CRE, according to the Centers for Disease Control and Prevention (CDC), are considered “antibiotic-resistant” because antibiotic agents known as carbapenems are becoming increasing less effective at treating enterobacteriaceae.

In fact, a 2018 study conducted by the All India Institute of Medical Sciences (AIIMS) in New Delhi, which was published in the Journal of Global Infectious Diseases (JGID), found that bloodstream infections due to CRE were the “leading cause” of illness and death in patients with hematological malignancies, such as leukemia.

“These patients receive chemotherapy during treatment, which lead to severe mucositis of gastrointestinal tract and myelosuppression. It was hypothesized that the gut colonizer translocate into blood circulation causing [bloodstream infection],” the AIIMS paper states.

US Cases of C. auris Also Linked to CRE

Deaths in the US involving the fungus Candida auris (C. auris) have been linked to CRE as well. And, people who were hospitalized outside the US may be at particular risk.

The CDC reported on a Maryland resident who was hospitalized in Kenya with a carbapenemase-producing infection, which was later diagnosed as C. auris. The CDC describes C. auris as “an emerging drug-resistant yeast of high public concern … C auris frequently co-occurs with carbapenemase-producing organisms like CRE.”

The graphic above, developed by the NYT from CDC data, shows that Candida auris is found globally and not restricted to poor or resource-strapped nations. “The fungus seems to have emerged in several locations at once, not from a single source,” the NYT reports. This means clinical laboratories can expect to be processing more tests to identify the deadly fungus. (Graphic copyright: New York Times/CDC.)

Drug-resistant germs are a public health threat that has grown beyond overuse of antibiotics to an “explosion of resistant fungi,” reported the New York Times (NYT).

“It’s an enormous problem. We depend on being able to treat those patients with antifungals,” Matthew Fisher, PhD, Professor of Fungal Disease Epidemiology at Imperial College London, told the NYT

The NYT article states that “Nearly half of patients who contract C. auris die within 90 days, according to the CDC. Yet the world’s experts have not nailed down where it came from in the first place.”

Cases of C. auris in the US are showing up in New York, New Jersey, and Illinois and is arriving on travelers from many countries, including India, Pakistan, South Africa, Spain, United Kingdom, and Venezuela.  

“It is a creature from the black lagoon,” Tom Chiller, MD, Chief of the Mycotic Diseases Branch at the CDC told the NYT. “It bubbled up and now it is everywhere.”

Since antibiotics are used heavily in agriculture and farming worldwide, the numbers of antibiotic-resistant infections will likely increase. Things may get worse, before they get better.

Pathologists, microbiologists, oncologists, and clinical laboratories involved in caring for patients with antibiotic-resistant infections will want to fully understand the dangers involved, not just to patients, but to healthcare workers as well.

—Donna Marie Pocius

Related Information:

Superbugs Deadlier than Cancer Put Chemotherapy into Question

Taking Antibiotics for a Viral Infection? A Doc Shares Why You Should Think Twice

Healthcare-Associated Infections: CRE

Rectal Carriage of Carbapenem-resistant enterobacteriaceae: A Menace to Highly Vulnerable Patients

Clinical Study of Carbapenem Sensitive and Resistant Gram-negative Bacteria in Neutropenic and Nonneutropenic Patients: The First Series from India

Candida Auris in a U.S. Patient with Carbapenemase-Producing Organisms and Recent Hospitalization in Kenya

Deadly Germs, Lost Cures: A Mysterious Infection, Spanning the Globe in a Climate of Secrecy

University of Edinburgh Study Finds Antimicrobial Bacteria in Hospital Wastewater in Research That Has Implications for Microbiologists

Pathologists and Clinical Laboratories to Play Critical Role in Developing New Tools to Fight Antibiotic Resistance

Lurking Below: NIH Study Reveals Surprising New Source of Antibiotic Resistance That Will Interest Microbiologists and Medical Laboratory Scientists

University of Edinburgh Study Finds Antimicrobial Bacteria in Hospital Wastewater in Research That Has Implications for Microbiologists

The highly infectious bacteria can survive treatment at local sewage plants and enter the food chain of surrounding populations, the study revealed

Researchers at the University of Edinburgh (UE) in Scotland found large amounts of antimicrobial-resistance (AMR) genes in hospital wastewater. These findings will be of interest to microbiologists and clinical laboratory managers, as the scientists used metagenomics to learn “how abundances of AMR genes in hospital wastewater are related to clinical activity.”

The UE study sheds light on the types of bacteria in wastewater that goes down hospital pipes to sewage treatment plants. The study also revealed that not all infectious agents are killed after passing through waste treatment plants. Some bacteria with antimicrobial (or antibiotic) resistance survive to enter local food sources. 

The scientists concluded that the amount of AMR genes found in hospital wastewater was linked to patients’ length-of-stays and consumption of antimicrobial resistant bacteria while in the hospital.

Using Metagenomics to Surveille Hospital Patients

Antimicrobial resistance is creating super bacteria that are linked to increases in hospital-acquired infections (HAIs) nationwide. Dark Daily has reported many times on the growing danger of deadly antimicrobial resistant “super bugs,” which also have been found in hospital ICUs (see “Potentially Fatal Fungus Invades Hospitals and Public Is Not Informed,” August 26, 2019.)

In a paper the University of Edinburgh published on medRxiv, the researchers wrote: “There was a higher abundance of antimicrobial-resistance genes in the hospital wastewater samples when compared to Seafield community sewage works … Sewage treatment does not completely eradicate antimicrobial-resistance genes and thus antimicrobial-resistance genes can enter the food chain through water and the use of [processed] sewage sludge in agriculture. As hospital wastewater contains inpatient bodily waste, we hypothesized that it could be used as a representation of inpatient community carriage of antimicrobial resistance and as such may be a useful surveillance tool.”

Additionally, they wrote, “Using metagenomics to identify the full range of AMR genes in hospital wastewater could represent a useful surveillance tool to monitor hospital AMR gene outflow and guide environmental policy on AMR.”

AMR bacteria also are being spread by human touch throughout city subways, bus terminals, and mass transportation, making it difficult for the Centers for Disease Control and Prevention (CDC) to identify the source of the outbreak and track and contain it. This has led microbiologists to conduct similar studies using genetic sequencing to identify ways to track pathogens through city infrastructures and transportation systems. (See, “Microbiologists at Weill Cornell Use Next-Generation Gene Sequencing to Map the Microbiome of New York City Subways,” December 13, 2013.)

Antimicrobial stewardship programs are becoming increasingly critical to preventing the spread of AMR bacteria. “By having those programs, [there are] documented cases of decreased antibiotic resistance within organisms causing these infections,” Paul Fey, PhD, of the University of Nebraska Medical Center, told MedPage Today. “This is another indicator of how all hospitals need to implement stewardship programs to have a good handle on decreasing antibiotic use.” [Photo copyright: University of Nebraska.]

Don’t Waste the Wastewater

Antibiotic resistance occurs when bacteria change in response to medications to prevent and treat bacterial infections, according to a World Health Organization (WHO) fact sheet. The CDC estimates that more than 23,000 people die annually from two million antibiotic-resistance infections.

Wastewater, the UE scientists suggest, should not go to waste. It could be leveraged to improve hospitals’ detection of patients with antimicrobial resistance, as well as to boost environment antimicrobial-resistance polices.

They used metagenomics (the study of genetic material relative to environmental samples) to compare the antimicrobial-resistance genes in hospital wastewater against wastewater from community sewage points. 

The UE researchers:

  • First collected samples over a 24-hour period from various areas in a tertiary hospital;
  • They then obtained community sewage samples from various locations around Seafield, Scotland;
  • Finally, they complete the genetic sequencing on an Illumina HiSeq4000 System.

The researchers reported these findings:

  • 181 clinical isolates were identified in the samples of wastewater;
  • 1,047 unique bacterial genes were detected across all samples;
  • 19 genes made up more than 60% of bacteria in samples;
  • Overriding bacteria identified as Pseudomonas and Acinetobacter environmental samples (Pseudomonas fluorescens and Acinetobacter johnsonii) were most likely from hospital pipes;
  • Gut-related bacteria—Faecalibacterium, Bacteroides, Bifidobacterium, and Escherichia, were more prevalent in the hospital samples than in those from the community;
  • Antimicrobial-resistance genes increased with longer length of patient stays, which “likely reflects transmission amongst hospital inpatients,” researchers noted. 

Fey suggests that further research into using sequencing technology to monitor patients is warranted.

“I think that monitoring each patient and sequencing their bowel flora is more likely where we’ll be able to see if there’s a significant carriage of antibiotic-resistant organisms,” Fey told MedPage Today. “In five years or so, sequencing could become so cheap that we could monitor every patient like that.”

Fey was not involved in the University of Edinburgh research.

Given the rate at which AMR bacteria spreads, finding antibiotic-resistance genes in hospital wastewater may not be all that surprising. Still, the University of Edinburgh study could lead to cost-effective ways to test the genes of bacteria, which then could enable researchers to explore different sources of infection and determine how bacteria move through the environment.

And, perhaps most important, the study suggests clinical laboratories have many opportunities to help eliminate infections and slow antibiotic resistance. Microbiologists can help move their organizations forward too, along with infection control colleagues.  

—Donna Marie Pocius

Related Information:

Secrets of the Hospital Underbelly: Abundance of Antimicrobial-Resistance Genes in Hospital Wastewater Reflects Hospital Microbial Use and Inpatient Length of Stay

Antibiotic-Resistance Genes Trouble Hospital Water; Study Emphasizes Importance of Antibiotic Stewardship Programs, Expert Says

Fact Sheet: Antibiotic Resistance

United States Gathers 350 Commitments to Combat Antibiotic Resistance, Action Must Continue

Genomic Analysis of Hospital Plumbing Reveals Diverse Reservoir of Bacterial Plasmids Conferring Carbapenemase Resistance

Dark Daily E-briefings: Hospital-Acquired Infections

NIH Study Reveals Surprising New Source of Antibiotic Resistance that Will Interest Microbiologists and Medical Laboratory Scientists

Lurking Below: NIH Study Reveals Surprising New Source of Antibiotic Resistance That Will Interest Microbiologists and Medical Laboratory Scientists

Genomic analysis of pipes and sewers leading from the National Institutes of Health Clinical Care Center in Bethesda, Md., reveals the presence of carbapenem-resistant organisms; raises concern about the presence of multi-drug-resistant bacteria previously undetected in hospital settings

If hospitals and medical laboratories are battlegrounds, then microbiologists and clinical laboratory professionals are frontline soldiers in the ongoing fight against hospital-acquired infections (HAIs) and antibiotic resistance. These warriors, armed with advanced testing and diagnostic skills, bring expertise to antimicrobial stewardship programs that help block the spread of infectious disease. In this war, however, microbiologists and medical laboratory scientists (AKA, medical technologists) also often discover and identify new and potential strains of antibiotic resistance.

One such discovery involves a study published in mBio, a journal of the American Society for Microbiology (ASM), conducted by microbiologist Karen Frank, MD, PhD, D(AMBB), Chief of the Microbiology Service Department at the National Institutes of Health (NIH), and past-president of the Academy of Clinical Laboratory Physicians and Scientists (ACLPS). She and her colleagues identified a surprising source of carbapenem-resistant organisms—the plumbing, sewers, and wastewater beneath the National Institutes of Health Center (NIHCC) in Bethesda, Md. And they theorize similar “reservoirs” could exist beneath other healthcare centers as well.

Potential Source of Superbugs and Hospital-Acquired Infections

According to the mBio study, “Carbapenemase-producing organisms (CPOs) are a global concern because of the morbidity and mortality associated with these resistant Gram-negative bacteria. Horizontal plasmid transfer spreads the resistance mechanism to new bacteria, and understanding the plasmid ecology of the hospital environment can assist in the design of control strategies to prevent nosocomial infections.”

Karen Frank, MD, PhD

Karen Frank, MD, PhD (above), is Chief of the Microbiology Service Department at the National Institutes of Health and past-president of the Academy of Clinical Laboratory Physicians and Scientists. She suggests hospitals begin tracking the spread of the bacteria. “In the big picture, the concern is the spread of these resistant organisms worldwide, and some regions of the world are not tracking the spread of the hospital isolates.” (Photo copyright: National Institutes of Health.)

Frank’s team used Illumina’s MiSeq next-generation sequencer and single-molecule real-time (SMRT) sequencing paired with genome libraries, genomics viewers, and software to analyze the genomic DNA of more than 700 samples from the plumbing and sewers. They discovered a “potential environmental reservoir of mobile elements that may contribute to the spread of resistance genes, and increase the risk of antibiotic resistant ‘superbugs’ and difficult to treat hospital-acquired infections (HAIs).”

Genomic Sequencing Identifies Silent Threat Lurking in Sewers

Frank’s study was motivated by a 2011 outbreak of antibiotic-resistant Klebsiella pneumoniae bacteria that spread through the NIHCC via plumbing in ICU, ultimately resulting in the deaths of 11 patients. Although the hospital, like many others, had dedicated teams working to reduce environmental spread of infectious materials, overlooked sinks and pipes were eventually determined to be a disease vector.

In an NBC News report on Frank’s study, Amy Mathers, MD, Director of The Sink Lab at the University of Virginia, noted that sinks are often a locus of infection. In a study published in Applied and Environmental Microbiology, another journal of the ASM, Mathers noted that bacteria in drains form a difficult to clean biofilm that spreads to neighboring sinks through pipes. Mathers told NBC News that despite cleaning, “bacteria stayed adherent to the wall of the pipe” and even “splashed out” into the rooms with sink use.

During the 2011-2012 outbreak, David Henderson, MD, Deputy Director for Clinical Care at the NIHCC, told the LA Times of the increased need for surveillance, and predicted that clinical laboratory methods like genome sequencing “will become a critical tool for epidemiology in the future.”

Frank’s research fulfilled Henderson’s prediction and proved the importance of genomic sequencing and analysis in tracking new potential sources of infection. Frank’s team used the latest tools in genomic sequencing to identify and profile microbes found in locations ranging from internal plumbing and floor drains to sink traps and even external manhole covers outside the hospital proper. It is through that analysis that they identified the vast collection of CPOs thriving in hospital wastewater.

In an article, GenomeWeb quoted Frank’s study, noting that “Over two dozen carbapenemase gene-containing plasmids were identified in the samples considered” and CPOs turned up in nearly all 700 surveillance samples, including “all seven of the wastewater samples taken from the hospital’s intensive care unit pipes.” Although the hospital environment, including “high-touch surfaces,” remained free of similar CPOs, Frank’s team noted potential associations between patient and environmental isolates. GenomeWeb noted Frank’s findings that CPO levels were in “contrast to the low positivity rate in both the patient population and the patient-accessible environment” at NIHCC, but still held the potential for transmission to vulnerable patients.

Antibiotic-Resistance: A Global Concern

The Centers for Disease Control and Prevention (CDC) reports that more than two million illnesses and 23,000 deaths in the US are caused each year by antibiotic resistance, with 14,000 deaths alone linked to antibiotic resistance associated with Clostridium difficile infections (CDI). Worldwide those numbers are even higher.

Second only to CDI on the CDC’s categorized list of “18 drug-resistant threats to the United States” are carbapenem-resistant Enterobacteriaceae (CRE).

Since carbapenems are a “last resort” antibiotic for bacteria resistant to other antibiotics, the NIHCC “reservoir” of CPOs is a frightening discovery for physicians, clinical laboratory professionals, and the patients they serve.

The high CPO environment in NIHCC wastewater has the capability to spread resistance to bacteria even without the formal introduction of antibiotics. In an interview with Healthcare Finance News, Frank indicated that lateral gene transfer via plasmids was not only possible, but likely.

“The bacteria fight with each other and plasmids can carry genes that help them survive. As part of a complex bacterial community, they can transfer the plasmids carrying resistance genes to each other,” she noted. “That lateral gene transfer means bacteria can gain resistance, even without exposure to the antibiotics.”

The discovery of this new potential “reservoir” of CPOs may mean new focused genomic work for microbiologists and clinical laboratories. The knowledge gained by the discovery of CPOs in hospital waste water and sinks offers a new target for study and research that, as Frank concludes, will “benefit healthcare facilities worldwide” and “broaden our understanding of antimicrobial resistance genes in multi-drug resistant (MDR) bacteria in the environment and hospital settings.”

Amanda Warren

Related Information:

Genomic Analysis of Hospital Plumbing Reveals Diverse Reservoir of Bacterial Plasmids Conferring Carbapenem Resistance

Snooping Around in Hospital Pipes, Scientists Find DNA That Fuels the Spread of Superbugs

CSI Bethesda: Sleuths Used Sequenced Genome to Track Down Killer

Antibiotic/Antimicrobial Resistance

Study Tracks How Superbugs Splash Out of Hospital Sink Drains

CDC: Biggest Threats

Antimicrobial Stewardship: How the Microbiology Laboratory Can Right the Ship

Superbugs Breeding in Hospital Plumbing Put Patients at Risk

Microbiologists at Weill Cornell Use Next-Generation Gene Sequencing to Map the Microbiome of New York City Subways

;