News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

University of Southern California Researchers Develop Vaccine That Boosts Immunity and Helps Patients Avoid Deadly Infections While in Hospitals

New vaccine could give clinical laboratories and antimicrobial stewardship programs the tool they need to dramatically reduce hospital-acquired infections

Healthcare providers and clinical laboratories continue to struggle against hospital-acquired infections (HAIs) and ever-evolving antimicrobial resistant (AMR) bacteria. But now, the University of Southern California (USC) has developed and patented an experimental vaccine that has been shown to protect against so-called “superbugs,” such as methicillin-resistant Staphylococcus aureus (MRSA), an AMR bacteria that causes potentially deadly staph infections in hospitals and other healthcare settings.

The innovative approach focuses on bolstering the patient’s immune system itself, rather than relying on proteins to fight infections, according to a USC Today article. 

Developed by senior study author Brad Spellberg, MD, Chief Medical Officer at the Los Angeles General Medical Center, and colleagues, “The experimental vaccine takes an entirely different approach: It gooses the body’s preexisting supply of pathogen-gobbling immune cells called macrophages, which engulf and digest bacteria, fungi, and other bad actors. These activated fighters, found in all tissues, quickly neutralize incoming invaders which might otherwise multiply rapidly and overwhelm the body’s defenses,” USC Today reported. 

“This is very different from developing new antibiotics,” Jun Yan, a doctoral student at Keck School of Medicine and the study’s first author, told USC Today. “This is using our own immune system to fight against different superbugs, which is a different approach than everybody else.”

To develop the vaccine [the USC researchers] formed a biotechnology startup called ExBaq LLC in Bethesda, Md.

They published their findings in the journal Science Translational Medicine title, “A Protein-Free Vaccine Stimulates Innate Immunity and Protects against Nosocomial Pathogens.”

Ishwar K. Puri, PhD

“The pandemic stimulated unprecedented innovation in vaccine development, where federal funding and university-industry partnerships were game changers for translating promising discoveries from academic labs for the good of all,” said Ishwar K. Puri, PhD (above), senior vice president of research and innovation at USC. “We are both pleased and proud of the critical support the USC Stevens Center provided to enable the development of ExBaq’s experimental vaccine that protects vulnerable populations from serious infections.” Clinical laboratories that work with hospitals in the fight against hospital-acquired infections understand the importance of this discovery. (Photo copyright: University of Southern California.)

USC Vaccine Details

The USC team developed a “protein-free vaccine, composed of aluminum hydroxide, monophosphoryl lipid A, and fungal mannan, that stimulates the innate immune system and confers protection,” the researchers wrote in Science Translational Medicine.

“Tested in two independent labs, the vaccine works within 24 hours and lasts for up to 28 days. In lab models, the number of pathogen-eating immune cells in the blood increased dramatically, and survival time of invasive blood and lung infections improved. Early data suggest that a second dose could extend the window to prevent infection,” USC Today reported.

Unlike anything currently available, the new vaccine focuses on boosting the body itself instead of creating antibodies against certain pathogens. A mere dose of the vaccine is described to “provide rapid protection against nine different bacteria and fungi species,” USC Today noted.

“It’s an early warning system. It’s like Homeland Security putting out a terror alert. Everybody, keep your eyes open. Keep an eye out for suspicious packages. You’re alerting the soldiers and tanks of your immune system. The vaccine activates them,” Spellberg told USC Today

“The vaccine acted through stimulation of the innate, rather than the adaptive, immune system, as demonstrated by efficacy in the absence of lymphocytes that were abrogated by macrophage depletion. A role for macrophages was further supported by the finding that vaccination induced macrophage epigenetic alterations that modulated phagocytosis and the inflammatory response to infection. Together, these data show that this protein-free vaccine is a promising strategy to prevent deadly antimicrobial-resistant healthcare-associated infections,” the researchers wrote in Science Translational Medicine.

Great Need for This Protection

According to the federal Centers for Disease Control and Prevention (CDC), 1.7 million infections and 99,000 deaths are caused by HAIs annually.

“Patients who acquire infections from surgery spend, on average, an additional 6.5 days in the hospital, are five times more likely to be readmitted after discharge and twice as likely to die. Moreover, surgical patients who develop infections are 60% more likely to require admission to a hospital’s intensive care unit. Surgical infections are believed to account for up to 10 billion dollars annually in healthcare expenditures,” the CDC reports.

“All hospitalized patients are susceptible to contracting a [hospital-acquired] infection. Some patients are at greater risk than others: young children, the elderly, and persons with compromised immune systems are more likely to get an infection. Other risk factors are long hospital stays, the use of indwelling catheters, failure of healthcare workers to wash their hands, and overuse of antibiotics,” the CDC notes.

Therefore, USC’s new vaccine may be just what the doctor ordered to protect patients in hospitals and other healthcare settings from deadly HAIs.

Looking Ahead

There are currently no vaccines that are FDA-approved that treat “the most serious antibiotic resistant infections,” USC Today reported.

“Even if there were such vaccines, multiple vaccines would have to be deployed simultaneously to protect against the full slate of antibiotic-resistant microbes that cause healthcare-acquired infections,” Brian Luna, PhD, assistant professor of molecular microbiology and immunology at USC’s Keck School of Medicine, told USC Today

Thus, USC’s new vaccine could be a boon to hospital antimicrobial stewardship programs. But so far, it has only been tested on mice.

“The next step is getting guidance from the US Food and Drug Administration (FDA) on the design of a clinical trial. The first such trial would be done in healthy volunteers to find the right dose of vaccine that is safe and triggers the same kind of immune response in people as seen in the mice,” USC Today reported.

ExBaq LLC has begun talking with potential larger partners who might be willing to help develop the vaccine into clinical testing.

For years hospitals and other healthcare settings—such as long-term care facilities, urgent care clinics, and clinical laboratories—have fought an uphill battle against superbugs. So, for a vaccine to be on the horizon that can prevent life-threatening hospital-acquired infections would be a game changer.

With antimicrobial stewardships being a requirement in all hospitals, medical laboratory managers and microbiologists may celebrate this new development and its potential to be a useful tool in fighting antimicrobial resistant bacteria in their facilities.

—Kristin Althea O’Connor

Related Information:

Superbugs Including MRSA Thwarted by Unconventional Vaccine

A Protein-Free Vaccine Stimulates Innate Immunity and Protects Against Nosocomial Pathogens

Superbug Vaccine “Hulkifies” Macrophages in Mouse Model

Australian Researchers Discover New Form of Antimicrobial Resistance in Findings That Have Implications for Microbiology Laboratories

Study findings could lead to new biomarker targets for clinical laboratories working to identify AMR bacteria

Reducing and managing antimicrobial resistance (AMR) is a major goal of researchers and health systems across the globe. And it is the job of microbiologists and clinical laboratories to identify microbes that are AMR and those which are not to guide physicians as to the most appropriate therapies for patients with bacterial infections.

Thus, a recent discovery by researchers at the Wesfarmers Centre of Vaccines and Infectious Diseases, a division of the Telethon Kids Institute at Perth Children’s Hospital in Australia, will be of interest to medical laboratory leaders. The researchers may have learned how some bacteria dodge antibiotics in the human body. Their findings could lead to new diagnostics and better patient outcomes. 

The scientists published their findings in the journal Nature Communications titled, “Host-Dependent Resistance of Group A Streptococcus to Sulfamethoxazole Mediated by a Horizontally-Acquired Reduced Folate Transporter.”

Timothy Barnett, PhD

“AMR is a silent pandemic of much greater risk to society than COVID-19. In addition to 10 million deaths per year by 2050, the WHO estimates AMR will cost the global economy $100 trillion if we can’t find a way to combat antibiotic failure,” Timothy Barnett, PhD (above), Deputy Director and head of the Strep A Pathogenesis and Diagnostics team at Wesfarmers Centre of Vaccines and Infectious Diseases, told News Medical. Additional research may provide new targets for clinical laboratories tasked with identifying antimicrobial resistant bacteria. (Photo copyright: University of Western Australia.)

Rendering an Antibiotic Ineffective

According to the University of Oxford, about 1.2 million people died worldwide in 2019 due to AMR, and antimicrobial-resistant infections played a role in as many as 4.95 million deaths that same year. The World Health Organization (WHO) declared AMR one of the top ten global public health threats facing humanity.

While investigating antibiotic sensitivity of Group A Streptococcus—a potentially deadly bacteria often detected on the skin and in the throat—the Australian researchers uncovered a mechanism that enabled bacteria to absorb nutrients from their human host and evade the antibiotic sulfamethoxazole, a commonly-prescribed treatment for Group A Strep.

“Bacteria need to make their own folates to grow and, in turn, cause disease. Some antibiotics work by blocking this folate production to stop bacteria growing and treat the infection,” Timothy Barnett, PhD, Deputy Director of the Wesfarmers Centre of Vaccines and Infectious Diseases and head of the Strep A Pathogenesis and Diagnostics team, told News Medical.

“When looking at an antibiotic commonly prescribed to treat Group A Strep skin infections, we found a mechanism of resistance where, for the first time ever, the bacteria demonstrated the ability to take folates directly from its human host when blocked from producing their own. This makes the antibiotic ineffective and the infection would likely worsen when the patient should be getting better,” he added.

According to their study, the researchers identified an energy-coupling (ECF) factor transporter S component gene that allows Group A Strep to acquire extracellular reduced folate compounds that likely “expands the substrate specificity of an endogenous ECF transporter to acquire reduced folate compounds directly from the host, thereby bypassing the inhibition of folate biosynthesis by sulfamethoxazole.”

The study indicates that this new form of antibiotic resistance is indistinguishable under traditional testing used in microbiology and clinical laboratories, which in turn makes it difficult for clinicians to prescribe effective antibiotics to fight an infection. 

Understanding AMR before It Is Too Late

The research suggests that understanding AMR is more complicated and intricate than previously thought. Barnett and his team believe their discovery is just the “tip of the iceberg” and that it will prove to be a far-reaching issue across other bacterial pathogens in addition to Group A Strep.

In “CDC Ranks Two More Drug-Resistant Microbes as ‘Urgent Threat’ to Americans; Clinical Laboratories Are Advised to Increase Awareness of Antimicrobial Resistance,” Dark Daily covered a report by the federal Centers for Disease Control and Prevention (CDC) that calls attention the emergence of new antibiotic-resistant bacteria and fungi. In its report, the CDC lists 18 bacteria and fungi that pose either urgent, serious, or concerning threats to humans. It also placed one fungus and two bacteria on a “watch” list.

“Without antibiotics, we face a world where there will be no way to stop deadly infections, cancer patients won’t be able to have chemotherapy and people won’t have access to have life-saving surgeries,” Barnett told News Medical. “In order to preserve the long-term efficacy of antibiotics, we need to further identify and understand new mechanisms of antibiotic resistance, which will aid in the discovery of new antibiotics and allow us to monitor AMR as it arises.”

More research and clinical studies are needed before this discovery can become technology that clinical laboratories can use to test if microbes are AMR. The scientists at Wesfarmers Centre of Vaccines and Infectious Diseases are now developing testing methods to detect the presence of the antibiotic resistant mechanism and determine the best treatment options.

“It is vital we stay one step ahead of the challenges of AMR and, as researchers, we should continue to explore how resistance develops in pathogens and design rapid accurate diagnostic methods and therapeutics,” Kalindu Rodrigo, a PhD student in the Barnett lab and one of the authors of the study told News Medical. “On the other hand, equal efforts should be taken at all levels of the society including patients, health professionals, and policymakers to help reduce the impacts of AMR.”

JP Schlingman

Related Information:

Australian Researchers Unearth a New Form of Antimicrobial Resistance

New Antimicrobial Resistance Mechanism Discovered in Streptococci

Host-dependent Resistance of Group A Streptococcus to Sulfamethoxazole Mediated by a Horizontally-acquired Reduced Folate Transporter

WHO: Antimicrobial Resistance

An Estimated 1.2 Million People Died in 2019 from Antibiotic-resistant Bacterial Infections

CDC Ranks Two More Drug-Resistant Microbes as ‘Urgent Threat’ to Americans; Clinical Laboratories Are Advised to Increase Awareness of Antimicrobial Resistance

Study Shows Huge Increase in Bloodstream Infections in Europe During First Two Years of COVID-19 Pandemic

Clinical laboratory data was key in identifying antibiotic-resistant bacteria responsible for surge in BSIs in hospitals and other healthcare facilities in 2020 and 2021

Clinical laboratory data compiled by the European Antimicrobial Resistance Surveillance Network (EARS-Net) shows that a massive increase in bloodstream infections (BSIs) occurred among EU nations during the first two years of the COVID-19 pandemic. The study found that BSIs caused by certain antimicrobial-resistant (AMR) pathogens, known as superbugs, more than doubled in EU hospitals and healthcare facilities in 2020 and 2021. 

Microbiologists and clinical laboratory managers in the US may find it valuable to examine this peer-reviewed study into AMR involved in blood stream infections. It could contain useful insights for diagnosing patients suspected of BSIs in US hospitals where sepsis prevention and antibiotic stewardship programs are major priorities.

The EU researchers published their findings in the journal Eurosurveillance, titled, “Large Increase in Bloodstream Infections with Carbapenem-resistant Acinetobacter Species During the First Two years of the COVID-19 Pandemic, EU/EEA, 2020 and 2021.” The paper outlines what the author’s characterize as the alarming rise in BSIs caused by the Acinetobacter species of bacteria.

Tedros Adhanom Ghebreyesus, PhD

“Antimicrobial resistance undermines modern medicine and puts millions of lives at risk,” said Tedros Adhanom Ghebreyesus, PhD, Director-General, World Health Organization, in a WHO press release. “To truly understand the extent of the global threat and mount an effective public health response to [antimicrobial resistance], we must scale up microbiology testing and provide quality-assured data across all countries, not just wealthier ones.” Clinical laboratories in the US may be called upon to submit data on bloodstream infections in this country. (Photo copyright: WHO.)

Clinical Laboratories in EU Report Huge Increase in Carbapenem Resistance

To perform their study, researchers measured the increase in Acinetobacter BSIs between 2020 and 2021, the first two years of the COVID-19 pandemic. Their data originated from qualitative regular antimicrobial susceptibility testing (AST) from blood samples collected by local clinical laboratories in the European Union/European economic area (EU/EEA) nations.

The researchers limited their dataset to Acinetobacter BSI information from the European medical laboratories that documented results of carbapenem susceptibility testing for the bacterial species.

Carbapenems are a class of very powerful antibiotics that are typically used to treat severe bacterial infections. A total of 255 EU/EEA clinical laboratories reported their data for the study. The scientists found that the percentages of Acinetobacter resistance varied considerably between EU/EEA nations, so they separated the countries into three different groups: 

  • Nations in Group One—The Netherlands, Belgium, Austria, Estonia, Denmark, Germany, Iceland, Finland, Luxembourg, Ireland, Norway, Sweden, and Malta—experienced less than 10% resistance to carbapenems.
  • Nations in Group Two—Slovenia, Czech Republic, and Portugal—had carbapenem resistance between 10% and 50%.
  • Nations in Group Three—Croatia, Bulgaria, Greece, Cyprus, Italy, Hungary, Lithuania, Latvia, Romania, Poland, Spain, and Slovakia—demonstrated carbapenem resistance equal or greater than 50%.

The study also found that Acinetobacter BSIs rose by 57% and case counts increased by 114% in 2020 and 2021 when compared to 2018 and 2019. The percentage of resistance to carbapenems rose to 66% in 2020 and 2021, up from 48% in 2018 and 2019. 

Antimicrobial Resistance Especially High in Hospital Settings

The researchers further arranged the data into three hospital ward types: intensive care unit (ICU), non-ICU, and unknown. The increase in BSIs caused by Acinetobacter species resistant to carbapenems was greater in ICU-admitted individuals (144%) than non-ICU-admitted individuals (41%).

There are more than 50 species of Acinetobacter bacteria and various strains are often resistant to many types of commonly-used antibiotics. Symptoms of an Acinetobacter infection usually appear within 12 days after a person comes into contact with the bacteria. These symptoms may include:

  • Blood infections,
  • Urinary tract infections,
  • Pneumonia, and
  • Wound infections.

Healthy people have a low risk of contracting an Acinetobacter infection with the highest number of these infections occurring in hospitals and other healthcare settings. Acinetobacter bacteria can survive for a long time on surfaces and equipment, and those working in healthcare or receiving treatment are in the highest risk category.

The prevalence of this type of bacteria increases in relation to the use of medical equipment, such as ventilators and catheters, as well as antibiotic treatments.

WHO Report Validates EARS-Net Research

In December of 2022, the World Health Organization (WHO) issued a Global Antimicrobial Resistance and Use Surveillance System (GLASS) report that revealed the presence of an increasing resistance to antibiotics in some bacterial infections. That report showed high levels (above 50%) of resistance in bacteria that frequently caused bloodstream infections in hospitals, such as Klebsiella pneumonia and Acinetobacter.

The WHO report examined data collected during 2020 from 87 different countries and found that common bacterial infections are becoming increasingly resistant to treatments. Both Klebsiella pneumoniae and Acinetobacter can be life threatening and often require treatment with strong antibiotics, such as carbapenems.

More research is needed to determine the reasons behind increases in Acinetobacter infections as reported in European hospitals and other healthcare settings, and to ascertain the extent to which they are related to hospitalizations and the upsurge in antimicrobial resistance during the COVID-19 pandemic.

Microbiologists and clinical laboratory managers in the US may want to learn more about the fIndings of this European study involving AMR and use those insights to plan accordingly for any future increase in bloodstream infections in this country. 

JP Schlingman

Related Information:

Enormous Rise in Acinetobacter Bloodstream Infection Cases in Initial Two Years of COVID-19

COVID Pandemic Led to Surge in Superbug Infections, EU Agency Says

Large Increase in Bloodstream Infections with Carbapenem-resistant Acinetobacter Species During the First 2 years of the COVID-19 Pandemic, EU/EEA, 2020 and 2021

Antimicrobial Resistance in the EU/EEA (EARS-Net)–Annual Epidemiological Report for 2021

Acinetobacter: What to know

Some Bloodstream Infection Bacteria Grew Resistant to Last-resort Drugs in 2020 – WHO

Report Signals Increasing Resistance to Antibiotics in Bacterial Infections in Humans and Need for Better Data

Carbapenem-resistant Acinetobacter

During Pandemic, Clinical Laboratories Should Be Alert for Drug Resistant Infections That Pose High Risk to COVID-19 Patients

On top of everything else during this pandemic, drug-resistant infections are threatening the most vulnerable patients in COVID-19 ICUs

New study by researchers at the University of Minnesota highlights the continuing need for microbiologists and clinical laboratories to stay alert for COVID-19 patients with drug-resistant infections. In their study, researchers highlighted CDC statistics about the number of Candida auris (C. auris) infections reported in the United States during 2020, for example.

In a paper, titled, “Three Cases of Worrisome Pan-Resistant C Auris Found in New York,” the Center for Infectious Disease Research and Policy (CIDRAP) at the University of Minnesota reported that “As of Dec 11, the CDC said 941 confirmed and probable C. auris cases have been reported in 13 states, and an additional 1,830 patients have been found to be colonized with the multidrug-resistant fungus. Most of the cases have been detected in the New York City area, New Jersey, and the Chicago area.”

Candida auris is a particularly nasty fungus. It spreads easily, is difficult to remove from surfaces, and can kill. Worst of all, modern drugs designed to combat this potentially deadly fungus are becoming less effective at eradicating it, and COVID-19 ICU patients appear especially vulnerable to C. auris infections.

In “Potentially Fatal Fungus Invades Hospitals and Public Is Not Informed,” Dark Daily reported how Candida auris’ ability to elude detection makes decontamination of hospital rooms far more complicated. And in “CDC Ranks Two More Drug-Resistant Microbes as ‘Urgent Threat’ to Americans; Clinical Laboratories Are Advised to Increase Awareness of Antimicrobial Resistance,” we covered how the federal Centers for Disease Control and Prevention (CDC) added C. auris to its “Biggest Threats and Data: Antibiotic Resistance Threats in the United States” report for 2019.

COVID-19 and C. auris a Potentially Devastating Combination

Hospitals in many areas are at a critical capacity. Thus, hospital-acquired infections such as sepsis can be particularly dangerous for COVID-19 patients. Adding to the problem, C. auris requires special equipment to identify, and standard medical laboratory methods are not always enough. Misidentification is possible, even probable.

A paper in the Journal of Global Antimicrobial Resistance (JGAR), titled, “The Lurking Scourge of Multidrug Resistant Candida Auris in Times of COVID-19 Pandemic,” notes that “A particularly disturbing feature of COVID-19 patients is their tendency to develop acute respiratory distress syndrome that requires ICU admission, mechanical ventilation, and/or extracorporeal membrane oxygenation. … This haunting facet of COVID-19 pandemic has severely challenged even the most advanced hospital settings. Yet one potential confounder, not in the immediate attention of most healthcare professionals, is the secondary transmission of multidrug resistant organisms like the fungus Candida auris in COVID-19 ICUs. … C. auris outbreaks occur in critically ill hospitalized patients and can result in mortalities rates ranging from 30% to 72%. … Both C. auris and SARS-CoV-2 have been found on hospital surfaces including on bedrails, IV poles, beds, air conditioner ducts, windows and hospital floors. Therefore, the standard COVID-19 critical care of mechanical ventilation and protracted ventilator-assisted management makes these patients potentially susceptible to colonization and infections by C. auris.”

One study mentioned in the JGAR paper conducted in New Delhi, India, looked at 596 cases where patients were admitted to the ICU with COVID-19. Fifteen of them had infections caused by C. auris. Eight of those patients died. “Of note, four patients who died experienced persistent fungemia and despite five days of micafungin therapy, C. auris again grew in blood culture,” according to reporting on the study in Infection Control Today (ICT).

Some C. auris mortality rates are as high as 72%. And patients with weakened immune systems are at particular risk, “making it an even more serious concern when 8% to 9% of roughly 530,000 ICU patients in the United States have COVID-19,” ICT reported.

Apparently, the COVID-19 pandemic has created circumstances that are particularly suited for C. auris to spread. “Given the nosocomial transmission of SARS-CoV-2 by those infected, many hospital environments may serve as venues for C. auris transmission as it is a known environmental colonizer of ICUs,” wrote the JGAR paper authors.

CDC Reports and Recommendations

Along with being especially dangerous for people with weakened immune systems, C. auris infections also produce symptoms similar to those of COVID-19, “including fever, cough, and shortness of breath,” according to the CDC’s website. People admitted to ICUs with COVID-19 are especially vulnerable to bacterial and fungal co-infections. “These fungal co-infections are reported with increasing frequency and can be associated with severe illness and death,” says the CDC.

C. auris outbreaks in the United States have mostly been in long-term care facilities, but the pandemic seems to be changing that and more outbreaks have been detected in acute care facilities, the CDC reported. The lack of appropriate personal protective equipment (PPE), changes in infection control routines, and other factors could be to blame for the increase.

Just as community spread is an issue with COVID-19 variants, so too is it a concern with C. auris infections. “New C. auris cases without links to known cases or healthcare abroad have been identified recently in multiple states, suggesting an increase in undetected transmission,” the CDC noted.

As of January 19, 2021, according to the CDC the case count of C. auris infections in the US was 1,625, with California, Florida, Illinois, New Jersey, and New York having more than 100 cases each.

According to a CDC report, “Candida auris (C. auris) is an emerging multidrug-resistant yeast (a type of fungus). It can cause severe infections and spreads easily between hospitalized patients and nursing home residents.” The graphic above, taken from the report, illustrates how “C. auris began spreading in the United States in 2015. Reported cases increased 318% in 2018 when compared to the average number of cases reported in 2015 to 2017.” (Graphic copyright: Centers for Disease Control and Prevention.)

Using Clinical Laboratory Tests to Identify C. Auris

One of the big concerns about C. auris is that it is so difficult to detect, and that medical laboratories in some countries simply do not have the technology and resources to identify and tackle the infection.

“As C. auris diagnostics in resource-limited countries is yet another challenge, we feel that alerting the global medical community about the potential of C. auris as a confounding factor in COVID-19 is a necessity,” wrote the authors of the paper published in the Journal of Global Antimicrobial Resistance.

As if the COVID-19 pandemic has not been enough, drug resistant bacteria, viruses, and deadly fungi are threatening to wreak havoc among SARS-CoV-2 infected patients. Microbiologists and medical laboratory scientists know that testing for all types of infections is vitally important, but especially when it comes to infections caused by antibiotic-resistant bacteria (ARB) and other dangerous organisms that demonstrate antimicrobial resistance (AMR).

Microbiologists and clinical laboratory professionals will want to stay informed about the number of C. auris cases identified in the US and the locations and settings where the fungus was detected. They will want to be on the alert within their hospitals and health networks, as well as with the doctor’s offices served by their labs.

—Dava Stewart

Related Information:

Potentially Fatal Fungus Invades Hospitals and Public Is Not Informed

CDC Ranks Two More Drug-Resistant Microbes as ‘Urgent Threat to Americans; Clinical Laboratories Are Advised to Increase Awareness of Antimicrobial Resistance:

Biggest Threats and Data: Antibiotic Resistance Threats in the United States report for 2019

Three Cases of Worrisome Pan-Resistant C auris Found in New York

COVID Unleashes the ‘Lurking Scourge’ Candida Auris

The Lurking Scourge of Multidrug Resistant Candida auris in Times of COVID-19 Pandemic

CDC: Fungal Diseases and COVID-19

CDC: Candida auris

University of Edinburgh Study Finds Antimicrobial Bacteria in Hospital Wastewater in Research That Has Implications for Microbiologists

The highly infectious bacteria can survive treatment at local sewage plants and enter the food chain of surrounding populations, the study revealed

Researchers at the University of Edinburgh (UE) in Scotland found large amounts of antimicrobial-resistance (AMR) genes in hospital wastewater. These findings will be of interest to microbiologists and clinical laboratory managers, as the scientists used metagenomics to learn “how abundances of AMR genes in hospital wastewater are related to clinical activity.”

The UE study sheds light on the types of bacteria in wastewater that goes down hospital pipes to sewage treatment plants. The study also revealed that not all infectious agents are killed after passing through waste treatment plants. Some bacteria with antimicrobial (or antibiotic) resistance survive to enter local food sources. 

The scientists concluded that the amount of AMR genes found in hospital wastewater was linked to patients’ length-of-stays and consumption of antimicrobial resistant bacteria while in the hospital.

Using Metagenomics to Surveille Hospital Patients

Antimicrobial resistance is creating super bacteria that are linked to increases in hospital-acquired infections (HAIs) nationwide. Dark Daily has reported many times on the growing danger of deadly antimicrobial resistant “super bugs,” which also have been found in hospital ICUs (see “Potentially Fatal Fungus Invades Hospitals and Public Is Not Informed,” August 26, 2019.)

In a paper the University of Edinburgh published on medRxiv, the researchers wrote: “There was a higher abundance of antimicrobial-resistance genes in the hospital wastewater samples when compared to Seafield community sewage works … Sewage treatment does not completely eradicate antimicrobial-resistance genes and thus antimicrobial-resistance genes can enter the food chain through water and the use of [processed] sewage sludge in agriculture. As hospital wastewater contains inpatient bodily waste, we hypothesized that it could be used as a representation of inpatient community carriage of antimicrobial resistance and as such may be a useful surveillance tool.”

Additionally, they wrote, “Using metagenomics to identify the full range of AMR genes in hospital wastewater could represent a useful surveillance tool to monitor hospital AMR gene outflow and guide environmental policy on AMR.”

AMR bacteria also are being spread by human touch throughout city subways, bus terminals, and mass transportation, making it difficult for the Centers for Disease Control and Prevention (CDC) to identify the source of the outbreak and track and contain it. This has led microbiologists to conduct similar studies using genetic sequencing to identify ways to track pathogens through city infrastructures and transportation systems. (See, “Microbiologists at Weill Cornell Use Next-Generation Gene Sequencing to Map the Microbiome of New York City Subways,” December 13, 2013.)

Antimicrobial stewardship programs are becoming increasingly critical to preventing the spread of AMR bacteria. “By having those programs, [there are] documented cases of decreased antibiotic resistance within organisms causing these infections,” Paul Fey, PhD, of the University of Nebraska Medical Center, told MedPage Today. “This is another indicator of how all hospitals need to implement stewardship programs to have a good handle on decreasing antibiotic use.” [Photo copyright: University of Nebraska.]

Don’t Waste the Wastewater

Antibiotic resistance occurs when bacteria change in response to medications to prevent and treat bacterial infections, according to a World Health Organization (WHO) fact sheet. The CDC estimates that more than 23,000 people die annually from two million antibiotic-resistance infections.

Wastewater, the UE scientists suggest, should not go to waste. It could be leveraged to improve hospitals’ detection of patients with antimicrobial resistance, as well as to boost environment antimicrobial-resistance polices.

They used metagenomics (the study of genetic material relative to environmental samples) to compare the antimicrobial-resistance genes in hospital wastewater against wastewater from community sewage points. 

The UE researchers:

  • First collected samples over a 24-hour period from various areas in a tertiary hospital;
  • They then obtained community sewage samples from various locations around Seafield, Scotland;
  • Finally, they complete the genetic sequencing on an Illumina HiSeq4000 System.

The researchers reported these findings:

  • 181 clinical isolates were identified in the samples of wastewater;
  • 1,047 unique bacterial genes were detected across all samples;
  • 19 genes made up more than 60% of bacteria in samples;
  • Overriding bacteria identified as Pseudomonas and Acinetobacter environmental samples (Pseudomonas fluorescens and Acinetobacter johnsonii) were most likely from hospital pipes;
  • Gut-related bacteria—Faecalibacterium, Bacteroides, Bifidobacterium, and Escherichia, were more prevalent in the hospital samples than in those from the community;
  • Antimicrobial-resistance genes increased with longer length of patient stays, which “likely reflects transmission amongst hospital inpatients,” researchers noted. 

Fey suggests that further research into using sequencing technology to monitor patients is warranted.

“I think that monitoring each patient and sequencing their bowel flora is more likely where we’ll be able to see if there’s a significant carriage of antibiotic-resistant organisms,” Fey told MedPage Today. “In five years or so, sequencing could become so cheap that we could monitor every patient like that.”

Fey was not involved in the University of Edinburgh research.

Given the rate at which AMR bacteria spreads, finding antibiotic-resistance genes in hospital wastewater may not be all that surprising. Still, the University of Edinburgh study could lead to cost-effective ways to test the genes of bacteria, which then could enable researchers to explore different sources of infection and determine how bacteria move through the environment.

And, perhaps most important, the study suggests clinical laboratories have many opportunities to help eliminate infections and slow antibiotic resistance. Microbiologists can help move their organizations forward too, along with infection control colleagues.  

—Donna Marie Pocius

Related Information:

Secrets of the Hospital Underbelly: Abundance of Antimicrobial-Resistance Genes in Hospital Wastewater Reflects Hospital Microbial Use and Inpatient Length of Stay

Antibiotic-Resistance Genes Trouble Hospital Water; Study Emphasizes Importance of Antibiotic Stewardship Programs, Expert Says

Fact Sheet: Antibiotic Resistance

United States Gathers 350 Commitments to Combat Antibiotic Resistance, Action Must Continue

Genomic Analysis of Hospital Plumbing Reveals Diverse Reservoir of Bacterial Plasmids Conferring Carbapenemase Resistance

Dark Daily E-briefings: Hospital-Acquired Infections

NIH Study Reveals Surprising New Source of Antibiotic Resistance that Will Interest Microbiologists and Medical Laboratory Scientists

;