News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

University of Athens Researchers Create Wooden Tongue Depressor with Biosensing Capabilities Capable of Identifying Biomarkers

Scientists believe the biodegradable device could someday help detect multiple saliva biomarkers. If true, it might provide a new type of test for clinical laboratories

When it comes to tongue depressors, it turns out you can teach an old dog new tricks. Researchers from National and Kapodistrian University of Athens Greece (NKUA) have taken this simple wooden medical tool and developed a high-tech biosensing device that may someday be useful at the point-of-care in hospitals and as a new type of test for clinical laboratories.

Using diode laser engraving, the researchers developed an “eco-friendly disposable sensor that can measure glucose levels and other biomarkers in saliva,” according to LabMedica.

This proof-of-principle biosensing device demonstrates the feasibility of “simultaneous determination of glucose and nitrite in artificial saliva,” according to the NKUA scientists who hope it will help doctors diagnose a variety of conditions.

The researchers published a paper on the development of their new wooden biosensor in the journal Analytical Chemistry titled, “Wooden Tongue Depressor Multiplex Saliva Biosensor Fabricated via Diode Laser Engraving.”

biosensing tongue depressor

In their published paper, the scientists at the University of Athens wrote that their wooden electrochemical biosensing tongue depressor (above) “is an easy-to-fabricate disposable point-of-care chip with a wide scope of applicability to other bioassays,” and that “it paves the way for the low-cost and straightforward production of wooden electrochemical platforms.” Might this and other similar biosensing devices eventually find their way to clinical laboratories for use in identifying and tracking certain biomarkers for disease? (Photo copyright: University of Athens.)


How to Make a High-Tech Tongue Depressor

Though wood is affordable and accessible, it doesn’t conduct electricity very well. The researchers’ first attempt to solve this problem was to use the wood as “a passive substrate” to which they coated “metals and carbon-based inks,” LabMedica reported. After that they tried using high-powered lasers to “char specific regions on the wood, turning those spots into conductive graphite.” But that process was complicated, expensive, and a fire hazard.

The researchers eventually turned to “low-power diode lasers” which have been used successfully “to make polyimide-based sensors but have not previously been applied to wooden electronics and electrochemical sensors,” LabMedica noted.

In their Analytical Chemistry paper, the researchers wrote, “A low-cost laser engraver, equipped with a low-power (0.5 W) diode laser, programmably irradiates the surface of the WTD [wooden tongue depressor], forming two mini electrochemical cells (e-cells). The two e-cells consist of four graphite electrodes: two working electrodes, a common counter, and a common reference electrode. The two e-cells are spatially separated via programmable pen-plotting, using a commercial hydrophobic marker pen.”

In other words, the researchers “used a portable, low-cost laser engraver to create a pattern of conductive graphite electrodes on a wooden tongue depressor, without the need for special conditions. Those electrodes formed two electrochemical cells separated by lines drawn with a water-repellent permanent marker,” states a press release from the American Chemical Society.

“The biosensor was then used to quickly and simultaneously measure nitrite and glucose concentrations in artificial saliva. Nitrite can indicate oral diseases like periodontitis, while glucose can serve as a diagnostic for diabetes. The researchers suggest that these low-cost devices could be adapted to detect other saliva biomarkers and could be easily and rapidly produced on-site at medical facilities,” LabMedica reported.

Benefits of Using Wood

One of the major benefits of using wood for their biosensing device is how environmentally friendly it is. “Since wood is a renewable, biodegradable naturally occurring material, the development of conductive patterns on wood substrates is a new and innovative chapter in sustainable electronics and sensors,” the researchers wrote in Analytical Chemistry.

Additionally, the tongue depressor features “An easy-to-fabricate disposable point-of-care chip with a wide scope of applicability to other bioassays, while it paves the way for the low-cost and straightforward production of wooden electrochemical platforms,” the researchers added.

This adds to a growing trend of developing bioassay products that keep the health of our planet in mind.

In “University of Pennsylvania Researchers Use Cellulose to Produce Accurate Rapid COVID-19 Test Results Faster and Cheaper than Traditional PCR Tests,” we covered how researchers at the University of Pennsylvania (UPenn) had developed a biodegradable rapid COVID-19 test that uses bacterial cellulose (BC) instead of printed circuit boards (PCBs) as its biosensor.

“This new BC test is non-toxic, naturally biodegradable and both inexpensive and scalable to mass production, currently costing less than $4.00 per test to produce. Its cellulose fibers do not require the chemicals used to manufacture paper, and the test is almost entirely biodegradable,” a UPenn blog post noted.

New Future Tool Use in Clinical Diagnostics

Who could have predicted that the lowly wooden tongue depressor would go high tech with technology that uses lasers to convert it to an electrochemical multiplex biosensing device for oral fluid analysis? This is yet another example of technologies cleverly applied to classic devices that enable them to deliver useful diagnostic information about patients.

And while a biosensing tongue depressor is certainly a diagnostic tool that may be useful for nurses and physicians in clinic and hospital settings, with further technology advancements, it could someday be used to collect specimens that measure more than glucose and nitrites.

—Kristin Althea O’Connor

Related Information:

Wooden Tongue Depressor Multiplex Saliva Biosensor Fabricated via Diode Laser Engraving

Say ‘Ahhh’: This Ecofriendly Tongue Depressor Checks Vitals

Biosensor-Fabricated Wooden Tongue Depressor Measures Glucose and Nitrite in Saliva

University of Pennsylvania Researchers Use Cellulose to Produce Accurate Rapid COVID-19 Test Results Faster and Cheaper than Traditional PCR Tests

Researchers are working to create accurate rapid COVID-19 tests with lower costs and less waste than existing rapid clinical laboratory tests

University of Pennsylvania (UPenn) researchers have developed a biodegradable rapid COVID-19 test that raises the bar on traditional polymerase chain reaction (PCR) tests, which throughout the COVID-19 pandemic have been the gold standard for SARS-CoV-2 diagnostic testing.

Many clinical laboratory professionals are aware of the significant amount of waste going into landfills from spent COVID-19 rapid PCR tests that use biosensors to produce results. These biosensor systems “use printed circuit boards, or PCBs, the same materials used in computers. PCBs are difficult to recycle and slow to biodegrade, using large amounts of metal, plastic, and non-eco-friendly materials,” according to a Penn Engineering Today blog post.

UPenn’s new test does not use PCBs. Instead, its biosensor uses “bacterial cellulose (BC), an organic compound synthesized from several strains of bacteria,” the blog post noted.

“This new BC test is non-toxic, naturally biodegradable and both inexpensive and scalable to mass production, currently costing less than $4.00 per test to produce. Its cellulose fibers do not require the chemicals used to manufacture paper, and the test is almost entirely biodegradable,” the blog post continued.

The Penn engineers published their findings in the journal Cell Reports Physical Science titled, “A Bacterial Cellulose-Based and Low-Cost Electrochemical Biosensor for Ultrasensitive Detection of SARS-CoV-2.”

Cesar de la Fuente, PhD

“There is a need for biodegradable diagnostic testing,” said Cesar de la Fuente, PhD (above), Presidential Assistant Professor in the Psychiatry Department at the University of Pennsylvania’s Perelman School of Medicine. “We will be continuing to perfect this technology, which could hopefully help many people in the future, while also looking to expand it to other emerging pathogens in anticipation of future pandemics.” Clinical laboratories engaged in SARS-CoV-2 testing during the COVID-19 pandemic can attest to the massive amounts of waste generated by traditional PCR testing. (Photo copyright: University of Pennsylvania.)

Evolution of Improvement for SARS-CoV-2 Diagnostic Assays

Cesar de la Fuente, PhD, is Presidential Assistant Professor in the Psychiatry Department at the Perelman School of Medicine. His lab has been hard at work since the start of the pandemic to improve COVID-19 testing. The recent study was a collaboration between University of Pennsylvania’s de la Fuente Lab and William Reis de Araujo, Professor in Analytical Chemistry at the State University of Campinas (UNICAMP) in São Paulo, Brazil.

De Araujo leads the Portable Chemical Sensors Lab and has been pairing his electrochemistry expertise with de la Fuente’s lab for years, Penn Engineering Today noted.

The team wanted to combine the speed and cost-effectiveness of previous rapid tests with an eco-friendly biodegradable substrate material.

Bacterial cellulose (BC) was a great choice because it “naturally serves as a factory for the production of cellulose, a paper-like substance which can be used as the basis for biosensors,” Penn Engineering Today reported.

Additionally, BC has an excellent track record for a variety of uses, such as regenerative medicine, wound care, and point-of-care (POC) diagnostics, the blog post noted. UPenn’s test offers speed and accuracy without needing costly equipment making it desirable for clinical laboratories preparing to fight the next pandemic.

The test has shown to be capable of “correctly identifying multiple variants in under 10 minutes. This means that the tests won’t require ‘recalibration’ to accurately test for new variants,” Penn Engineering Today added.

Innovation Born from Inspiration

Though rapid tests are essential to help curb the spread of COVID-19, the negatives that come with these tests didn’t sit well with the UPenn team. This spurred them to strive for improvements.

PCR tests “are hampered by waste [metal, plastic, and the aforementioned PCBs]. They require significant time [results can take up to a day or more] as well as specialized equipment and labor, all of which increase costs,” Penn Engineering Today noted.

Additionally, “Sophistication of PCR tests makes them harder to tweak and therefore slower to respond to new variants,” the blog post concluded.

“There’s a tension between these two worlds of innovation and conservation,” de la Fuente told Penn Engineering Today. “When we create new technology, we have a responsibility to think through the consequences for the planet and to find ways to mitigate the environmental impact.” 

Need for Biodegradable Diagnostic Tests

“COVID-19 has led to over 6.8 million deaths worldwide and continues to affect millions of people, primarily in low-income countries and communities with low vaccination coverage,” the Cell Reports Physical Science paper noted.

“There is a need for biodegradable diagnostic testing,” de la Fuentes told Penn Engineering Today. “We will be continuing to perfect this technology, which could hopefully help many people in the future, while also looking to expand it to other emerging pathogens in anticipation of future pandemics.”

While UPenn’s test will require clinical trials and FDA approval before it can become available to clinical laboratories and for point-of-care testing, it promises a bright, eco-friendly future for rapid viral testing.

—Kristin Althea O’Connor

Related Information:

Penn Engineers Create Low-Cost, Eco-Friendly COVID Test

A Bacterial Cellulose-Based and Low-Cost Electrochemical Biosensor for Ultrasensitive Detection of SARS-CoV-2

Rapid COVID-19 Diagnostic Test Delivers Results within Four Minutes with 90% Accuracy

Penn Researchers Develop Faster, Biodegradable COVID-19 Tests

Penn Medicine Researchers Develop Fast, Accurate, Inexpensive COVID-19 Diagnostic Test Based on Electrochemical Technology

;