News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Researchers in Japan Have Developed a ‘Smart’ Diaper Equipped with a Self-powered Biosensor That Can Monitor Blood Glucose Levels in Adults

The ongoing study shows promise in the general development of self-powered wearable biosensors, the researchers say, in a development that has implications for clinical laboratory testing

Years back, it would be science fiction to describe a wearable garment that can not only measure an individual’s biomarkers in real-time, but also generates the power the device needs from the very specimen used for the measurement. Clinical laboratory managers and pathologists may find this new technology to be an interesting milestone on the path to wearable diagnostic devices.

With cases of diabetes on the rise across the globe, innovative ways to monitor the disease and simplify care is critical for effective diagnoses and treatment. Now, a team of researchers at Tokyo University of Science (TUS) in Japan have recently developed a diaper that detects blood glucose levels in individuals living with this debilitating illness.

Of equal interest, this glucose-testing diaper has a self-powered sensor that utilizes a biofuel cell to detect the presence of urine, measure its glucose concentration, and then wirelessly transmit that information to medical personnel and patients. The biofuel cell generates its own power directly from the urine.

Glucose in urine provides valuable data regarding blood sugar levels and can be used as an alternative to frequent blood draws to measure those levels. Monitoring the onset and progression of diabetes is crucial to making patient care easier, particularly in elderly and long-term care patients. Widespread use of these diapers in skilled nursing facilities and other healthcare settings could create an opportunity for clinical laboratories to do real-time monitoring of the blood sugar measurements and alert providers when a patient’s glucose levels indicate the need for attention.

“Besides monitoring glucose in the context of diabetes, diaper sensors can be used to remotely check for the presence of urine if you stock up on sugar as fuel in advance,” said Isao Shitanda, PhD, Associate Professor at the Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, in a TUS press release. “In hospitals or nursing care sites, where potentially hundreds of diapers have to be checked periodically, the proposed device could take a great weight off the shoulders of caregivers,” he added.

The TUS researchers published their findings in the peer-reviewed journal ACS Sensors, titled, “Self-Powered Diaper Sensor with Wireless Transmitter Powered by Paper-Based Biofuel Cell with Urine Glucose as Fuel.”

Creating Electricity from Urine

Through electrochemistry, the scientists created their paper-based biofuel cell so that it could determine the amount of glucose in urine via reduction oxidation reactions, or redox for short. Using a process known as “graft polymerization,” they developed a special anode that allowed them to “anchor glucose-reactive enzymes and mediator molecules to a porous carbon layer, which served as the base conductive material,” the press release noted.

The biosensor was tested using artificial urine at different glucose levels. The energy generated from the urine then was used to power up a Bluetooth transmitter to remotely monitor the urine concentration via a smartphone. The TUS researchers determined their biofuel cell was able to detect sugar levels present in urine within one second. The diaper with its sensor could help provide reliable and easy monitoring for diabetic and pre-diabetic patients.

“We believe the concept developed in this study could become a very promising tool towards the general development of self-powered wearable biosensors,” Shitanda said in the press release.

Isao Shitanda, PhD

According to the Isao Shitanda, PhD (above), lead author of the TUS study, 34.2 million people, or just over 10% of the US population, were diagnosed with diabetes in 2020. The federal Centers for Disease Control and Prevention estimates that an additional 7.3 million people have diabetes and are undiagnosed. A self-powered biosensor that detects diabetes and prediabetes in urine could help clinical laboratories and doctors catch the disease early and/or monitor its treatment. (Photo copyright: Tokyo University of Science.)

The World Health Organization (WHO) estimates that 422 million people globally were living with diabetes in 2014, and that 1.5 million deaths could be attributed directly to diabetes in 2019.

Other “Smart Diaper” Products

The Lumi by Pampers smart diaper contains RFID sensors that detect moisture and alert parents or caregivers when it is time to change the baby’s diaper. These smart diapers help prevent skin irritations and other health issues that can arise from leaving a soiled diaper on for too long. And in “New ‘Smart Diaper’ Tests Baby’s Urine for Urinary Tract Infections, Dehydration, and Kidney Problems—Then Alerts Baby’s Doctor,” Dark Daily reported on a smart diaper developed by Pixie Scientific of New York that could test a baby’s urine for various urinary conditions.

A panel of colored squares embedded on the front of the diaper changed color if specific chemical reactions fell outside normal parameters. If such a color change was observed, a smart phone application could relay that information to the baby’s doctor to determine if any further testing was needed.

Since we wrote that ebriefing in 2013, Pixie Scientific has expanded its product line to include Pixie Smart Pads, which when added to a diaper, enable’s caregivers to monitor wearers for urinary tract infections (UTI) and report findings by smartphone to their doctors.

These examples demonstrate ways in which scientists are working to combine diagnostics with existing products to help people better manage their health. Wearable electronics and biosensors are increasingly helping medical professionals and patients monitor bodily functions and chronic diseases.

As clever as these new wearable devices may be, there is still the need to monitor the diagnostic data they produce and interpret this data as appropriate to the patient’s state of health. Thus, it is likely that pathologists and clinical laboratory professionals will continue to play an important role in helping consumers and providers interpret diagnostic information collected by wearable, point-of-care testing technology.

JP Schlingman

Related Information

Making Patient Care Easier: Self-powered Diaper Sensors That Monitor Urine Sugar Levels

Self-Powered Diaper Sensor with Wireless Transmitter Powered by Paper-Based Biofuel Cell with Urine Glucose as Fuel

National Diabetes Statistics Report, 2020

WHO Fact Sheet on Diabetes

The Smart Diaper is Coming. Who Actually Wants it?

What Is a Smart Diaper, and How Does It Work?

Are Smart Diapers Safe?

New ‘Smart Diaper’ Tests Baby’s Urine for Urinary Tract Infections, Dehydration, and Kidney Problems—Then Alerts Baby’s Doctor

Australia Launches Pilot Preventative Cancer Screening Program That Offers Low-cost DNA Genetic Testing to Healthy Adults Between Ages 18 to 40

Studies into use of population-level genomic cancer screening show promising results while indicating that such testing to find evidence of increased cancer risk among non-symptomatic people may be beneficial

In another example of a government health system initiating a program designed to proactively identify people at risk for a serious disease to allow early clinical laboratory diagnosis and monitoring for the disease, cancer researchers at Monash University in Australia have receive a $2.97 million grant from the Medical Research Future Fund (MRFF) to study ways to “identifying people who are living with a heightened cancer risk who would ordinarily be informed only after a potentially incurable cancer is diagnosed.”

The MRFF is a $20 billion fund controlled by the Australian Government’s Department of Health.

According to a Monash news release, the researchers, led by Associate Professor Paul Lacaze, PhD, Head of the Public Health Genomics Program at Monash University, plan to use the award to develop a “new low-cost DNA screening test which will be offered to 10,000 young Australians. The new approach, once scaled-up, has the potential to drastically improve access to preventive genetic testing in Australia, and could help make Australia the world’s first nation to offer preventive DNA screening through a public healthcare system.”

Called DNACancerScreen, the clinical genetic test will be offered to anyone between the ages of 18 and 40, rather than to a select group of people who have a family history of cancer or who present with symptoms. The Monash scientists hope to advance knowledge about the relationship of specific genes and how they cause or contribute to cancer. Such information, they believe, could lead to the development of new precision medicine diagnostic tests and anti-cancer drug therapies.

Gap in Current Cancer Screening Practices

The DNACancerScreen test will look for genes related to two specific cancer categories:

These are considered Tier 1 genetic risks by the federal Centers for Disease Control and Prevention (CDC).

Hereditary Breast and Ovarian Cancer Syndrome is associated with an increased risk of developing breast, ovarian, prostate, and pancreatic cancers, as well as melanoma. Lynch Syndrome is associated with colorectal, endometrial, ovarian, and other cancers.

Currently, screening practices may miss as many as 50-90% of individuals who carry genetic mutations associated with hereditary breast and ovarian cancer, and as many as 95% of those at risk due to Lynch Syndrome, according to the Monash news release.

But currently, only those with a family history of these cancers, or those who present with symptoms, are screened. By targeting younger individuals for screening, Lacaze and his team hope to give those at risk a better chance at early detection.

“This will empower young Australians to take proactive steps to mitigate risk, for earlier detection, surveillance from a younger age, and prevention of cancer altogether,” Lacaze said in the news release.

Paul Lacaze

Along with the possibility of saving lives, Associate Professor Paul Lacaze, PhD (above), Head of the Public Health Genomics Program at Monash University, expects that the screening program will have an economic impact as well. “This type of preventive DNA testing will not only save lives, but also save the Australian public healthcare system money by preventing thousands of cancers,” he said. There’s evidence to back up his statement. In 2019 he led a team that published a study, titled, “Population Genomic Screening of All Young Adults in a Healthcare System: A Cost Effectiveness Analysis.” That study concluded, “Preventive genomic screening in early adulthood would be highly cost-effective in a single-payer healthcare system, but ethical issues must be considered.” (Photo copyright: Monash University.)

Similar Genetic Studies Show Encouraging Results

Although the DNACancerScreen study in Australia is important, it is not the first to consider the impact of population-level screening for Tier 1 genetic mutations. The Healthy Nevada Project (HVN), a project that combined genetic, clinical, environmental, and social data, tested participants for those Tier 1 conditions. The project was launched in 2016 and currently has more than 50,000 participants, a Desert Research Institute (DRI) press release noted. 

In 2018, HVN began informing participants who had increased risk for hereditary breast and ovarian cancer, Lynch Syndrome, and a third condition called Familial Hypercholesterolemia. There were 27,000 participants, and 90% of those who had genetic mutations associated with the three Tier 1 conditions had not been previously identified.

“Our first goal was to deliver actionable health data back to the participants of the study and understand whether or not broad population screening of CDC Tier 1 genomic conditions was a practical tool to identify at-risk individuals,” said Joseph Grzymski, PhD, lead author of the HVN study in the DRI press release.

Grzymski is Principal Investigator of the Healthy Nevada Project, Director of the Renown Institute for Health Innovation, Chief Scientific Officer for Renown Health, and a Research Professor in Computational Biology and Genetics at the Desert Research Institute.

“Now, two years into doing that it is clear that the clinical guidelines for detecting risk in individuals are too narrow and miss too many at risk individuals,” he added.

A total of 358, or 1.33% of the 26,906 participants in the Healthy Nevada Project were carriers for the Tier 1 conditions, but only 25% of them met the current guidelines for screening, and only 22 had any previous suspicion in their medical records of their genetic conditions.

Another project, the MyCode Community Health Initiative conducted at Geisinger Health System, found that 87% of participants with a Tier 1 gene variant did not have a prior diagnosis of a related condition. When the participants were notified of their increased risk, 70% chose to have a related, suggested procedure.

“This evidence suggests that genomic screening programs are an effective way to identify individuals who could benefit from early intervention and risk management—but [who] have not yet been diagnosed—and encourage these individuals to take measures to reduce their risk,” a Geisinger Health press release noted.

Realizing the Promise of Precision Medicine

Studies like these are an important step in realizing the potential of precision medicine in practical terms. The Tier 1 genetic conditions are just a few of the more than 22,000 recognized human genes of which scientists have a clear understanding. Focusing only on those few genetic conditions enables clinicians to better help patients decide how to manage their risk.

“Genomic screening can identify at-risk individuals more comprehensively than previous methods and start people on the path to managing that risk. The next step is figuring out the impact genomic screening has on improving population health,” said Adam Buchanan, MPH, MS, Director of Geisinger’s Genomic Medicine Institute.

These are positive developments for clinical laboratories and anatomic pathology group practices. The three examples cited above show that a proactive screening program using genetic tests can identify individuals at higher risk for certain cancers. Funding such programs will be the challenge.

At the current cost of genetic testing, screening 100 people to identify a few individuals at high risk for cancer would probably not be considered the highest and best use of the limited funds available to the healthcare system.

—Dava Stewart

Related Information

Landmark New DNA Screening Study to Offer Free Genetic Testing to Young Adults for Cancer Risk

Population Genomic Screening of All Young Adults in a Healthcare System: A Cost-Effectiveness Analysis

Population Genetic Screening Shown to Efficiently Identify Increased Risk for Inherited Disease

Population Genetic Screening Efficiently Identifies Carriers of Autosomal Dominant Diseases

Results of Observational Study Published in Genetics in Medicine

Geisinger Researchers Find Genomic Screening Effective in Detecting Risk for Previously Undiagnosed Conditions

Researchers in Germany Sequence Genome of Bubonic Plague Bacteria Taken from Remains of Man who Lived More than 5,000 Years Ago

Advancements in genetic sequencing continue to enable microbiologists and genetic scientists to explore the origins and mutations of deadly diseases

Microbiologists and researchers can now study the gene sequence of 5,000-year-old bubonic plague bacteria. The scientific team that achieved this feat of gene sequencing believes this is the oldest case of the ancient strain of the plague found to date.

Scientists working at the Institute of Clinical Molecular Biology (IKMB) at the Kiel University and the Centre for Baltic and Scandinavian Archaeology (ZBSA) in Germany, and at the Institute of Latvian History (LVI) at the University of Latvia, recently found remnants of Yersinia Pestis, the infectious bacterium that causes the bubonic plague, in the jawbone of a man who lived more than 5,000 years ago.

For microbiologists, this demonstrates how advances in gene sequencing technologies are allowing scientists to go further back in time to look at how the genomes of bacteria and viruses have evolved and mutated. This helps science understand the process of genetic mutation, as well as learning which mutations survived because they could more easily infect humans.

The scientists published their findings in the peer-reviewed journal Cell Reports, titled, “A 5,000-Year-Old Hunter-Gatherer Already Plagued by Yersinia Pestis

Missing Gene has ‘Dramatic Influence on Virulence’ of Plague

To conduct their study, the researchers sequenced the genomes of samples from the teeth and bones of four hunter-gatherers and tested the remains for bacterial and viral pathogens. They found evidence of Yersinia pestis (Y. pestis) in the dental remains of a 20- to 30-year-old male dubbed RV 2039.

The jaw bones used for the research were discovered in the late 1800s in the Rinnukalns, a stone age settlement unearthed in present-day Republic of Latvia in the late 19th century.

Missing Genetic Element in Ancient Bacterium

The scientists were surprised to find evidence of Y. pestis in the remains and noted that the analysis of the microbe lacked a crucial genetic element observed in later strains of the bacteria. Missing was the gene that allows biting fleas to act as vectors to spread the plague to humans.

“What’s so surprising is that we see already in this early strain more or less the complete genetic set of Y. pestis, and only a few genes are lacking,” said biochemist and archeologist Ben Krause-Kyora, Professor and head of the Ancient DNA (aDNA) Laboratory at the University of Kiel in Germany, and one of the authors of the study, in a press release.

“But even a small shift in genetic settings can have a dramatic influence on virulence,” he added.

This absent gene also is responsible for creating the pus-filled buboes associated with the Black Death (bubonic plague) that occurred in the 1300s. The Black Death killed 75 million to 200 million people worldwide, mostly in Eurasia and North Africa. It is to date the most fatal pandemic recorded in human history.

Professor Ben Krause-Kyora and colleagues

“Different pathogens and the human genome have always evolved together,” said Professor Ben Krause-Kyora (above left with and Steve Zäuner at center and Dr. Silvia Codreanu-Windauer at right), in the press release. “We know Y. pestis most likely killed half of the European population in a short time frame, so it should have a big impact on the human genome. But even before that, we see major turnover in our immune genes at the end of the Neolithic Age, and it could be that we were seeing a significant change in the pathogen landscape at that time as well,” he added. (Photo copyright: Mittelbayerische.)

A Less Lethal Bubonic Plague?

Although RV 2039 most likely perished from the bubonic plague, the researchers believe his strain of the infection was more mild, less contagious, and not as lethal as the later genetic mutations of the bacteria that caused the Black Death pandemic. The researchers concluded that the man most likely contracted the disease through a bite from an infected rodent or other animal, the press release notes.

“Isolated cases of transmission from animals to people could explain the different social environments where these ancient diseased humans are discovered,” Krause-Kyora said in the press release. “We see it in societies that are herders in the steppe, hunter-gatherers who are fishing, and in farmer communities—totally different social settings but always spontaneous occurrence of Y. pestis cases.”

From Animal Bite to Flea Infection in 7,000 Years’ Worth of Mutations

The Y. pestis bacteria that infected RV 2039, the researchers surmised, most likely split from its predecessor, Yersinia pseudotuberculosis, which first appeared on Earth about 7,000 years ago. It most likely took Y. pestis over a thousand years to acquire all the mutations necessary for flea-based transmission of the bacteria to humans, the researchers noted.

“What’s most astonishing is that we can push back the appearance of Y. pestis 2,000 years farther than previously published studies suggested,” Krause-Kyora said. “It seems that we are really close to the origin of the bacteria.”

It is unknown how many cases still occur worldwide due to unreliable diagnoses and poor reporting in developing countries. However, data from the World Health Organization (WHO) states that there were 3,248 cases of plague reported worldwide between 2010 and 2015, including 584 deaths. Currently, the three most endemic countries for plague are the Democratic Republic of the Congo, Madagascar, and Peru.

The researchers’ findings illustrate how advances in gene sequencing technologies are helping microbiologists, virologists, and genetic scientists understand the affect mutations have on diseases that have plagued humans since the beginning of humanity itself.

Will this lead to new genomic diagnostics? Perhaps. The research is worth watching.

—JP Schlingman

Related Information

What a 5,000-year-old Plague Victim Reveals about the Black Death’s Origins

A 5,000-year-old Hunter-gatherer Already Plagued by Yersinia Pestis

This 5,000-year-old Man had the Earliest Known Strain of Plague

Five Things You Might Not Know about the Plague (Not Including the Fact That it Still Exists)

Plague: Frequently Asked Questions

Plague: Key Facts

CDC Announces Presence of Rare, Tropical Illness in Three Non-adjacent States and Genetic Testing Indicates There May Be a Common Source of Exposure

Microbiologists will want to take note of the CDC’s statement that the illness can masquerade as other diseases

It is the latest example of a bacterium uncommon in the United States that has infected patients in this country—one of whom has died. The three infected patients live in separate states, but genetic analysis indicates their cases may be related.

Microbiologists and clinical laboratory managers may want to read the recent official health advisory from the Centers for Disease Control and Prevention (CDC).  It announced that the Kansas Department of Health and Environment, the Texas Department of State Health Services, and the Minnesota Department of Health, were working with the CDC to investigate “three cases of Burkholderia pseudomallei (melioidosis) infections.”

According to the health alert, “Based on genomic analysis, these three cases (one male, two females; two adults and one child) may share a potential common source of exposure. The first case, identified in March 2021, was fatal. Two other patients were identified in May 2021, one of whom is still hospitalized. One has been discharged to a transitional care unit. None of the patients’ families reported a history of traveling outside of the continental United States.”

The CDC warned, “Symptoms of melioidosis are varied and nonspecific and may include pneumonia, abscess formation, and/or blood infections. Due to its nonspecific symptoms, melioidosis can initially be mistaken for other diseases such as tuberculosis, and proper treatment may be delayed.”

Microbiology Laboratories Should Be on Alert

Melioidosis is typically only seen in subtropical and tropical regions and can be highly fatal. It is unknown how the trio of patients who contracted the illness became infected, but according to the CDC the cases do appear to be connected.

“Testing suggests a common source of infection, but that source has not yet been identified,” a CDC representative told Gizmodo. “CDC is working with states to assess exposures or products these individuals have in common, as well as environmental samples from the states where cases have been identified. Additionally, CDC experts are providing epidemiologic assistance to help investigate the cause of infection,” the CDC added.

Peter Hotez, MD, PhD

“Melioidosis is a serious neglected tropical disease of Southeast Asia, India, and Australia where it is a major cause of pneumonia, abscesses, and sepsis. The fact that it may be gaining a foothold in the US is concerning,” pediatrician Peter Hotez, MD, PhD (above), Dean of the National School of Tropical Medicine, Professor of Pediatrics and Molecular Virology and Microbiology at Baylor College of Medicine, and Director of the Center for Vaccine Development at Texas Children’s Hospital, told Gizmodo. Clinical laboratories and microbiologists will want to monitor these cases for future developments. (Photo copyright: Baylor College of Medicine.)  

Melioidosis, also called Whitmore’s disease, was first described by Alfred Whitmore, an English pathologist, in 1912 in what is now present-day Myanmar. The bacterium (Burkholderia pseudomallei) can be found in contaminated soil and water. It is predominately found in tropical climates in Southeast Asia and northern Australia and can affect humans and many species of animals.

Researchers believe the disease may be acquired through the inhalation of contaminated dust particles or water droplets, the ingestion of contaminated water or soil-contaminated food, or other contact with tainted soil, especially through skin abrasions. It is very rare to contract melioidosis from infected individuals.

Melioidosis Masquerades as Other Illnesses

The symptoms of melioidosis are wide-ranging and non-specific and can resemble those of other illnesses. In addition, there are several types of the illness, and they can each act differently depending on where the infection is in the body. The most common symptoms of melioidosis include:

Localized Infection:

  • Localized pain or swelling
  • Fever
  • Ulceration
  • Abscess

Pulmonary Infection:

  • Cough
  • Chest pain
  • High fever
  • Headache
  • Anorexia

Bloodstream Infection:

  • Fever
  • Headache
  • Respiratory distress
  • Abdominal discomfort
  • Joint pain
  • Disorientation

Disseminated Infection:

  • Fever
  • Weight loss
  • Stomach or chest pain
  • Muscle or joint pain
  • Headache
  • Central nervous system/brain infection
  • Seizures

According to the CDC, the time between an exposure to Burkholderia pseudomallei and the first emergence of Melioidosis symptoms is not clearly defined but could range from one day to many years. However, most infected individuals begin experiencing symptoms of melioidosis within two to four weeks after exposure.

Melioidosis is difficult to diagnose, and some automated bacterial reading instruments can mistake Burkholderia pseudomallei for other bacteria. It is estimated that the disease accounts for 89,000 deaths per year worldwide. Delays in diagnosis and treatment often lead to poor patient outcomes and the mortality rate can exceed 40% in some regions, Nature reported. 

The illness is typically treated with appropriate drug therapies including intravenous antimicrobial medications, such as Ceftazidime or Meropenem, followed by an oral antimicrobial therapy such as Trimethoprim-sulfamethoxazole or Amoxicillin/Clavulanic Acid. It may take several months for a patient to be cured of melioidosis, depending on the extent of the infection.

Deadly Bacterium’s Countries of Origin and Spread to the US

According to CDC data, the greatest number of melioidosis cases are reported in Thailand, Malaysia, Singapore, and northern Australia. Cases also have been reported in other Asian countries as well as Mexico and Central America.

Burkholderia pseudomallei does not occur naturally in the US, and cases of melioidosis identified in the US are usually only seen in world travelers and immigrants who come from countries where the disease is widespread. The bacterium has been found in soil in Mexico, so it is possible that it could spread to parts of the US, which has led to concern among microbiologists.

“Due to changes in weather patterns, some pathogens that normally were not present in a particular area might start causing disease,” Alfredo Torres, PhD, Associate Provost, Department of Microbiology and Immunology, University of Texas Medical Branch, told Gizmodo. “Therefore, it is important to make the health professionals aware of this pathogen and the disease that it causes, so quick identification can be done, and treatment is properly used to save lives. Without that, it might be too late for the next melioidosis patient when the proper diagnosis is done.”

The CDC has suggested that healthcare workers consider melioidosis as a possible diagnosis for patients who have compatible symptoms, even if they have not recently traveled outside of the US.

CDC Suggests Rerunning Certain Clinical Laboratory Tests

Because Burkholderia pseudomallei can be mistaken for other bacteria, the CDC also urges the rerunning of clinical laboratory tests using automated identification, especially if another bacterium that is often mistaken for Burkholderia pseudomallei is present, Gizmodo noted.

“CDC encourages healthcare workers to be aware of the potential for more cases and to report cases to their state health departments,” the CDC stated.

The CDC considers the risk of melioidosis to the public in the US to be low, and that the chances of a potential outbreak are unlikely. However, the origins of these three cases remain a mystery and warrant further investigation.

Microbiologists and clinical laboratories should be aware of and remain alert about this potentially fatal illness. It is possible that more cases will arise in the future, especially in the three states where it has already been found.

—JP Schlingman

Related Information

CDC Warns Doctors about a Mystery Bacterial Outbreak with No Clear Origin

CDC: Melioidosis

What is Melioidosis? CDC Investigates Three Cases of Rare Bacterial Infection in the US

CDC Probes How People Contracted a Dangerous Infection Found in the Tropics—without Leaving the US

Nature Reviews Disease Primers: Melioidosis

Potentially Fatal Fungus Invades Hospitals and Public Is Not Informed

Executive War College on Clinical Laboratory and Pathology Management Returns in November with Emphasis on New Clinical and Financial Opportunities

Following a nearly two-year disruption due to the SARS-CoV-2 pandemic, pathologists and clinical laboratory professionals once again have an opportunity to gather and learn from each other

It is good news that the daily number of new cases of COVID-19 continue declining here in the United States. That fact, and the growing number of vaccinations, have encouraged state and federal officials to lift many restrictions on business and social activities.

Clinical laboratories are watching a big drop in the daily number of COVID-19 tests they perform, even as routine test volumes climb and more patients show up in doctors’ offices for the typical mix of ailments and health conditions.

It’s true that many familiar routines are back. But it is also true that things are not exactly the way they were pre-pandemic. And that’s the rub. Going forward, what should medical laboratory managers and pathologists expect to be the “post-pandemic normal” in how patients access care and how providers deliver clinical services? How will healthcare in this country be different from what it was pre-pandemic?

Preparing Clinical Lab Leaders for What Comes Next

These questions and more will be front and center when the Executive War College on Lab and Pathology Management returns on Nov. 2-3, 2021, at the Hyatt Riverwalk Hotel in San Antonio. The theme of this first live gathering since the spring of 2019 will be “Preparing Your Clinical Laboratory and Pathology Group for Post-Pandemic Success.”

“Today, lab managers have the interesting challenge of understanding the new opportunities they can use to advance their labs, both clinically and financially,” stated Robert L. Michel, Editor-in-Chief of Dark Daily and its sister publication The Dark Report, and founder of the Executive War College. “It isn’t that the pandemic changed healthcare in fundamental ways. Rather, it is that the pandemic accelerated changes that were underway before the outbreak began.

“That’s true of telehealth as well, for example,” he continued. “Once the nation was locked down, utilization of virtual physician visits and telehealth services skyrocketed. Today, national surveys confirm that as many as 50% of all patients and physicians have used a telehealth service, are comfortable with this type of appointment, and are ready to continue to use virtual office visits.

Robert Michel

Robert Michel (above), Editor-in-Chief of Dark Daily, its sister publication The Dark Report, and founder of The Dark Intelligence Group, will host the first live edition of the Executive War College since May 2019 in San Antonio. The theme will be “Preparing Your Clinical Laboratory and Pathology Group for Post-Pandemic Success.” Attendees from clinical laboratories and pathology groups will gain critical insights they can act on immediately. (Photo copyright: The Dark Report.)

“Another trend accelerated by the pandemic is patient self-testing at home,” Michel added. “Government health officials saw the benefit of clearing for clinical use different specimen collection systems and COVID-19 test methods designed for use by consumers in the comfort of their home. Today, consumers can choose from multiple specimen collection products and SARS-CoV-2 tests designed for in-home use. Clinical laboratory managers should consider this development to be a consumer home-test baseline. Federal officials have created a regulatory pathway that will make it easier and faster for federal regulators to clear other types of diagnostic tests for consumer home use.”

What if the FDA Approves More Consumer At-Home Tests?

There are implications to each of the two trends described above. In the case of telehealth, if patients see their doctors virtually and the doctors order medical tests, how do clinical laboratories access these patients to collect the specimens needed to do this testing?

Similarly, if, in coming years, the federal Food and Drug Administration (FDA) increases the number of diagnostic test specimen-collection kits that consumers can use from home, how should local clinical laboratories position themselves to receive those kits and perform those tests?

These are two examples of important questions to be answered at sessions scheduled for the Executive War College in San Antonio on Nov. 2-3. Case studies by innovative lab leaders will address topics ranging from high-level strategy to daily management, operations, marketing, and managed care contracting.

Attendance Limited at This Fall’s Executive War College

At the first live edition of the Executive War College since May 2019, attendees will notice one significant difference from earlier years. By design, and for the safety and well-being of attendees, the number of attendees will be limited to 300. The hotel follows the Centers for Disease Control and Prevention (CDC) guidelines and is prepared to adjust those numbers as CDC guidance evolves. Thus, those interested in attending this year’s conference are advised to register early to guarantee their place and avoid being disappointed.

Suggestions for session topics and speakers are welcome and can be sent to info@darkreport.com. Conference details, session topics, and speakers will be updated regularly at www.executivewarcollege.com.

So, register today because seating is limited at the 2021 Executive War College Presents “Preparing Your Clinical Laboratory and Pathology Group for Post-Pandemic Success.” To ensure your place at this valuable conference, click HERE or place this URL (https://dark.regfox.com/2021-ewc-presents) into your browser.

—Michael McBride

Related Information

Executive War College Presents: Preparing Your Clinical Laboratory and Pathology Group for Post-Pandemic Success

EWC Registration Information

CAP Today Archives involving Executive War College Presentations

Executive War College: Virtual 2020 Conference Delivers Essential Information About COVID-19 Testing and Getting Paid for Claims

World’s Two Largest Whole Genome Sequencing Programs Give Pathologists and Clinical Laboratory Managers an Intriguing Look at New Diagnostic OpportunitiesSpeakers from UCLA, Alverno Clinical Laboratories, and TriCore Reference Labs Discuss the Creation of Value-Added Lab Services at 20th Annual Executive War College

;