News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

ETH Zurich Develops Implantable Molecular Device Capable of Monitoring Blood pH and Regulating Insulin Production in Mice; May One Day Allow Pathologists to Remotely Monitor Patients

Prototype could provide glimpse of radically different future for patient monitoring and present new opportunities for pathologists and medical laboratory scientists

Are pathologists and medical laboratory scientists ready for a new diagnostic paradigm? Instead of specimens transported into a central medical laboratory, how about in vivo real-time monitoring of patients with chronic diseases, where pathologists are able to remotely spot changes in a patient’s condition as they happen and alert physicians to take timely action?

Researchers are combining several technologies to create sensor-based systems for in vivo real-time monitoring of body processes. In Basel, Switzerland, a team at ETH Zurich’s Department of Biosystems Science and Engineering created an implantable sensor for continuous monitoring of blood pH that is paired up with a gene feedback mechanism to produce the necessary amount of insulin. The dual function device has been described as a “molecular prosthesis.” The purpose of this device is to monitor patients with diabetes.

While ETH Zurich’s prototype needs more development before it will be ready for clinical uses, the university’s research shows pathologists and medical laboratory scientists how fast new capabilities are being developed that can eventually support a radically different approach to patient diagnosis and patient monitoring. Use of such real-time in vivo diagnostic devices could allow laboratory professionals to remotely monitor patients and trigger clinical interventions when the biomarkers being tracked indicate such a need.

Device Monitors Blood Acidity: Responds to Diabetic Acidosis by Producing Insulin

What is particularly intriguing about the device created by the Swiss university’s bioengineers is that it is capable of both diagnostic and therapeutic actions. Both modules of the device—the blood pH sensor and insulin production mechanism—are constructed from biological components, such as various genes and proteins. These are incorporated into cultivated renal cells. The researchers then embedded millions of these customized cells in capsules that can be used as implants in the body.

According to an ETH news release, the pH sensor transmits a signal to trigger the production of insulin if pH values fall below 7.35, a low pH value specific for type 1 diabetes. Once blood pH returns to the ideal range, the sensor turns itself off and the reprogrammed cells stop producing insulin.

In tests using mice with type 1 diabetes, the ETH device was able to successfully monitor the blood’s acidity and respond to diabetic acidosis by producing insulin. Mice with capsules implanted produced the amount of insulin appropriate to their individual acid measurements, enabling them to have hormone levels comparable to that of healthy mice. The implant also compensated for larger deviations in blood sugar. The system design and test results were published in an August 7, 2014, Molecular Cell article.

ETH Prototype Shows the Possibility of Creating Applications for Humans

Despite the promising results, Martin Fussenegger, Ph.D., Professor in ETH Zurich’s Department of Biosystems Science and Engineering, says the university will need an industrial partner in order to consider commercial development of the molecular device.

“Applications for humans are conceivable based on this prototype, but they are yet to be developed,” stated Fussenegger in the news release. “We wanted to create a prototype first to see whether molecular prostheses could even be used for such fine adjustments to metabolic processes.”

Martin Fussenegger, Ph.D

Martin Fussenegger, Ph.D., Professor in ETH Zurich’s Department of Biosystems Science and Engineering, says the initial results of studies in mice of ETH Zurich’s implantable molecular device for regulating blood pH levels through a closed loop pH sensing and insulin production mechanism shows promise. (Photo copyright ETH Zurich)

Until recently, most progress in diabetes care focused on improvements to continuous glucose monitors and insulin delivery systems, with implantable, long-lasting sensors for continuous monitoring on the horizon. ETH Zurich’s implantable molecular device would represent a major leap forward.

Diabetes in U.S. Continues to Increase

A 2014 report from the U.S. Centers for Disease Control and Prevention (CDC) shows that diabetes is on the rise, with 29.1 million people (9.3% of the U.S. population) living with diabetes. By comparison, in 2010 there were an estimated 26 million people in the U.S. with diabetes.

The CDC says that nearly 28% of people with diabetes are undiagnosed, which increases risk for heart disease, stroke, blindness, kidney failure, amputation of toes, feet or legs, and early death.

The report also estimates that the total cost in medical bills and lost work and wages due to diabetes and related complications adds up to $245 billion, up from $174 billion in 2010.

“These new numbers are alarming and underscore the need for an increased focus on reducing the burden of diabetes in our country,” said Ann Albright, Ph.D., R.D., Director of the CDC’s Division of Diabetes Translation, in a CDC news release. “Diabetes is costly in both human and economic terms. It’s urgent that we take swift action to effectively treat and prevent this serious disease.”

Ann Albright, Ph.D., R.D

Ann Albright, Ph.D., R.D., Director of the Centers for Disease Control and Prevention’s Division of Diabetes Translation, stresses the importance of continued diabetes research. (Photo copyright CDC)

The need for new methods to control diabetes was underscored in a 2010 study published at PubMed Central (PMC) on the U.S. National Institutes of Health’s National Library of Medicine (NIH/NLM) website. It painted a “sobering picture of the future growth of diabetes.”

“Under an assumption of low incidence and relatively high diabetes mortality, total prevalence is projected to increase to 21% of the U.S. adult population by 2050,” the authors wrote. “On the other hand, if recent increases in diabetes incidence continue (middle incidence projections) and diabetes mortality ratios are relatively low, diabetes prevalence will increase to 33% by 2050.”

The study blames the rise in diabetes in the U.S. in part on demographic changes brought about by an aging population—older adults are more likely to develop diabetes—an increase in minority populations that report higher diabetes rates, and reduced mortality rates for those living with the disease.

In Vivo and In Vitro Diagnostics Continue to Merge

Dark Daily has reported on the evolution of implantable diagnostic tests for some time. As we noted in “In Vivo Pathology Testing Might Use Injectable Microbeads to Detect Excessive Glucose Levels” (Dark Daily, January 1, 2011), pathology researchers continue to find novel ways to integrate in vivo and in vitro diagnostic tests. This trend does not appear to be slowing.

Implantable diagnostic technology continues to develop, which should indicate to clinical laboratories the possibility that disease diagnosis and monitoring is shifting away from centralized laboratories and towards medical communities and patients’ homes. The added twist in the new in vivo device created by researchers at ETH Zurich is that, after the diagnostic component of the device has tracked a change in the biomarker, the device can then automatically produce the appropriate therapy, also in real time and in vivo.

—Andrea Downing Peck

Related Information:

Sensitive Acid Sensor Controls Insulin Production

A Molecular Implant for pH Sensitive Insulin Production

New CDC Diabetes Report

Diabetes Latest

In Vivo Pathology Testing Might Use Injectable Microbeads to Detect Excessive Glucose Levels

Wisconsin Company Developing Breath-based Diagnostic Test Technology that Can Detect Early-Stage Infections within Two Hours of Onset

Hospital-based pathologists may soon gain a new diagnostic assay that could prove effective in detecting hospital-acquired infections more quickly and more accurately than with existing rapid molecular diagnostic tests

Imagine a diagnostic assay designed for hospital settings that uses a specimen of the patient’s breath, can be performed at the bedside, and can detect early-stage infections within two hours of onset. Pathologists and clinical laboratory managers will recognize that a diagnostic test such as this could play a big role in helping hospitals reduce hospital-acquired infections (HAI).

That’s just one application that Madison, Wisconsin-based Isomark has for the new breath analyzer test it is developing. The company says that its diagnostic test is capable of detecting early metabolism and immune system changes based on reading carbon dioxide (CO2) in a patient’s breath.

Canary Could Affect Volume of Clinical Laboratory Specimens

The Isomark Canary Breath Analyzer test (Canary) was specifically designed to identify infections before they have a chance to overwhelm the patient’s immune system. Canary has so many potential uses for identifying infection early that, if the technology were cleared for clinical use, medical laboratories could eventually see a significant reduction in the volume of patient specimens coming into the microbiology department. (more…)

UCSF Genomics Diagnostics Team Uses Next-Gen Sequencing as a ‘Laboratory-Developed Test’ to Reveal an Elusive Pathogen’s DNA and Save a Teen’s Life

It took UCSF physicians just 48 hours to identify the bacteria in cerebrospinal fluid that was causing fourteen-year-old Joshua Osborn’s hydrocephalus and status epilepticus

There’s rich irony in the FDA’s  recent announcement that it would move forward with plans to regulate “laboratory-developed tests ” (LDTs) just weeks after the national media published stories about how innovative use of an LDT helped physicians make an accurate diagnosis that saved the life of seriously-ill 14-year old boy.

Pathologists and clinical laboratory managers may be aware of the case of Joshua Osborn. It was a laboratory-developed test that used next-generation gene sequencing in a unique approach that gave his care team the diagnostic information they needed to select the right therapies for his condition.
(more…)

Promising Diabetes Prevention Programs Are Fueling Shift toward Wellness-focused Care and May Encourage More Utilization of Clinical Laboratory Tests

Predictions are that more disease-prevention programs will be developed, creating the opportunity for laboratories to be more proactive in helping clinicians keep patients well

Pathologists and clinical laboratory managers take note! The Centers for Disease Control and Prevention (CDC) is accumulating a growing body of evidence that its community-based diabetes prevention program is effective at improving the health of participating patients.

These auspicious findings may encourage a steep increase in the number and type of disease-prevention programs. In turn, greater deployment of such programs could further accelerate healthcare’s shift away from a reactive treatment of disease model to a proactive disease prevention model of care.

Such developments would be favorable for medical laboratories and pathology groups. As physicians pay more attention to diagnosing disease at earlier stages, they will want to tap the expertise of pathologists, Ph.D.s, and laboratory scientists. (more…)

Increased Number of Corporations Now Offer Employee Wellness Programs, Creating Opportunity to Clinical Laboratories to Provide Needed Lab Tests

Elements of Obamacare specifically support employer programs designed to improve the health of employees

Who would have believed that, after passage of the Affordable Care Act back in 2010, a fast-growing trend would be that of employers spending more money to develop employee wellness programs and offer medical clinics within corporate facilities? At a minimum, this development creates new opportunities for clinical laboratories to be direct providers of medical laboratory testing services to corporations.

Employee Wellness Programs Incorporate Medical Laboratory Testing

There is a simple reason why employers are jumping on the employee wellness bandwagon. Evidence demonstrates that incentivizing employees to live a healthier lifestyle can help reduce the cost of providing health insurance. It can also contribute to less absenteeism and increased employee productivity, both of which are important benefits to employers.

New data affirming this trend can be found in the 2013 Health Care Survey conducted annually by AON. AON is a global re-insurer that provides risk management services, insurance, and human resources solutions. About half of all U.S. employers now offer employee wellness programs, according to a recent study by Rand Corp., an independent think tank based in Santa Monica, California.

(more…)

;