Spectroscopic technique was 91% accurate in identifying the notoriously difficult-to-diagnose disease suggesting a clinical diagnostic test for CFS may be possible
Most clinical pathologists know that, despite their best efforts, scientists have failed to come up with a reliable clinical laboratory blood test for diagnosing myalgic encephalomyelitis (ME), the condition commonly known as chronic fatigue syndrome (CFS)—at least not one that’s ready for clinical use.
But now an international team of researchers at the University of Oxford has developed an experimental non-invasive test for CFS using a simple blood draw, artificial intelligence (AI), and a spectroscopic technique known as Raman spectroscopy.
The approach uses a laser to identify unique cellular “fingerprints” associated with the disease, according to an Oxford news release.
“When Raman was added to a panel of potentially diagnostic outputs, we improved the ability of the model to identify the ME/CFS patients and controls,” Karl Morten, PhD, Director of Graduate Studies and Principal Investigator at Oxford University, told Advanced Science News. Morton led the research team along with Wei Huang, PhD, Professor of Biological Engineering at Oxford.
The researchers claim the test is 91% accurate in differentiating between healthy people, disease controls, and ME/CFS patients, and 84% accurate in differentiating between mild, moderate, and severe cases, the new release states.
“This could be a game changer as we are unsure what causes [ME/CFS] and diagnosis occurs perhaps 10 to 20 years after the condition has started to develop,” said Karl Morten, PhD, Director of Graduate Studies and Principal Investigator at Oxford University. “An early diagnosis might allow us to identify what is going wrong with the potential to fix it before the more long-term degenerative changes are observed.” Though this research may not lead to a simple clinical laboratory blood test for CFS, any non-invasive diagnostic test would enable doctors to help many people. (Photo copyright: Oxford University.)
Need for an ME/CFS Test
The federal Centers for Disease Control and Prevention (CDC) describes ME/CFS as “a serious, long-term illness that affects many body systems,” with symptoms that include severe fatigue and sleep difficulties. Citing an Institute of Medicine (IoM) report, the agency estimates that 836,000 to 2.5 million Americans suffer from the condition but notes that most cases have not been diagnosed.
“One of the difficulties is the complexity of the disease,” said Jonas Bergquist, MD, PhD, Director of the ME/CFS Research Center of Uppsala University in Sweden, told Advanced Science News. “Because it’s a multi-organ disorder, you get symptoms from many different regions of the body with different onsets, though it’s common with post viral syndrome to have different overlapping [symptoms] that disguise the diagnosis.” Bergquist was not involved with the Oxford study.
One key to the Oxford researchers’ technique is the use of multiple artificial intelligence models to analyze the spectral profiles. “These signatures are complex and by eye there are not necessarily clear features that separate ME/CFS patients from other groups,” Morten told Advanced Science News.
“The AI looks at this data and attempts to find features which can separate the groups,” he continued. “Different AI methods find different features in the data. Individually, each method is not that successful at assigning an unknown sample to the correct group. However, when we combine the different methods, we produce a model which can assign the subjects to the different groups very accurately.”
Without a reliable test, “diagnosis of the condition is difficult, with most patients relying on self-report, questionnaires, and subjective measures to receive a diagnosis,” the Oxford press release noted.
But developing such a test has been challenging, Advanced Science News noted.
How Oxford’s Raman Technique Works
Raman spectroscopy uses a laser to determine the “vibrational modes of molecules,” according to the Oxford press release.
“When a laser beam is directed at a cell, some of the scattered photons undergo frequency shifts due to energy exchanges with the cell’s molecular components,” the press release stated. “Raman micro-spectroscopy detects these shifted photons, providing a non-invasive method for single cell analysis. The resulting single cell Raman spectra serve as a unique fingerprint, revealing the intrinsic and biochemical properties and indicating the physiological and metabolic state of the cell.”
The researchers employed the technique on blood samples from 98 subjects, including 61 ME/CFS patients, 16 healthy controls, and 21 controls with multiple sclerosis (MS), Advanced Science reported.
The Oxford scientists focused their attention on peripheral blood mononuclear cells (PBMCs), as previous studies found that these cells showed “reduced energetic function” in ME/CFS patients. “With this evidence, the team proposed that single-cell analysis of PBMCs might reveal differences in the structure and morphology in ME/CFS patients compared to healthy controls and other disease groups such as multiple sclerosis,” the press release states.
Clinical Laboratory Blood Processing and the Oxford Raman Technique
Oxford’s Raman spectroscopic technique “only requires a small blood sample which could be developed as a point-of-care test perhaps from one drop of blood,” the researchers wrote. However, Advanced Science News pointed out that required laser microscopy equipment costs more than $250,000.
In their Advanced Science paper, the researchers note that the test could be made more widely available by transferring blood samples collected by local clinical laboratories to diagnostic centers that have the needed hardware.
“Alternatively, a compact system containing portable Raman instruments could be developed, which would be much cheaper than a standard Raman microscope, and [which] incorporated with microfluidic systems to stream cells through a Raman laser for detection, eliminating the need for lengthy blood sample processing,” the researchers wrote.
They noted that the technique could be adapted to test for other chronic conditions as well, such as MS, fibromyalgia, Lyme disease, and long COVID.
“Our paper is very much a starting point for future research,” Morten told Advanced Science News. “Larger cohorts need to be studied, and if Raman proves useful, we need to think carefully about how a test might be developed.”
Bergquist agreed, stating it’s “not necessarily something you would see in a doctor’s office. It requires a lot of advanced data analysis to use—I still see it as a research methodology. But in the long run, it could be developed into a tool that could be used in a more simplistic way.”
Though a useable diagnostic test may be far off, clinical laboratories should consider how they can aid in ME/CFS research.
In addition to viruses, wastewater analysis can also be used to detect the presence of chemical substances such as opioids
Wastewater surveillance and analysis continues to be a useful tool for detecting the prevalence of viruses such as SARS-CoV-2, influenza, and respiratory syncytial virus (RSV) in a community. Perhaps more importantly, wastewater surveillance can fill in gaps where clinical laboratory testing data may be days or weeks behind the true spread of viral infections.
One sign of the value of testing wastewater for infectious diseases is the fact that government officials are financing a continuing program of wastewater testing. In September, the federal Centers for Disease Control and Prevention (CDC) awarded a contract to conduct wastewater surveillance/analysis worth millions of dollars to Verily Life Sciences, a Google company, rather than renewing its contract with Biobot Analytics, which had been doing the work since 2020. One interesting twist in the award of this contract is how an ensuing dispute pulled the plug on a significant portion of the wastewater analysis in this country.
In their September Morbidity and Mortality Weekly Report (MMWR), the CDC highlighted a CDC study during which wastewater samples were taken from 40 wastewater treatment plants located in Wisconsin’s three largest cities. The samples were collected weekly and tested for influenza and RSV. The findings were then compared with data regarding emergency department (ED) visits for those diseases.
The CDC found that higher detections of flu and RSV were associated with higher rates of ED visits for both illnesses. The study also suggests that wastewater might detect the spread of these viruses earlier than ED visit data alone.
“During the COVID-19 pandemic, wastewater surveillance for SARS-CoV-2 provided valuable insight into community incidence of COVID-19,” said Peter DeJonge, PhD (above), a CDC Career Epidemiology Field Officer, in an interview with Infectious Disease Special Edition. “[The CDC’s] report supports the idea that wastewater surveillance also has the potential to serve as a useful method with which to track community spread of influenza and RSV.” Local clinical laboratories are also involved in the CDC’s wastewater surveillance programs. (Photo copyright: CDC.)
Keeping Communities Informed about Spread of Viral Infections
The CDC’s study was conducted from August 2022 to March 2023. The wastewater samples from all three cities tested positive for the viruses in advance of increases in ED visits. After the ED visits for those viruses had subsided, the viral material remained in sewersheds for up to three months.
“Both influenza and RSV can cause substantial amounts of illness, hospitalization, and even death during annual epidemics, which often occur during winter months in the US,” Peter DeJonge, PhD, a CDC Career Epidemiology Field Officer assigned to the Chicago Department of Public Health, told Infectious Disease Special Edition (IDSE). “Clinical providers and public health officials benefit from surveillance data to understand when and where these diseases are spreading in a community each year. This type of data can help prepare clinics [and clinical laboratories] for anticipated cases, tailor public health messaging, and encourage timely vaccination.”
“The collective burden from these respiratory viruses is staggering. With these viruses circulating simultaneously and potentially shifting in seasonality and severity, communities must be able to understand the full impact of each of these illnesses to inform awareness and public health responses that can prevent infections, hospitalizations, and even deaths,” said Mariana Matus, PhD, CEO and cofounder of Biobot Analytics, in an August press release announcing the launch of a “Respiratory Illnesses Panel” that will monitor wastewater for Influenzas A and B (seasonal flu), Respiratory Syncytial Virus (RSV), and SARS-CoV-2 (COVID-19).
“Traditional testing methods for these illnesses do not provide a comprehensive picture of the number of people infected due to inaccurate reporting, as well as asymptomatic or misdiagnosed cases,” Matus continued. “By monitoring wastewater concurrently for influenza, RSV, and SARS-CoV-2, we can fill in these gaps and provide important information to communities.”
CDC Moves to Change Wastewater Surveillance Contractor Mid-stream
As new variants of SARS-CoV-2 emerge, a recent contract dispute may be the cause of a time delay in efforts to perform wastewater surveillance for the disease, as well as for other viral infections, according to Politico.
The CDC’s move to replace Biobot Analytics with Verily Life Sciences to do wastewater surveillance has led to Biobot filing a protest with the Government Accountability Office (GAO).
According to World Socialist Web Site (WSWS), “The scope of the [Biobot] contract [to provide extended data for the public health agency’s National Wastewater Surveillance System (NWSS)] included data from more than 400 locations from over 250 counties across the entire United States, covering 60 million people. On top of this, Biobot also conducted genomic sequencing to identify the latest variants in circulation.”
About one quarter of the wastewater testing sites in the country have been shut down due to Biobot’s contract being suspended in September. The remaining 1,200 sites that are not covered under the original contract will continue wastewater testing, Politico reported.
The GAO hopes to have a decision on the contract dispute in January. Verily says it is ready to proceed with testing in all locations and already has its infrastructure in place.
“We are committed to working with the CDC to advance the goals of the … testing program, initiate testing on the samples already delivered when allowed to resume work, and make wastewater data available as quickly as possible,” Bradley White, PhD, Principal Scientist/Director at Verily, told Politico.
Under the terms of Verily’s contract, the company will collect samples from wastewater treatment centers cross the county and analyze the samples for COVID-19 and the mpox (monkey pox) virus.
This contract marks the first agreement between the CDC and Verily.
The CDC has not disclosed why it decided to change contractors, but it is probable that cost may have been played a role in the decision. Verily’s contract is for $38 million over the course of five years and Biobot’s most recent contract was for around $31 million for a period of less than 18 months, Politico reported.
In a LinkedIn post, Matus reported that Biobot had already laid off 35% of its staff due to the contract decision by the CDC.
Competition in Wastewater Surveillance Market
When seeking viruses in wastewater, scientists use gene-based detection methods to locate and amplify genetic signs of pathogens. But public health officials are just beginning to tap into the potential opportunities that may exist in the analysis of data present in wastewater.
Wastewater surveillance is also being looked at as a way to combat America’s opioid epidemic.
“Wastewater surveillance is becoming more mature and more mainstream month after month, year over year,” Matus told Time.
Thus, regardless of which companies end up working with the CDC, it appears that wastewater surveillance and analysis, which requires a great deal of clinical laboratory testing, will continue to help fight the spread of deadly viral infections, as well as possibly the nation’s drug epidemic.
Doctors report difficulty differentiating COVID-19 from other viral infections, impacting clinical laboratory test orders
Because the SARS-CoV-2 coronavirus is in the same family of viruses that cause the common cold and influenza, virologists expected this virus—which caused the global COVID-19 pandemic—would evolve and mutate into a milder form of infection. Early evidence from this influenza season seems consistent with these expectations in ways that will influence how clinical laboratories offer tests for different respiratory viruses.
While new variants of the SARS-CoV-2 virus continue to appear, indications are that early in this flu season individuals infected with the more recent variants are experiencing milder symptoms when compared to the last few years. Doctors report they find it increasingly difficult to distinguish COVID-19 infections from allergies or the common cold because patients’ symptoms are less severe, according to NBC News.
This, of course, makes it challenging for doctors to know the most appropriate clinical laboratory tests to order to help them make accurate diagnoses.
“It isn’t the same typical symptoms that we were seeing before. It’s a lot of congestion, sometimes sneezing, usually a mild sore throat,” Erick Eiting, MD, Vice Chair of Operations for Emergency Medicine at Mount Sinai Hospital in New York City, told NBC News. “Just about everyone who I’ve seen has had really mild symptoms. The only way that we knew that it was COVID was because we happened to be testing them.” Knowing which tests for respiratory viruses that clinical laboratories need to perform may soon be the challenge for doctors. (Photo copyright: Mt. Sinai.)
Milder COVID-19 Symptoms Follow a Pattern
Previous hallmarks of a COVID-19 infection included:
Loss of taste,
loss of smell,
dry cough,
fever,
sore throat,
diarrhea,
body aches,
headaches.
However, physicians now observe milder symptoms of the infection that follow a distinct pattern and which are mostly concentrated in the upper respiratory tract.
Grace McComsey, MD, Vice President of Research and Associate Chief Scientific Officer at University Hospitals Health System (UH) in Cleveland, Ohio, told NBC News that some patients have described their throat pain as “a burning sensation like they never had, even with Strep in the past.”
“Then, as soon as the congestion happens, it seems like the throat gets better,” she added.
In addition to the congestion, some patients are experiencing:
headache,
fever,
chills,
fatigue,
muscle aches,
post-nasal drip.
McComsey noted that fatigue and muscle aches usually only last a couple of days, but that the congestion can sometimes last a few weeks. She also estimated that only around 10-20% of her newest COVID patients are losing their sense of smell or taste, whereas early in the pandemic that number was closer to 60-70% of her patients.
Doctors also noted that fewer patients are requiring hospitalization and that many recover without the use of antivirals or other treatments.
“Especially since July, when this recent mini-surge started, younger people that have upper respiratory symptoms—cough, runny nose, sore throat, fever and chills—99% of the time they go home with supportive care,” said Michael Daignault, MD, an emergency physician at Providence Saint Joseph Medical Center in Burbank, California.
Milder SARS-CoV-2 Variants Should Still be Taken Seriously
Doctors have varying opinions regarding why the current COVID-19 variants are milder. Some believe the recent variants simply aren’t as good at infecting the lungs as previous variants.
“Overall, the severity of COVID-19 is much lower than it was a year ago and two years ago,” Dan Barouch, MD, PhD, Director of the Center for Virology and Vaccine Research at Beth Israel Deaconess Medical Center, told NBC News. “That’s not because the variants are less robust. It’s because the immune responses are higher.”
McComsey added that she doesn’t think mild cases should be ignored as she is still seeing new cases of long COVID with rapid heart rate and exercise intolerance being among the most common lingering symptoms. Re-infections also add to the risks associated with long COVID.
“What we’re seeing in long COVID clinics is not just the older strains that continue to be symptomatic and not getting better—we’re adding to that number with the new strain as well,” McComsey said. “That’s why I’m not taking this new wave any less seriously.”
Clinical Laboratory COVID-19 Testing May Decrease
According to Andrew Read, PhD, Interim Senior Vice President for Research and Evan Pugh University Professor of Biology and Entomology at Pennsylvania State University, there is nothing unexpected or startling about the coronavirus acquiring new mutations.
“When a mutation confers an interesting new trick that’s got an advantage, it’s going to be popping up in many different places,” Read told the New York Times. “Everything we see is just consistent with how you imagine virus evolution proceeding in a situation where a new virus has jumped into a novel host population.”
Data from the Centers for Disease Control and Prevention’s COVID-19 Data Tracker—which reports weekly hospitalizations, deaths, emergency department (ED) visits, and COVID-19 test positivity results—shows infection trends fluctuating, but overall, they are decreasing.
For the week of October 21, 2023, there were 16,186 hospitalizations due to COVID-19 compared to the highest week recorded (January 15, 2022) with 150,674 hospitalizations nationwide.
The highest number of deaths reported in a single week were 25,974 for the week of January 8, 2021, while 637 patients perished from COVID-19 during the week of October 21, 2023.
In January of 2021, COVID accounted for 13.8% of all ED visits and in October 2023, COVID-19 was responsible for 1.3% of ED visits.
“What I think we’re seeing is the virus continuing to evolve, and then leading to waves of infection, hopefully mostly mild in severity,” Barouch told The New York Times.
As severity of COVID-19 infections continues to fall, so, presumably, will demand for COVID-19 testing which has been a source of revenue for clinical laboratories for several years.
By analyzing strains of the bacterium from a hospital ICU, the scientists learned that most infections were triggered within patients, not from cross-transmission
Tracking the source of Hospital-acquired infections (HAI) has long been centered around the assumption that most HAIs originate from cross-transmission within the hospital or healthcare setting. And prevention measures are costly for hospitals and medical laboratories. However, new research puts a surprising new angle on a different source for some proportion of these infections.
The study suggests that most infections caused by Clostridioides difficile (C. Diff), the bacterium most responsible for HAIs, arise not from cross-transmission in the hospital, but within patients who already carry the bacterium.
A researcher performed whole genome sequencing on 425 strains of the bacterium isolated from the samples and found “very little evidence that the strains of C. diff from one patient to the next were the same, which would imply in-hospital acquisition,” according to a UM news story.
“In fact, there were only six genomically supported transmissions over the study period. Instead, people who were already colonized were at greater risk of transitioning to infection,” UM stated.
Arianna Miles-Jay, PhD, a postdoctoral fellow in The Snitkin Lab at the University of Michigan and Manager of the Genomic Analysis Unit at the Michigan Department of Health and Human Services, performed the genomic sequencing. “By systematically culturing every patient, we thought we could understand how transmission was happening. The surprise was that, based on the genomics, there was very little transmission,” she said in the UM news story.
“Something happened to these patients that we still don’t understand to trigger the transition from C. diff hanging out in the gut to the organism causing diarrhea and the other complications resulting from infection,” said Evan Snitkin, PhD (above), Associate Professor of Microbiology and Immunology, and Associate Professor of Internal Medicine, Division of Infectious Diseases at University of Michigan, in a UM news story. Medical laboratories involved in hospital-acquired infection prevention understand the importance of this research and its effect on patient safety. (Photo copyright: University of Michigan.)
Only a Fraction of HAIs Are Through Cross-Transmission
In the study abstract, the researchers wrote that “despite enhanced infection prevention efforts, Clostridioides difficile remains the leading cause of healthcare-associated infections in the United States.”
Citing data from the US Centers for Disease Control and Prevention (CDC), HealthDay reported that “nearly half a million C. diff infections occur in the United States each year. Between 13,000 and 16,000 people die from the bacterium, which causes watery diarrhea and inflammation of the colon. Many of these infections and deaths have been blamed on transmission between hospitalized patients.”
The new study, however, notes that 9.3% of the patients admitted to the ICU carried toxigenic (produces toxins) C. diff, but only 1% acquired it via cross-transmission. The carriers, the study authors wrote, “posed minimal risk to others,” but were 24 times more likely to develop a C. diff infection than non-carriers.
“Our findings suggest that measures in place in the ICU at the time of the study—high rates of compliance with hand hygiene among healthcare personnel, routine environmental disinfection with an agent active against C. diff, and single patient rooms —were effective in preventing C. diff transmission,” Snitkin told HealthDay. “This indicates that to make further progress in protecting patients from developing C. diff infections will require improving our understanding of the triggers that lead patients asymptomatically carrying C. diff to transition to having infections.”
Recognizing Risk Factors
Despite the finding that infections were largely triggered within the patients, the researchers still emphasized the importance of taking measures to prevent hospital-acquired infections.
“In fact, the measures in place in the Rush ICU at the time of the study—high rates of compliance with hand hygiene among healthcare personnel, routine environmental disinfection with an agent active against C. diff, and single patient rooms—were likely responsible for the low transmission rate,” the UM news story noted.
One expert not involved with the study suggested that hospitals’ use of antibiotics may be a factor in causing C. diff carriers to develop infections.
“These findings suggest that while we should continue our current infection prevention strategies, attention should also be given to identifying the individuals who are asymptomatic carriers and finding ways to reduce their risk of developing an infection, like carefully optimizing antibiotic usage and recognizing other risk factors,” Hannah Newman, Senior Director of Infection Prevention at Lenox Hill Hospital in New York City, told HealthDay.
Snitkin, however, told HealthDay that other factors are likely at play. “There is support for antibiotic disruption of the microbiota being one type of trigger event, but there is certainly more to it than that, as not every patient who carries C. diff and receives antibiotics will develop an infection.”
Another expert not involved with the study told HealthDay that “many patients are already colonized,” especially older ones or those who have been previously hospitalized.
“A lot of their normal flora in their GI tract can be altered either through surgery or antibiotics or some other mechanism, and then symptoms occur, and that’s when they are treated with antibiotics,” said Donna Armellino, RN, Senior VP of Infection Prevention at Northwell Health in Manhasset, New York.
This research also demonstrates the value of faster, cheaper, more accurate gene sequencing for researching life-threatening conditions. Microbiologists, Clinical laboratory scientists, and pathologists will want monitor further developments involving these findings as researchers from University of Michigan and Rush University Medical Center continue to learn more about the source of C. diff infections.
Clinical laboratories and pathologists should expect to receive increase referrals from oncologists with younger patients
More people are getting serious cases of cancer at younger and younger ages. So much so that some anatomic pathologists and epidemiologists are using the term “Turbo Cancers” to describe “the recent emergence of aggressive cancers that grow very quickly,” Vigilant News reported.
Cancer continues to be the second leading cause of death in the United States and current trends of the disease appearing in younger populations are causing alarm among medical professionals and scientists.
“Because these cancers have been occurring in people who are too young to get them, basically, compared to the normal way it works, they’ve been designated as turbo cancers,” Harvey Risch, MD, PhD, Professor Emeritus of Epidemiology in the Department of Epidemiology and Public Health at the Yale School of Public Health and Yale School of Medicine, in an interview with Epoch TV’sAmerican Thought Leaders.
It’s anatomic pathologists who receive the biopsies and analyze them to diagnose the cancer. Thus, they are on the front lines of seeing an increased number of biopsies for younger patients showing up with the types of cancers that normally take many years to grow large enough to be discovered by imaging and lumps leading to biopsy and diagnosis. It’s a medical mystery that may have long term effects on younger populations.
“What clinicians have been seeing is very strange things,” said Harvey Risch, MD, PhD (above), Professor Emeritus of Epidemiology at the Yale School of Public Health and Yale School of Medicine, in an Epoch TV interview. “For example, 25-year-olds with colon cancer, who don’t have family histories of the disease—that’s basically impossible along the known paradigm for how colon cancer works—and other long-latency cancers that they’re seeing in very young people.” Epidemiologists and anatomic pathologists are describing these conditions as “turbo cancers.” (Photo copyright: Yale University.)
Early-Onset Cancer Rates Jump Sharply
According to the federal Centers for Disease Control and Prevention (CDC), about 3.3 million Americans died in 2022, and 607,800 of those deaths were attributed to cancer. This statistic translates to approximately 18.4% of US deaths being due to cancer last year.
An article published in the Journal of the American Medical Association titled, “Patterns in Cancer Incidence among People Younger than 50 Years in the US, 2010 to 2019,” states that the rates of cancer in people under the age of 50 has risen sharply in recent years. The study found that “the incidence rates of early-onset cancer increased from 2010 to 2019. Although breast cancer had the highest number of incident cases, gastrointestinal cancers had the fastest-growing incidence rates among all early-onset cancers.”
The largest increase in cancer diagnoses occurred in people in the 30 to 39-year-old age group. This number represents a jump of almost 20% for the years analyzed for individuals in that demographic. The researchers also found that cancer rates decreased in individuals over the age of 50.
Breast cancer, which increased by about 8% in younger people, accounted for the most diagnoses in this age group. However, the biggest increase was 15% for gastrointestinal cancers, including colon, appendix, bile duct, and pancreatic cancer.
Because cancer can recur or progress, researchers have concerns about what happens to young cancer patients as they grow older and what effect cancer may have on their lives.
“They are at a transitional stage in life,” Chun Chao, PhD, Research Scientist, Division of Epidemiologic Research at Kaiser Permanente, told The Hill. “If you think about it, this is the age when people are trying to establish their independence. Some people are finishing up their education. People are trying to get their first job, just start to establish their career. And people are starting new families and starting to have kids. So, at this particular age, having a cancer diagnosis can be a huge disruption to these goals.”
Sadly, young cancer survivors have a heightened risk of developing a second cancer and a variety of other health conditions, such as cardiovascular diseases and metabolic disorders.
Lifestyle a Factor in Increased Risk for Cancer
“The increase in early-onset cancers is likely associated with the increasing incidence of obesity as well as changes in environmental exposures, such as smoke and gasoline, sleep patterns, physical activity, microbiota, and transient exposure to carcinogenic compounds,” according to the JAMA study.
“Suspected risk factors may involve increasing obesity among children and young adults; also the drastic change in our diet, like increasing consumption of sugar, sweetened beverages, and high fat,” Hyuna Sung, PhD, Cancer Surveillance Researcher at the American Cancer Society, told US News and World Report. “The increase in cancers among young adults has significant implications. It is something we need to consider as a bellwether for future trends.”
“Increased efforts are required to combat the risk factors for early-onset cancer, such as obesity, heavy alcohol consumption, and smoking,” said Daniel Huang, MD, Assistant Professor of Medicine at the National University of Singapore, one of the authors of the study, in the US News and World Report interview.
Other studies also have shown a rise in so-called turbo cancers.
“Cancer as a disease takes a long time to manifest itself from when it starts. From the first cells that go haywire until they grow to be large enough to be diagnosed, or to be symptomatic, can take anywhere from two or three years for the blood cancers—like leukemias and lymphomas—to five years for lung cancer, to 20 years for bladder cancer, or 30 to 35 years for colon cancer, and so on,” Risch told the Epoch Times.
Not the Occurrence Oncologists Expect
“Some of these cancers are so aggressive that between the time that they’re first seen and when they come back for treatment after a few weeks, they’ve grown dramatically compared to what oncologists would have expected,” Risch continued. “This is just not the normal occurrence of how cancer works.”
Risch believes that damage to the immune system is the most likely cause of the rise in turbo cancers. He said the immune system usually recognizes, manages, and disables cancer cells so they cannot progress. However, when the immune system is impaired, cancer cells can multiply to the point where the immune system cannot cope with the number of bad cells.
It is a statistical fact that more people are being diagnosed with serious cases of cancer at younger and younger ages. If this trend continues, clinical laboratories and pathologists can expect to see more oncology case referrals and perform more cancer diagnostic tests for younger patients.