If validated, study findings may result in new biomarkers for clinical laboratory cholesterol tests and for diagnosing dementia
Researchers continue to find new associations between biomarkers commonly tested by clinical laboratories and certain health conditions and diseases. One recent example comes from research conducted by the University of California San Francisco. The UCSF study connected cholesterol biomarkers generally used for managing cardiovascular disease with an increased risk for dementia as well.
The researchers found that both high and low levels of high-density lipoprotein (HDL)—often referred to as “good” cholesterol—was associated with dementia in older adults, according to a news release from the American Academy of Neurology (AAN).
UCSF’s large, longitudinal study incorporated data from 184,367 people in the Kaiser Permanente Northern California health plan. How the findings may alter cholesterol biomarker use in future diagnostics has not been determined.
“The elevation in dementia risk with both high and low levels of HDL cholesterol was unexpected, but these increases are small, and their clinical significance is uncertain,” said epidemiologist Maria Glymour, ScD (above), study author and Professor of Epidemiology and Biostatistics at UCSF School of Medicine, in a news release. This is another example of how researchers are associating common biomarkers tested regularly by clinical laboratories with additional health conditions and disease states. (Photo copyright: University of California San Francisco.)
HDL Levels Link to Dementia Risk
The UCSF researchers used cholesterol measurements and health behavior questions as they tracked Kaiser Permanente Northern California health plan members who were at least 55 years old between 2002 and 2007, and who did not have dementia at the time of the study’s launch.
The researchers then followed up with the study participants through December 2020 to find out if they had developed dementia, Medical News Today reported.
“Previous studies on this topic have been inconclusive, and this study is especially informative because of the large number of participants and long follow-up,” said epidemiologist Maria Glymour, ScD, study author and Professor of Epidemiology and Biostatistics at UCSF School of Medicine, in the AAN news release. “This information allowed us to study the links with dementia across the range of cholesterol levels and achieve precise estimates even for people with cholesterol levels that are quite high or quite low.”
According to HealthDay, UCSF’s study findings included the following:
More than 25,000 people developed dementia over about nine years. They were divided into five groups.
53.7 milligrams per deciliter (mg/dL) was the average HDL cholesterol level, amid an optimal range of above 40 mg/dL for men and above 50 mg/dL for women.
A 15% rate of dementia was found in participants with HDL of 65 mg/dL or above.
A 7% rate of dementia was found in participants with HDL of 11 mg/dL to 41 mg/dL.
“We found a U-shaped relationship between HDL and dementia risk, such that people with either lower or higher HDL had a slightly elevated risk of dementia,” Erin Ferguson, PhD student of Epidemiology at UCSF, the study’s lead study author, told Medical News Today.
What about LDL?
The UCSF researchers found no correlation between low-density lipoprotein (LDL)—often referred to as “bad” cholesterol”—and increased risk for dementia. But the risk did increase slightly when use of statin lipid-lowering medications were included in the analysis.
“Higher LDL was not associated with dementia risk overall, but statin use qualitatively modified the association. Higher LDL was associated with a slightly greater risk of Alzheimer’s disease-related dementia for statin users,” the researchers wrote in Neurology.
“We found no association between LDL cholesterol and dementia risk in the overall study cohort. Our results add to evidence that HDL cholesterol has similarly complex associations with dementia as with heart disease and cancer,” Glymour noted in the AAN news release.
Australian Study also Links High HDL to Dementia
A separate study from Monash University in Melbourne, Victoria, Australia, found that “abnormally high levels” of HDL was also associated with increased risk for dementia, according to a Monash news release.
The Monash study—which was part of the ASPREE (ASPpirin in Reducing Events in the Elderly) trial of people taking daily aspirin—involved 16,703 Australians and 2,411 Americans during the years 2010 to 2014. The researchers found:
850 participants had developed dementia over about six years.
A 27% increased risk of dementia among people with HDL above 80 mg/dL and a 42% higher dementia risk for people 75 years and older with high HDL levels.
These findings, Newsweek pointed out, do not necessarily mean that high levels of HDL cause dementia.
“There might be additional factors that affect both these findings, such as a genetic link that we are currently unaware of,” Andrew Doig, PhD, Professor, Division of Neuroscience at University of Manchester, told Newsweek. Doig was not involved in the in the Monash University research.
Follow-up research could explore the possibility of diagnosing dementia earlier using blood tests and new biomarkers, Newsweek noted.
Cholesterol Lab Test Results of Value to Clinical Labs
If further studies validate new biomarkers for testing and diagnosis, a medical laboratory’s longitudinal record of cholesterol test results over many years may be useful in identifying people with an increased risk for dementia.
Clinical pathologists and laboratory managers will want to stay tuned as additional study insights and findings are validated and published. Existing laboratory testing reference ranges may need to be revised as well.
As well, the findings of this UCSF research demonstrate that, in this age of information, there will be plenty of opportunities for clinical lab scientists and pathologists to take their labs’ patient data and combine it with other sets of data. Digital tools like artificial intelligence (AI) and machine learning would then be used to assess that large pool of data and produce clinically actionable insights. In turn, that positions labs to add more value and be paid for that value.
Many other healthcare systems also are partnering with private genetic testing companies to pursue research that drive precision medicine goals
It is certainly unusual when a major health network announces that it will give away free genetic tests to 10,000 of its patients as a way to lay the foundation to expand clinical services involving precision medicine. However, pathologists and clinical laboratory managers should consider this free genetic testing program to be the latest marketplace sign that acceptance of genetic medicine continues to move ahead.
Notably, it is community hospitals that are launching this
new program linked to clinical laboratory research that uses genetic tests for
specific, treatable conditions. The purpose of such genetic research is to
identify patients who would benefit from test results that identify the best
therapies for their specific conditions, a core goal of precision medicine.
Clinical laboratory leaders will be interested in this
initiative, as well other partnerships between healthcare systems and private
genetic testing companies aimed at identifying and enrolling patients in
research studies for disease treatment protocols and therapies.
The Future of Precision Medicine
Modern Healthcare reported that data from the WholeMe DNA study, which was funded through donations to the AdventHealth Foundation, also will be used by the healthcare network for research beyond FH, as AdventHealth develops its genomics services. The project’s cost is estimated to reach $2 million.
“Genomics is the future of medicine, and the field is rapidly evolving. As we began our internal discussions about genomics and how to best incorporate it at AdventHealth, we knew research would play a strong role,” Wes Walker MD, Director, Genomics and Personalized Health, and Associate CMIO at AdventHealth, told Becker’s Hospital Review.
“We decided to focus on familial hypercholesterolemia
screening initially because it’s a condition that is associated with
life-threatening cardiovascular events,” he continued. “FH is treatable once
identified and finding those who have the condition can lead to identifying
other family members who are subsequently identified who never knew they had
the disease.”
The AdventHealth Orlando website states that participants in the WholeMe study receive information stored in a confidential data repository that meets HIPAA security standards. The data covers ancestry and 22 other genetic traits, such as:
Asparagus Odor Detection
Bitter Taste
Caffeine Metabolism
Cilantro Taste Aversion
Circadian Rhythm
Coffee Consumption
Delayed Sleep
Earwax Type
Endurance vs Power
Exercise Impact on Weight
Eye Color
Freckling
Hair Curl and Texture
Hand Grip Strength
Height
Lactose Tolerance
Sleep Duration
Sleep Movement
Sleeplessness
Sweet Tooth
Tan vs. Sunburn
Waist Size
Those who test positive for a disease-causing FH variant will be referred by AdventHealth for medical laboratory blood testing, genetic counseling, and a cardiologist visit, reported the Ormond Beach Observer.
One in 250 people have FH, and 90% of them are undiagnosed,
according to the FH Foundation,
which also noted that children have a 50% chance of inheriting FH from parents
with the condition.
AdventHealth plans to expand the free testing beyond central
Florida to its 46 other hospitals located in nine states, Modern Healthcare
noted.
Other Genetics Data Company/Healthcare Provider Partnerships
Business Insider noted that Helix has focused on clinical partnerships for about a year and seems to be filling a niche in the genetic testing market.
“Helix is able to sidestep the costs of direct-to-consumer
marketing and clinical test development, while still expanding its customer
base through predefined hospital networks. And the company is in a prime
position to capitalize on providers’ interest in population health management,”
Business Insider reported.
Ochsner’s program is the first “fully digital population
health program” aimed at including clinical genomics data in primary care in an
effort to affect patients’ health, FierceHealthcare
reported.
Hereditary breast and ovarian cancer due to
mutations in BRCA1 and BRCA2 genes;
Lynch
syndrome, associated with colorectal and other cancers; and
FH.
Color also offers genetic testing and whole genome sequencing services to NorthShore’s DNA10K program, which plans to test 10,000 patients for risk for hereditary cancers and heart diseases, according to news release.
And, Jefferson Health offered Color’s genetic testing to the healthcare system’s 33,000 employees, 10,000 of which signed up to learn their health risks as well as ancestry, a Color blog post states.
“Understanding the genome warning signals of every patient will be an essential part of wellness planning and health management,” said Geisinger Chief Executive Officer David Feinberg, MD, when he announced the new initiative at the HLTH (Health) Conference in Las Vegas. “Geisinger patients will be able to work with their family physician to modify their lifestyle and minimize risks that may be revealed,” he explained. “This forecasting will allow us to provide truly anticipatory healthcare instead of the responsive sick care that has long been the industry default across the nation.”
It will be interesting to see how and if genetic tests—free
or otherwise—will advance precision medicine goals and population health
treatments. It’s important for medical laboratory leaders to be involved in health
network agreements with genetic testing companies. And clinical laboratories should
be informed whenever private companies share their test results data with
patients and primary care providers.
More than 312 teams applied for the completion and the prize-winning hand-held device uses clinical laboratory assays to diagnose up to 34 different medical conditions
Star Trek fans among clinical laboratory manager and pathologist will be excited to learn that the winners of the Qualcomm Tricorder XPRIZE were announced earlier this year, five years after the contest began. The purpose of the XPRIZE competition was to challenge teams to create a mobile integrated diagnostic device that weighed less than five pounds and had the ability to monitor health metrics and diagnose 13 specific health conditions. The premise for the contest was inspired by the Star Trek medical tricorder that was first conceptualized on the television show “Star Trek” in the 1960s.
In the popular science-fiction show, the tricorder was a multifunctional hand-held device used for sensor scanning, data analysis, and recording data. The name “tricorder” was an abbreviation for the full name of the gadget, “tri-function recorder,” which referred to the three primary functions of the device.
Based in Culver City, Calif, the XPRIZE Foundation is a non-profit organization that creates and oversees prestigious technological competitions for the purpose of prompting innovations that could benefit humanity.
Handheld Device That Can Perform Multiple Clinical Laboratory Assays
The Qualcomm Tricorder XPRIZE competition was launched in January 2012. Participants had until August 2013 to register for the contest. The qualifying round was held the following August. Three hundred and twelve teams entered the competition. Qualifiers had until March 2015 to design and build their prototypes. Consumer testing on the products began in September 2016 and the winners were announced in April 2017.
The top prize of $2.6 million was awarded to Final Frontier Medical Devices, the team led by Basil Harris, MD, an emergency room physician with a PhD in Materials Engineering led the team, along with his network engineer brother, George Harris.
Basil Leaf Technologies, founded by Basil Harris, MD, PhD, FACEP (above center); and his brother George, a Network Engineer (second from left), is a medical technology company headquartered in Paoli, Pa. Their winning entry, called DxtER (pronounced Dexter), is a small FDA-approved group of medical devices that enable consumers to diagnose illnesses at home or remotely and share that data with healthcare providers. (Photo copyright: XPRIZE Foundation.)
The collection of FDA-approved devices that make up the “tricorder” includes sensors designed to gather data about vital signs, body chemistry, and biological functions. The DxtER device walks patients through the self-diagnosis of 34 medical conditions. The instruments include:
· A compact spirometer that calculates lung strength;
DxtER communicates with a tablet and/or smartphone-based app. Since the components are FDA-approved, diagnostic test results can be taken directly to healthcare professionals.
“You can [receive the] results and take them to the ER or to your physician or whoever’s helping you, and they can build off those results,” George Harris explained in an Engadget article. “They don’t have to start back at square one. They can jump off at that point and move on with their healthcare.”
Basil Leaf Technologies’ DxtER “tricorder” (above) enables the user to self-diagnose up to 34 medical conditions. Each individual component is FDA-approved, so hospital physicians can rely on the accuracy of the test results. (Photo copyright: XPRIZE Foundation.)
According to the contest website, “at the heart of DxtER is an artificially intelligent engine that learned to diagnose by integrating years of experience in clinical emergency medicine with data analysis from actual patients having a variety of medical conditions and outcomes.”
“It is very exciting that our vision of mobile, personalized patient-centric healthcare is getting closer to becoming a reality thanks to the great work of the Qualcomm Tricorder XPRIZE teams,” declared Paul E. Jacobs, PhD, Executive Chairman of Qualcomm Incorporated (NASDAQ:QCOM) in an XPRIZE press release. “Creating technology breakthroughs in an industry as complex as healthcare is quite a milestone, and what these teams accomplished is a great stepping stone to making mobile healthcare a viable option across the world.”
DxtER Functions Like a Mobile Medical Laboratory
In addition to the $2.6-million prize, Qualcomm Foundation is giving the Basil Leaf team $3.8 million to further develop the device. This amount includes a:
· $2.5 million proposal grant to the University of California San Diego; and a
· $1.6-million gift from the Roddenberry Foundation to adapt the tricorder for hospital use in the developing world.
The XPRIZE competition required contestants to create a tricorder device that could accurately diagnose 13 health conditions. This included 10 core conditions and a choice of three elective health conditions. The devices also needed to be able to acquire five real-time vital signs:
1. Blood pressure;
2. Heart rate;
3. Oxygen saturation;
4. Respiratory rate; and
5. Temperature.
The 10 core conditions the devices had to be able to identify were:
It is notable that the TriCorder XPRIZE—with its $2.6 million prize—generated entries from 312 teams. Pathologists and clinical laboratory managers can take this high number of entrants as a sign that the ongoing advances in technology are poised to support a new generation of very small medical lab testing devices. Thus, miniaturized diagnostic technologies, when combined with more sophisticated computing chips and software are making it simpler and more feasible to pack multiple diagnostic instruments into a hand-held package.
The self-monitoring/self-test market is expected to swell to $19 billion by 2019, offering opportunities for pathologists and clinical laboratories to advise patients and ensure the proper use of home tests
Might the future of clinical laboratory tests be sitting on the shelf at your corner pharmacy right now? Patient self-testing and screening kits continue to garner the approvals of Consumer Reports’ medical advisors.
That’s happening because the Food and Drug Administration (FDA) continues to clear many do-it-yourself tests that traditionally were performed in medical laboratories by qualified personnel, much to the chagrin of some doctors.
Empowered healthcare consumers are checking their cholesterol, monitoring their diabetes, and more, using health screening kits that range from $8 to $175, according to a Consumer Reports on Health article, which advised consumers to use self-tests judiciously and share the results with their physicians. (more…)
Comparing results from more than 300,000 individuals, international experts recommend using non-fasting blood screening for most cholesterol and triglyceride tests
Every clinical laboratory offering cholesterol testing across the globe must deal with a common issue: because patients are told to fast overnight before giving a blood specimen, patient service centers (PSCs) and blood collection centers are overcrowded when they first open their doors in the morning. That’s because hungry patients want their sample collected so they then go eat something as soon as possible.
It has long been recognized that the overnight fasting requirement for collecting blood samples used in cholesterol testing is unpleasant for patients. It also adds cost to the healthcare system because labs must staff an adequate number of phlebotomists in their PSCs to handle the predictable early morning rush of hungry patients wanting to be done with this task. Meanwhile, in the afternoons, patient traffic in the same PSCs can dwindle to near nothing, leaving phlebotomists in those PSCs with little to do. (more…)