News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

University of Florida Study Determines That ChatGPT Made Errors in Advice about Urology Cases

Research results call into question the safety and dependability of using artificial intelligence in medical diagnosis, a development that should be watched by clinical laboratory scientists

ChatGPT, an artificial intelligence (AI) chatbot that returns answers to written prompts, has been tested and found wanting by researchers at the University of Florida College of Medicine (UF Health) who looked into how well it could answer typical patient questions on urology. Not good enough according to the researchers who conducted the study.

AI is quickly becoming a powerful new tool in diagnosis and medical research. Some digital pathologists and radiologists use it for data analysis and to speed up diagnostic modality readings. It’s even been said that AI will improve how physicians treat disease. But with all new discoveries there comes controversy, and that’s certainly the case with AI in healthcare.

Many voices in opposition to AI’s use in clinical medicine claim the technology is too new and cannot be trusted with patients’ health. Now, UF Health’s study seems to have confirmed that belief—at least with ChatGPT.

The study revealed that answers ChatGPT provided “fell short of the standard expected of physicians,” according to a UF Health new release, which called ChatGPT’s answers “flawed.”

The questions posed were considered to be common medical questions that patients would ask during a visit to a urologist.

The researchers believes their study is the first of its kind to focus on AI and the urology specialty and which “highlights the risk of asking AI engines for medical information even as they grow in accuracy and conversational ability,” UF Health noted in the news release.

The researchers published their findings in the journal Urology titled, “Caution! AI Bot Has Entered the Patient Chat: ChatGPT Has Limitations in Providing Accurate Urologic Healthcare Advice.”

Russell S. Terry, MD

“I am not discouraging people from using chatbots,” said Russell S. Terry, MD (above), an assistant professor in the UF College of Medicine’s department of urology and the study’s senior author, in a UF Health news release. “But don’t treat what you see as the final answer. Chatbots are not a substitute for a doctor.” Pathologists and clinical laboratory managers will want to monitor how developers improve the performance of chatbots and other applications using artificial intelligence. (Photo copyright: University of Florida.)

UF Health ChatGPT Study Details

UF Health’s study featured 13 of the most queried topics from patients to their urologists during office visits. The researchers asked ChatGPT each question three times “since ChatGPT can formulate different answers to identical queries,” they noted in the news release.

The urological conditions the questions covered included:

The researchers then “evaluated the answers based on guidelines produced by the three leading professional groups for urologists in the United States, Canada, and Europe, including the American Urological Association (URA). Five UF Health urologists independently assessed the appropriateness of the chatbot’s answers using standardized methods,” UF Health noted.

Notable was that many of the results were inaccurate. According to UF Health, only 60% of responses were deemed appropriate from the 39 evaluated responses. Outside of those results, the researchers noted in their Urology paper, “[ChatGPT] misinterprets clinical care guidelines, dismisses important contextual information, conceals its sources, and provides inappropriate references.”

When asked, for the most part ChatGPT was not able to accurately provide the sources it referenced for its answers. Apparently, the chatbot was not programmed to provide such sources, the UF Health news release stated.

“It provided sources that were either completely made up or completely irrelevant,” Terry noted in the new release. “Transparency is important so patients can assess what they’re being told.”

Further, “Only 7 (54%) of 13 topics and 21 (54%) of 39 responses met the BD [Brief DISCERN] cut-off score of ≥16 to denote good-quality content,” the researchers wrote in their paper. BD is a validated healthcare information assessment questionnaire that “provides users with a valid and reliable way of assessing the quality of written information on treatment choices for a health problem,” according to the DISCERN website.

ChatGPT often “omitted key details or incorrectly processed their meaning, as it did by not recognizing the importance of pain from scar tissue in Peyronie’s disease. As a result … the AI provided an improper treatment recommendation,” the UF Health study paper noted.

Is Using ChatGPT for Medical Advice Dangerous to Patients?

Terry noted that the chatbot performed better in some areas over others, such as infertility, overactive bladder, and hypogonadism. However, frequently recurring UTIs in women was one topic of questions for which ChatGPT consistently gave incorrect results.

“One of the more dangerous characteristics of chatbots is that they can answer a patient’s inquiry with all the confidence of a veteran physician, even when completely wrong,” UF Health reported.

“In only one of the evaluated responses did the AI note it ‘cannot give medical advice’ … The chatbot recommended consulting with a doctor or medical adviser in only 62% of its responses,” UF Health noted.

For their part, ChatGPT’s developers “tell users the chatbot can provide bad information and warn users after logging in that ChatGPT ‘is not intended to give advice,’” UF Health added.

Future of Chatbots in Healthcare

In UF Health’s Urology paper, the researchers state, “Chatbot models hold great promise, but users should be cautious when interpreting healthcare-related advice from existing AI models. Additional training and modifications are needed before these AI models will be ready for reliable use by patients and providers.”

UF Health conducted its study in February 2023. Thus, the news release points out, results could be different now due to ChatGPT updates. Nevertheless, Terry urges users to get second opinions from their doctors.

“It’s always a good thing when patients take ownership of their healthcare and do research to get information on their own,” he said in the news release. “But just as when you use Google, don’t accept anything at face value without checking with your healthcare provider.”

That’s always good advice. Still, UF Health notes that “While this and other chatbots warn users that the programs are a work in progress, physicians believe some people will undoubtedly still rely on them.” Time will tell whether trusting AI for medical advice turns out well for those patients.

The study reported above is a useful warning to clinical laboratory managers and pathologists that current technologies used in ChatGPT, and similar AI-powered solutions, have not yet achieved the accuracy and reliability of trained medical diagnosticians when answering common questions about different health conditions asked by patients.

—Kristin Althea O’Connor

Related Information:

UF College of Medicine Research Shows AI Chatbot Flawed when Giving Urology Advice

Caution! AI Bot Has Entered the Patient Chat: ChatGPT Has Limitations in Providing Accurate Urologic Healthcare Advice

Cambridge Researchers in UK Develop ‘Unknome Database’ That Ranks Proteins by How Little is Known about Their Functions

Scientists believe useful new clinical laboratory assays could be developed by better understanding the huge number of ‘poorly researched’ genes and the proteins they build

Researchers have added a new “-ome” to the long list of -omes. The new -ome is the “unknome.” This is significant for clinical laboratory managers because it is part of an investigative effort to better understand the substantial number of genes, and the proteins they build, that have been understudied and of which little is known about their full function.

Scientists at the Medical Research Council Laboratory of Molecular Biology (MRC-LMB) in Cambridge, England, believe these genes are important. They have created a database of thousands of unknown—or “unknome” as they cleverly dubbed them—proteins and genes that have been “poorly understood” and which are “unjustifiably neglected,” according to a paper the scientist published in the journal PLOS Biology titled, “Functional Unknomics: Systematic Screening of Conserved Genes of Unknown Function.”

The Unknome Database includes “thousands of understudied proteins encoded by genes in the human genome, whose existence is known but whose functions are mostly not,” according to a news release.

The database, which is available to the public and which can be customized by the user, “ranks proteins based on how little is known about them,” the PLOS Biology paper notes.

It should be of interest to pathologists and clinical laboratory scientists. The fruit of this research may identify additional biomarkers useful in diagnosis and for guiding decisions on how to treat patients.

Sean Munro, PhD

“These uncharacterized genes have not deserved their neglect,” said Sean Munro, PhD (above), MRC Laboratory of Molecular Biology in Cambridge, England, in a press release. “Our database provides a powerful, versatile and efficient platform to identify and select important genes of unknown function for analysis, thereby accelerating the closure of the gap in biological knowledge that the unknome represents.” Clinical laboratory scientists may find the Unknome Database intriguing and useful. (Photo copyright: Royal Society.)

Risk of Ignoring Understudied Proteins

Proteomics (the study of proteins) is a rapidly advancing area of clinical laboratory testing. As genetic scientists learn more about proteins and their functions, diagnostics companies use that information to develop new assays. But did you know that researchers tend to focus on only a small fraction of the total number of protein-coding DNA sequences contained in the human genome?

The study of proteomics is primarily interested in the part of the genome that “contains instructions for building proteins … [which] are essential for development, growth, and reproduction across the entire body,” according to Scientific American. These are all protein-coding genes.

Proteomics estimates that there are more than two million proteins in the human body, which are coded for 20,000 to 25,000 genes, according to All the Science.

To build their database, the MRC researchers ranked the “unknome” proteins by how little is known about their functions in cellular processes. When they tested the database, they found some of these less-researched proteins important to biological functions such as development and stress resistance. 

“The role of thousands of human proteins remains unclear and yet research tends to focus on those that are already well understood,” said Sean Munro, PhD, MRC Laboratory of Molecular Biology in Cambridge, England, in the news release. “To help address this we created an Unknome database that ranks proteins based on how little is known about them, and then performed functional screens on a selection of these mystery proteins to demonstrate how ignorance can drive biological discovery.”

Munro created the Unknome Database along with Matthew Freeman, PhD, Head of England’s Sir William Dunn School of Pathology, University of Oxford.

In the paper, they acknowledged the human genome encodes about 20,000 proteins, and that the application of transcriptomics and proteomics has “confirmed that most of these new proteins are expressed, and the function of many of them has been identified.

“However,” the authors added, “despite over 20 years of extensive effort, there are also many others that still have no known function.”

They also recognized limited resources for research and that a preference for “relative safety” and “well-established fields” are likely holding back discoveries.

The researchers note “significant” risks to continually ignoring unexplored proteins, which may have roles in cell processes, serve as targets for therapies, and be associated with diseases as well as being “eminently druggable,” Genetic Engineering News reported.

Setting up the Unknome Database

To develop the Unknome Database, the researchers first turned to what has already come to fruition. They gave each protein in the human genome a “knownness” score based on review of existing information about “function, conservation across species, subcellular localization, and other factors,” Interesting Engineering reported.

It turns out, 3,000 groups of proteins (805 with a human protein) scored zero, “showing there’s still much to learn within the human genome,” Science News stated, adding that the Unknome Database catalogues more than 13,000 protein groups and nearly two million proteins. 

The researchers then tested the database by using it to determine what could be learned about 260 “mystery” genes in humans that are also present in Drosophila (small fruit flies).

“We used the Unknome Database to select 260 genes that appeared both highly conserved and particularly poorly understood, and then applied functional assays in whole animals that would be impractical at genome-wide scale,” the researchers wrote in PLOS Biology.

“We initially selected all genes that had a knownness score of ≤1.0 and are conserved in both humans and flies, as well as being present in at least 80% of available metazoan genome sequences. … After testing for viability, the nonessential genes were then screened with a panel of quantitative assays designed to reveal potential roles in a wide range of biological functions,” they added.

“Our screen in whole organisms reveals that, despite several decades of extensive genetic screens in Drosophila, there are many genes with essential roles that have eluded characterization,” the researchers conclude.

Clinical Laboratory Testing Using the Unknome Database

Future use of the Unknome Database may involve CRISPR technology to explore functions of unknown genes, according to the PLOS Biology paper.

Munro told Science News the research team may work with other research efforts aimed at understanding “mysterious proteins,” such as the Understudied Proteins Initiative.

The Unknome Database’s ability to be customized by others means researchers can create their own “knownness” scores as it applies to their studies. Thus, the database could be a resource in studies of treatments or medications to fight diseases, Chemistry World noted.

According to a statement prepared for Healthcare Dive by SomaLogic, a Boulder, Colorado-based protein biomarker company, diagnostic tests that measure proteins can be applied to diseases and conditions such as:

In a study published in Science Translational Medicine, SomaLogic’s SomaScan assay was reportedly successful in predicting the likelihood within four years of myocardial infarction, heart failure, stroke, and even death.

“The 27-protein model has potential as a ‘universal’ surrogate end point for cardiovascular risk,” the researchers wrote in Science Translational Medicine.

Proteomics definitely has its place in clinical laboratory testing. The development of MRC-LMB’s Unknome Database will help researchers’ increase their knowledge about the functions of more proteins which should in turn lead to new diagnostic assays for labs.

—Donna Marie Pocius

Related Information:

Mapping the ‘Unknome’ May Reveal Critical Genes Scientists Have Ignored

How Many Proteins Exist?

Unknome: A Database of Human Genes We Know Almost Nothing About

Functional Unknomics: Systematic Screening of Conserved Genes of Unknown Function

Unknome Database Ranks Proteins Based on How Little is Known about Them

How a New Database of Human Genes Can Help Discover New Biology

The Unknome Catalogs Nearly Two Million Proteins. Many are Mysterious

Into the Unknome: Scientists at MRC LMB in Cambridge Create Database Ranking Human Proteins by How Little We know About Them

Scientists Hope to Illuminate Unknown Human Proteins with New Public Database

Proteomic Tests Empower Precision Medicine

A Proteomic Surrogate for Cardiovascular Outcomes That is Sensitive to Multiple Mechanisms of Change in Risk

New Wearable In-Ear Medical Device Helps Sufferers of Standing-Related Ailments

Device is latest example that wearable healthcare devices are moving past simple biomarker monitoring and into the area of assisting in rehab

Companies unrelated to traditional clinical laboratory medicine continue to develop wearable devices that enable individuals to monitor their health while also alerting physicians and caregivers in real time when certain biomarkers are out of range.

One recent example is US biotechnology company STAT Health Informatics in Boston, which has developed a wearable device that monitors blood flow to the ear and face “to better understand symptoms such as dizziness, brain fog, headaches, fainting, and fatigue that occur upon standing,” according to a press release. The tiny device is worn in the ear and connects wirelessly to a smartphone app.

Johns Hopkins University clinically tested the STAT device, and according to Medical Device Network, “It can predict a person fainting minutes before it happens and can be worn with more than 90% of devices that go in or around the ear. It can also be left in while sleeping and showering, meaning less likelihood of removing the device and forgetting to replace it.”

Another notable aspect of this invention is that it’s an example of how the ongoing miniaturization of various technologies makes it possible to invent smaller devices but with greater capabilities. In the case of the STAT device, it combines tiny sensors, Bluetooth, and an equally tiny battery to produce a device that fits in the ear and can function for up to three days before needing a recharge.

It’s easy to imagine these technologies being used for other types of diagnostic testing devices that could be managed by clinical laboratories.

Johns Hopkins published its findings in the Journal of the American College of Cardiology: Clinical Electrophysiology titled, “Monitoring Carotid Blood Flow Using In-Ear Wearable Device During Tilt-Table Testing.”

Daniel Lee

“It’s well understood that the ear is a biometric gold mine because of its close proximity to the brain and major arteries. This allows for new biometrics … to be possible,” said Daniel Lee (above), co-founder and CEO of STAT Health, in a press release. “In addition, the ear is largely isolated from data corruption caused by arm motion—a problem that plagues current wearables and prevents them from monitoring heart metrics during many daily tasks. The ear is really the ideal window into the brain and heart.” Clinical laboratory managers may want to watch how this technology is further developed to incorporate other biomarkers for diseases and health conditions. (Photo copyright: STAT Health.)

How STAT Works

Every time the wearer stands, the STAT device tracks the change in response of blood pressure, heart rate, and blood flow to the head. “The device distills all this information into an ‘Up Score’ to track time spent upright. Its ‘Flow Score’ helps users pace their recovery by watching for blood flow abnormalities,” MassDevice reported.

According to the company’s website, STAT is intended for use in individuals who have been diagnosed with conditions known to suffer from drops in blood flow to the head, such as:

As an individual continues to use the device, STAT “learns about each user’s unique body to provide personalized coaching for healthy lifestyle choices,” MassDevice reported.

Another key factor is the technology built into the device. An optical sensor was chosen over ultrasound because STAT Health felt it was both easy to use and provided precise measurements accessing the shallow ear artery, MassDevice reported.

“Despite its small scale, the device incorporates advanced optical sensors, an accelerometer, a pressure sensor, temperature sensors, artificial intelligence (AI)-edge computing, three-day battery life (or more), and a micro solar panel,” Medical Device Network noted.

wearable device

STAT’s image above demonstrates how truly minute the company’s wearable device is, even though it monitors blood flow to the face and ear looking for signs that the wearer is about to suffer bouts of dizziness or lightheadedness due to a drop in blood flow. (Photo copyright: STAT Health Informatics Inc.)

STAT’s Impact on Users’ Health

STAT’s developers intend the device to help individuals stay on track with their health. “The target population can navigate their condition better. If they’re not standing when they can, they will become deconditioned. This product encourages standing and being upright where possible, as part of rehab,” Lee told Medical Device Network.

Lee has been developing wearable in-ear devices for many years.  

“Nobody has realized the ear’s true potential due to the miniaturization and complex systems design needed to make a practical and user-friendly ear wearable,” he told MassDevice. “After multiple engineering breakthroughs, we’ve succeeded in unlocking the ear to combine the convenience and long-term nature of wearables with the high fidelity nature of obtrusive clinical monitors. No other device comes close along the axis of wearability and cardiac signal quality, which is why we believe STAT is truly the world’s most advanced wearable.”

For clinical laboratories, though STAT is not a diagnostic test, it is the latest example of how companies are developing wearable monitoring devices intended to allow individuals to monitor their health. It moves beyond the simple monitoring of Apple Watch and Fitbit. This device can aid individuals during rehab.

Wearable healthcare devices will continue to be introduced that are smaller, allow more precise measurements of target biomarkers, and alert wearers in real time when those markers are out of range. Keeping in tune with the newest developments will help clinical laboratories and pathologists find new ways to support healthcare providers who recommend these devices for monitoring their patients conditions.

—Kristin Althea O’Connor

Related Information:

STAT Health Introduces First In-Ear Wearable to Measure Blood Flow to the Head for Long COVID, POTS and Other Related Syndromes

Monitoring Carotid Blood Flow Using In-Ear Wearable Device During Tilt-Table Testing

STAT Health Launches First In-Ear Wearable to Measure Blood Flow

Stat Health Launches In-Ear Wearable That Measures Blood Flow

University of Maryland Scientists Image World’s First ‘Vampire Virus’

Research could lead to improvements in gene therapy and antiviral resistance medications while also possibly leading to a new class of clinical laboratory tests

Scientists at the University of Maryland, Baltimore County (UMBC) have discovered what may be the scariest virus of all—the Vampire Virus. It’s a term that may inspire “Walking Dead” level horror in the wake of the COVID-19 pandemic, and though virologists and microbiologists might be tempted to dismiss them as imaginary, they are all too real. Even more apropos to the Dracula saga, the UM scientists found them in a soil sample. Yikes!

Happily, this ghoulish discovery could have positive implications for gene editing, gene therapy, and the development of new antiviral medications, according to The Conversation. In turn, these positive implications may eventually trigger the need to create new diagnostic tests that clinical laboratories can offer to physicians.

The UMBC scientists published their findings in the journal ISME, a publication of the International Society for Microbial Ecology, titled, “Simultaneous Entry as an Adaptation to Virulence in a Novel Satellite-Helper System Infecting Streptomyces Species.”

Vampire-like virus photo

The image above, taken from a University of Maryland news release, shows the satellite virus “latched onto its helper virus.” Discovery of vampire-like viruses that attach at the “neck” of other viruses may lead to important discoveries in the development of gene editing and antiviral therapies. Might clinical laboratories one day collect samples for pharmaceutical developers engaged in combating antiviral drug resistance? (Photo copyright: University of Maryland.)

Spotting a Vampire Virus

According to IFLScience, these tiny vampire viruses were first discovered by undergraduates who believed they were looking at sample contamination when analyzing sequences of bacteriophages from environmental soil samples. But upon repeating the experiment they realized it was no mistake.

In the UMBC news release, bioinformatician Ivan Erill, PhD, Professor of Biological Sciences at the University of Maryland, noted that “some viruses, called satellites, depend not only on their host organism to complete their life cycle, but also on another virus, known as a helper.

“The satellite virus needs the helper either to build its capsid, a protective shell that encloses the virus’ genetic material, or to help it replicate its DNA,” he added. “These viral relationships require the satellite and the helper to be in proximity to each other at least temporarily, but there were no known cases of a satellite actually attaching itself to a helper—until now.”

Although scientists have witnessed viruses working together before, this is the first known instance of a virus directly latching onto another virus’ capsid—rather like a vampire going for the neck.

“When I saw it, I was like, I can’t believe this,” said Tagide deCarvalho, PhD, Assistant Director of Natural and Mathematical Sciences at the University of Maryland and first author of the study, in a UM news release, “No one has ever seen a bacteriophage—or any other virus—attach to another virus.”

Visualizing the tiny viruses was only possible through the use of the transmission electron microscope (TEM) at UMBC’s Keith R. Porter Imaging Facility (KPIF), to which deCarvalho had access.

“Not everyone has a TEM at their disposal. [With the TEM] I’m able to follow up on some of these observations and validate them with imaging. There’s elements of discovery we can only make using the TEM,” said deCarvalho in the UMBC news release.

Using Vampire Viruses to Develop Better Gene Therapies

Spookily, the comparisons to Dracula and his parasitic brethren do not stop with their freeloading tendencies. The researchers found that some viruses without a satellite attached still showed signs of having been leeched onto before. Those viruses had the equivalent of “bite marks” showing evidence of encountering vampiric viruses in the past.

“It’s possible that a lot of the bacteriophages that people thought were contaminated were actually these satellite-helper systems,” said deCarvalho in the ISME paper.

But what does UMBC’s breakthrough mean for the greater scientific and medical community? Do we need to arm host viruses with silver crosses and necklaces of garlic? Jokes aside, this discovery could lead to further development in research of how to genetically alter viruses and deliver therapeutic elements into cells.

According to Healthline, some gene therapy or “gene editing” already involves the use of viruses. Scientists switch out the programming on a virus and trick it into healing, instead of harming the cells it infiltrates. Therefore, UMBC’s discovery could lead to new breakthroughs battling deadly viruses by using their own parasitic tricks to infiltrate other viruses.

Although groundbreaking and extremely interesting, the research is still in early stages. Any developments from this discovery aren’t likely to impact clinical laboratories any time soon. But after the past few years of battling the COVID-19 variants, this exciting discovery could help find new ways to prevent the next pandemic.  

—Ashley Croce

Related Information:

Vampire Viruses Prey on Other Viruses to Replicate Themselves and May Hold the Key to New Antiviral Therapies

Virus Seen Latching onto Another Virus (Like A Tiny Vampire) for First Time

UMBC Team Makes First-Ever Observation of a Virus Attaching to Another Virus

The First Discovered Vampire Virus Hooks Onto other Viruses—Meet the ‘MiniFlayer’

Simultaneous Entry as an Adaptation to Virulence in a Novel Satellite-Helper System infecting Streptomyces Species

Your Guide to Gene Therapy: How It Works and What It Treats

Bizarre First: Viruses Seen ‘Biting’ onto Other Viruses Like Tiny Vampires

Binghamton University Scientists Develop Biobattery That Powers Ingestible Devices and Biosensors Inside the Human Small Intestine

Biobattery might one day power clinical laboratory testing devices designed to function in vivo to measure and wirelessly report certain biomarkers

Clinical laboratories may one day regularly process biomarker data sent by ingested medical devices from inside the human body, such as the colon and intestines. But powering such devices remains a challenge for developers. Now, researchers at Binghamton University in New York have developed a biobattery that derives its power based on pH reactions when it comes in contact with acids inside the gut.

The battery uses “bacteria to create low levels of electricity that can power sensors and Wi-Fi connections as part of the Internet of Things,” according to a Binghamton University news release.

The biobattery uses microbial fuel cells with spore-forming bacteria for power and it remains inactive until it reaches the small intestine.

Ingestible devices, such as wireless micro cameras, are being utilized more frequently to investigate a myriad of activities that occur in vivo. But traditional batteries that power ingestible diagnostic gadgets can be potentially harmful and are less reliable.

In addition, the small intestine in humans is typically between 10 and 18 feet in length and it folds several times to fit the abdomen. Thus, the inside area can be very difficult to reach for diagnostic purposes.

The scientists published their research in the journal Advanced Energy Materials titled, “A Biobattery Capsule for Ingestible Electronics in the Small Intestine: Biopower Production from Intestinal Fluids Activated Germination of Exoelectrogenic Bacterial Endospores.”

Seokheun “Sean” Choi, PhD

“There are some regions in the small intestine that are not reachable, and that is why ingestible cameras have been developed to solve this issue,” said Seokheun “Sean” Choi, PhD (above), Professor of Electrical and Computer Engineering at Binghamton University, in a news release. “They can do many things, such as imaging and physical sensing, even drug delivery. The problem is power. So far, the electronics are using primary batteries that have a finite energy budget and cannot function for the long term.” As these technologies develop, clinical laboratories may play a role in collecting biomarker data from these devices interpretation by physicians. (Photo copyright: Binghamton University/Jonathan Cohen.)

How Binghamton Researchers Developed Their Biobattery

To develop their new biobattery, the Binghamton researchers encased Bacillus subtilis, a bacterium found in the gastrointestinal tract of humans, in a graphene integrated hydrogel that excels at grabbing moisture from the air.

The dime-sized fuel cell assembly is then sealed with a piece of Kapton tape, which can withstand temperatures from -500 to 750 degrees Fahrenheit. When the tape is removed, moisture mixes with a chemical germinant that causes the bacteria to begin manufacturing spores. 

“We use these spores as a dormant, storable biocatalyst,” explained Seokheun “Sean” Choi, PhD, Professor of Electrical and Computer Engineering at Thomas J. Watson College of Engineering and Applied Science, Binghamton University, in the news release. “The spores can be germinated when the nutrients are available, and they can resume vegetative life and generate the power.”

The biobattery generates around 100 microwatts per square centimeter of power density, but it can take up to an hour to germinate completely. After one hour, the energy generated from the device can power an LED light, a small clock, or a digital hygrometer, as well as a micro camera for in vivo use.

“We wanted to make these bio-batteries for portable, storable, and on-demand power generation capabilities,” Choi said in the news release.

“The problem is, how can we provide the long-term storage of bacteria until used? And if that is possible, then how would you provide on-demand battery activation for rapid and easy power generation? And how would you improve the power?” Choi added.

Heating the fuel cell decreased the time it took to reach full power to 20 minutes, and increasing the humidity resulted in higher electrical output.

Potential for Long-term Power Storage

In addition, after a week of being stored at room temperature, the activated battery had only lost 2% of its power. The researchers also believe that the device could function properly in an inactivate state for up to 100 years, provided there is enough moisture to activate the bacteria after the Kapton tape is removed.

“The overall objective is to develop a microbial fuel cell that can be stored for a relatively long period without degradation of bio-catalytic activity, and also can be rapidly activated by absorbing moisture from the air,” said Choi in the news release. 

The federal Office of Naval Research funded the study.

More research and studies are needed to confirm the biobattery performs properly and is feasible for general use. This experimentation would require both animal and human testing, along with biocompatibility studies.

“I think this is a good start,” Choi added. “Hopefully, we can make a commercial product using these ideas.”

If the biobattery can power an ingestible medical device for a reasonable period of time, then this invention may be able to power a clinical laboratory testing device that could function in vivo to measure and wirelessly report certain biomarkers inside the body. 

—JP Schlingman

Related Information:

Tiny Biobattery with 100-year Shelf Life Runs on Bacteria

Capsule-Sized Ingestible Biobatteries Could Allow New View of Digestive System

Bacteria-based Biobattery Could Power Devices in the Small Intestine

A Biobattery Capsule for Ingestible Electronics in the Small Intestine: Biopower Production from Intestinal Fluids Activated Germination of Exoelectrogenic Bacterial Endospores

Spore-producing Bacteria Battery Could Last 100 Years on the Shelf

Scientists Create Stretchable Battery Made Entirely Out of Fabric

;