News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

BioReference Laboratories’ Unique Journey during the COVID-19 Pandemic Described in ‘Swab,’ a New Book by former BRLI CEO Jon Cohen, MD

Certainly every clinical laboratory in the United States has a unique story about dealing with the challenges of the SARS-CoV-2 outbreak, but only BioReference did testing for multiple professional sports leagues and the cruise ship industry

Few would challenge the assertion that the nation’s clinical laboratories (along with public health officials) were caught flat-footed when the SARS-CoV-2 coronavirus reached the United States in the winter of 2021. Even as the federal Centers for Disease Control and Prevention (CDC) and some labs rushed to develop reliable medical laboratory tests for COVID-19 in the early weeks of the outbreak, the demand for tests far outstripped supply in this country for many months.

This was the moment when the pandemic’s need meant lab testing opportunity for medical laboratories across the nation. This was particularly true for Elmwood Park, New Jersey-based BioReference Laboratories, Inc. (BRLI), a division of OPKO, Inc. BioReference found itself in the nation’s first pandemic hot zone—New York City and surrounding counties.

Not only was this lab company geographically in the center of the first overwhelming surge of COVID-19 cases, but its management team had important relationships across government and business. For that reason, its management team was pulled into the earliest planning sessions by government officials at the city, state, and federal level.

Consequently, in the earliest days of the outbreak, BioReference was one of the nation’s first labs to help organize and support drive-through COVID-19 specimen collection centers. Its management team went on to accomplish many notable firsts in the lab’s response to the pandemic. All of this is described in the recently-published book “Swab–Leadership in the Race to Provide COVID Testing to America.”

As CEO of BioReference Laboratories during the time of the COVID-19 pandemic in 2020 and 2021, physician Jon R. Cohen, MD (above), energized his clinical lab’s management team and staff to rise to a series of unique challenges, ranging from helping set up the nation’s first drive-through COVID-19 sampling sites in New York City to performing testing for professional sports leagues, such as the NBA, the NFL, and the NHL. (Photo copyright: New York Foundling, Inc.)

Harnessing the Creativity and Energy of a Clinical Lab Staff

The book’s author is Jon R. Cohen, MD, who was CEO of BioReference Laboratories throughout the course of the pandemic. Cohen is now CEO of Talkspace, a virtual behavioral health company.

“Swab” documents BioReference lab’s response to the SARS-CoV-2 pandemic and tells the tale of how the lab company harnessed the creativity of its managers and lab scientists to speedily build up daily test volumes at a time when automation, analyzers, test kits, collection supplies, and reagents were in short supply.

Clinical laboratory professionals interested in lab management will gain valuable insights from Cohen’s approach to writing “Swab.”

While describing BioReference lab’s many innovative COVID-19 testing services, Cohen also provides readers with the management lessons and insights he used to impart needed skills to the company managers, while also inspiring BioReference Lab’s staff to devote the extra effort necessary to deliver COVID-19 testing in novel ways and in unusual settings.

When New York City hospitals were overwhelmed by cases in the earliest days of the pandemic, Cohen’s personal contacts with political leaders came into play. Just a few years earlier, Cohen had run for statewide office as a Democrat. He had friendships with the New York City Mayor Bill de Blasio, with the New York State Governor Mario Cuomo, and with Senators Charles Schumer and Kirsten Gillibrand.

Cohen’s Lab Had a Seat at Government Planning Tables

As these government officials convened various task forces to address the pandemic, Cohen describes how BioReference had a seat at the table and a voice in viable ways to organize specimen collection and COVID-19 testing literally overnight and on an unprecedented scale.

The pandemic’s early days in late February, March, and April of 2020 were only the first challenges to be overcome by the management at BioReference. “Swab” describes a remarkable progression of innovative SARS-CoV-2 testing programs initiated by Cohen and his team. Each of these testing programs was tailored to the specific needs of different industries. No other clinical laboratory organization in the United States was as successful at serving this range of clients. For example:

  • For the last eight games of the National Basketball Association’s 2020 season and playoffs, BioReference created and managed the NBA’s “biosecure bubble” program at Disney World in Orlando. Over the course of 172 games, 150,000 SARS-CoV-2 tests were performed with zero-positivity.
  • The National Football League watched the NBA play in its bubble that summer. BioReference got the call and worked with NFL management to provide COVID-19 tests. For the 2020 season, in support of 268 games played across the United States, BioReference performed 1.23 million tests for 5,000 players, coaches, and staff, with an infection rate of less than 1%.
  • Along with the NBA and NFL, BioReference provided SARS-CoV-2 testing for professional soccer and hockey, the Winter X Games, and the US men’s and women’s Olympic soccer teams.
  • One of the lab company’s more complex SARS-CoV-2 testing programs involved the cruise ship industry. In 2021, BioReference established sites in 13 ports around the US and the Caribbean. The lab placed staff on as many as 24 cruise ships at one time.
  • Of course, testing for schools, colleges, universities, and employers was part of BRLI’s testing services over the course of the COVID-19 pandemic as well.

Creativity of Clinical Lab Managers and Staff

As the examples above illustrate, “Swab” will give readers a ringside seat in how BioReference Laboratories harnessed the creativity and skills of its management team and staff to address the unprecedented demands for timely, accurate COVID-19 testing from the very beginning of the pandemic through its waning months.

Cohen writes with an accessible style and provides readers with an easy-to-read narrative of his lab company’s journey through the pandemic. Each of the book’s 10 chapters ends with a “Leadership Reflection” that Cohen uses to describe the management methods he utilized to keep BRLI’s thousands of employees on task and on time, so that the end result month after month was “mission accomplished.”

In today’s digital age, the statement “this book is available at a bookstore near you” may not be applicable. What is true is that author Jon R. Cohen’s “Swab–Leadership in the Race to Provide COVID Testing to America” can be ordered at Amazon.com, Alibris.com, and other web-based booksellers. 

—Robert L. Michel

Related Information:

Company Testing NBA Players in Bubble Seeks ‘Greater Good’

The Lab Powering Pandemic Sports

NBA to Primarily Use Rapid Tests for COVID-19 in 2021-22

NFL COVID-19 Testing Program Avoids Using Local Resources, Medical Personnel

BioReference Laboratories Capitalizes on Increasing Demand for Rapid POC SARS-CoV-2 Tests

NFL COVID-19 Testing Program Avoids Using Local Resources, Medical Personnel

The NBA Bubble Is Safe So Far. But the League’s Lessons Won’t Work for Schools and Businesses

UK Researchers Create Conductive Thread That Can Be Woven into Clothing to Monitor Key Health Biomarkers

Meet ‘PECOTEX,’ a newly-invented cotton thread with up to 10 sensors that is washable. Its developers hope it can help doctors diagnosis disease and enable patients to monitor their health conditions

Wearable biosensors continue to be an exciting area of research and product development. The latest development in wearable biosensors comes from a team of scientists led by Imperial College London. This team created a conductive cotton thread that can be woven onto T-shirts, textiles, and face masks and used to monitor key biosignatures like heart rate, respiratory rate, and ammonia levels.

Clinical laboratory managers and pathologists should also take note that this wearable technology also can be used to diagnose and track diseases and improve the monitoring of sleep, exercise, and stress, according to an Imperial College London news release.

Should this technology make it into daily use, it might be an opportunity for clinical laboratories to collect diagnostic and health-monitoring data to add to the patient’s full record of lab test results. In turn, clinical pathologists could use that data to add value when consulting with referring physicians and their patients.

The researchers published their findings in the journal Materials Today titled, “PEDOT:PSS-modified Cotton Conductive Thread for Mass Manufacturing of Textile-Based Electrical Wearable Sensors by Computerized Embroidery.”

“Our research opens up exciting possibilities for wearable sensors in everyday clothing,” said Firat Güder, PhD, Principal Investigator and Chief Engineer at Güder Research Group at Imperial College London, in a news release. “By monitoring breathing, heart rate, and gases, they can already be seamlessly integrated, and might even be able to help diagnose and monitor treatments of disease in the future.” (Photo copyright: Wikipedia.)

Ushering in New Generation of Wearable Health Sensors

The researchers dubbed their new sensor thread PECOTEX. It’s a polystyrene sulfonate-modified cotton conductive thread that can incorporate more than 10 sensors into cloth surfaces, costs a mere 15 cents/meter (slightly over 39 inches), and is machine washable.

“PECOTEX is high-performing, strong, and adaptable to different needs,” stated Firat Güder, PhD, Principal Investigator and Chief Engineer at Güder Research Group, Imperial College London, in the press release.

“It’s readily scalable, meaning we can produce large volumes inexpensively using both domestic and industrial computerized embroidery machines,” he added.

The material is less breakable and more conductive than conventional conductive threads, which allows for more layers to be embroidered on top of each other to develop more complex sensors. The embroidered sensors retain the intrinsic values of the cloth items, such as wearability, breathability, and the feel on the skin. PECOTEX is also compatible with computerized embroidery machines used in the textile industry.

The researchers embroidered the sensors into T-shirts to track heart activity, into a face mask to monitor breathing, and into other textiles to monitor gases in the body like ammonia which could help detect issues with liver and kidney function, according to the news release.

“The flexible medium of clothing means our sensors have a wide range of applications,” said Fahad Alshabouna, a PhD candidate at Imperial College’s Department of Bioengineering and lead author of the study in the news release. “They’re also relatively easy to produce which means we could scale up manufacturing and usher in a new generation of wearables in clothing.”

Uses for PECOTEX Outside of Healthcare

The team plans on exploring new applications for PECOTEX, such as energy storage, energy harvesting, and biochemical testing for personalized medicine. They are also seeking partners for commercialization of the product.

“We demonstrated applications in monitoring cardiac activity and breathing, and sensing gases,” Fahad added. “Future potential applications include diagnosing and monitoring disease and treatment, monitoring the body during exercise, sleep, and stress, and use in batteries, heaters, and anti-static clothing.”

In addition to Imperial College London, the research was funded by the Saudi Ministry of Education, the Engineering and Physical Sciences Research Council (EPSRC), Cytiva Life Sciences, the Bill and Melinda Gates Foundation, and the US Army.

Other Wearable Biometric Sensors

Dark Daily has covered the development of many wearable health sensors in past ebriefings.

In “UC San Diego Engineers Develop Microneedle Wearable Patch That Measures Glucose, Alcohol, Muscle Fatigue in Real Time,” we covered how “lab-on-the-skin” multi-tasking microneedle sensors like the one developed at the University of California San Diego’s (UCSD) Center for Wearable Sensors to track multiple biomarkers in interstitial fluid were finding their way into chronic disease monitoring and sample collecting for clinical laboratory testing.

In “Fitbit Receives FDA Approval for a Wearable Device App That Detects Atrial Fibrillation,” we reported how personal fitness technology company Fitbit had received 510(k) clearance from the US Food and Drug Administration (FDA), as well as Conformité Européenne (CE marking) in the European Union, for its Sense smartwatch electrocardiogram app that monitors wearers’ heart rhythms for atrial fibrillation (AFib).

And in “Researchers in Japan Have Developed a ‘Smart’ Diaper Equipped with a Self-powered Biosensor That Can Monitor Blood Glucose Levels in Adults,” we reported how researchers at Tokyo University of Science (TUS) had created a self-powered, glucose-testing diaper that utilizes a biofuel cell to detect the presence of urine and measure its glucose concentration.

Wearable Sensors in Personalized Healthcare

Wearable healthcare devices have enormous potential to perform monitoring for diagnostic, therapeutic, and rehabilitation purposes and support precision medicine.

Further studies and clinical trials need to occur before PECOTEX will be ready for mass consumer use. Nevertheless, it could lead to new categories of inexpensive, wearable sensors that can be integrated into everyday clothes to provide data about an individual’s health and wellbeing.

If this technology makes it to clinical use, it could provide an opportunity for clinical laboratories to collect diagnostic data for patient records and help healthcare professionals track their patients’ medical conditions. 

—JP Schlingman

Related Information:

Sensors Embedded into T-Shirts and Face Masks Could Monitor Biosignatures

PEDOT:PSS-modified Cotton Conductive Thread for Mass Manufacturing of Textile-based Electrical Wearable Sensors by Computerized Embroidery

Wearable Sensors Styled into T-shirts and Face Masks

Low-Cost Sensor Tracks Vital Signs and Breath to Monitor Diseases

Sensor Thread

Wearable Sensor

UC San Diego Engineers Develop Microneedle Wearable Patch That Measures Glucose, Alcohol, Muscle Fatigue in Real Time

Fitbit Receives FDA Approval for a Wearable Device App That Detects Atrial Fibrillation

Researchers in Japan Have Developed a ‘Smart’ Diaper Equipped with a Self-powered Biosensor That Can Monitor Blood Glucose Levels in Adults

Northwestern University Study Shares News Insights into Aging Guided by Transcriptome, Gene Length Imbalance

Findings could lead to deeper understanding of why we age, and to medical laboratory tests and treatments to slow or even reverse aging

Can humans control aging by keeping their genes long and balanced? Researchers at Northwestern University in Evanston, Illinois, believe it may be possible. They have unveiled a “previously unknown mechanism” behind aging that could lead to medical interventions to slow or even reverse aging, according to a Northwestern news release.

Should additional studies validate these early findings, this line of testing may become a new service clinical laboratories could offer to referring physicians and patients. It would expand the test menu with assays that deliver value in diagnosing the aging state of a patient, and which identify the parts of the transcriptome that are undergoing the most alterations that reduce lifespan.

It may also provide insights into how treatments and therapies could be implemented by physicians to address aging.

The Northwestern University scientists published their findings in the journal Nature Aging title, “Aging Is Associated with a Systemic Length-Associated Transcriptome Imbalance.”

“I find it very elegant that a single, relatively concise principle seems to account for nearly all of the changes in activity of genes that happen in animals as they change,” Thomas Stoeger, PhD, postdoctoral scholar in the Amaral Lab who led the study, told GEN. Clinical laboratories involved in omics research may soon have new anti-aging diagnostic tests to perform. (Photo copyright: Amaral Lab.)

Possible ‘New Instrument’ for Biological Testing

Researchers found clues to aging in the length of genes. A gene transcript length reveals “molecular-level changes” during aging: longer genes relate to longer lifespans and shorter genes suggest shorter lives, GEN summarized.

The phenomenon the researchers uncovered—which they dubbed transcriptome imbalance—was “near universal” in the tissues they analyzed (blood, muscle, bone, and organs) from both humans and animals, Northwestern said. 

According to the National Human Genome Research Institute fact sheet, a transcriptome is “a collection of all the gene readouts (aka, transcript) present in a cell” shedding light on gene activity or expression.

The Northwestern study suggests “systems-level” changes are responsible for aging—a different view than traditional biology’s approach to analyzing the effects of single genes.

“We have been primarily focusing on a small number of genes, thinking that a few genes would explain disease,” said Luis Amaral, PhD, Senior Author of the Study and Professor of Chemical and Biological Engineering at Northwestern, in the news release.

“So, maybe we were not focused on the right thing before. Now that we have this new understanding, it’s like having a new instrument. It’s like Galileo with a telescope, looking at space. Looking at gene activity through this new lens will enable us to see biological phenomena differently,” Amaral added.

In their Nature Aging paper, Amaral and his colleagues wrote, “We hypothesize that aging is associated with a phenomenon that affects the transcriptome in a subtle but global manner that goes unnoticed when focusing on the changes in expression of individual genes.

“We show that transcript length alone explains most transcriptional changes observed with aging in mice and humans,” they continued.

Researchers Turn to AI, RNA Sequencing

According to their published study, the Northwestern University scientists used large datasets, artificial intelligence (AI), and RNA (ribonucleic acid) sequencing in their analysis of tissue derived from:

  • Humans (men and women), age 30 to 49, 50 to 69, and 70 years and older. 
  • Mice, age four months to 24 months.
  • Rats, age six to 24 months.
  • Killifish, age five weeks to 39 weeks.

Scientific American reported the following study findings:

  • In tissues studied, older animals’ long transcripts were not as “abundant” as short transcripts, creating “imbalance.”
  • “Imbalance” likely prohibited the researchers’ discovery of a “specific set of genes” changing.
  • As animals aged, shorter genes “appeared to become more active” than longer genes.
  • In humans, the top 5% of genes with the shortest transcripts “included many linked to shorter life spans such as those involved in maintaining the length of telomeres.”
  • Conversely, the researchers’ review of the leading 5% of genes in humans with the longest transcripts found an association with long lives.
  • Antiaging drugs—rapamycin (aka, sirolimus) and resveratrol—were linked to an increase in long-gene transcripts.

“The changes in the activity of genes are very, very small, and these small changes involve thousands of genes. We found this change was consistent across different tissues and in different animals. We found it almost everywhere,” Thomas Stoeger, PhD, postdoctoral scholar in the Amaral Lab who led the study, told GEN.

In their paper, the Northwestern scientists noted implications for creation of healthcare interventions.

“We believe that understanding the direction of causality between other age-dependent cellular and transcriptomic changes and length-associated transcriptome imbalance could open novel research directions for antiaging interventions,” they wrote.

Other ‘Omics’ Studies

Dark Daily has previously reported on transcriptomics studies, along with research into the other “omics,” including metabolomics, proteomics, and genomics.

In “Spatial Transcriptomics Provide a New and Innovative Way to Analyze Tissue Biology, May Have Value in Surgical Pathology,” we explored how newly combined digital pathology, artificial intelligence (AI), and omics technologies are providing anatomic pathologists and medical laboratory scientists with powerful diagnostic tools.

In “Swiss Researchers Develop a Multi-omic Tumor Profiler to Inform Clinical Decision Support and Guide Precision Medicine Therapy for Cancer Patients,” we looked at how new biomarkers for cancer therapies derived from the research could usher in superior clinical laboratory diagnostics that identify a patient’s suitability for personalized drug therapies and treatments.

And in “Human Salivary Proteome Wiki Developed at University of Buffalo May Provide Biomarkers for New Diagnostic Tools and Medical Laboratory Tests,” we covered how proteins in human saliva make up its proteome and may be the key to new, precision medicine diagnostics that would give clinical pathologists new capabilities to identify disease.

Fountain of Youth

While more research is needed to validate its findings, the Northwestern study is compelling as it addresses a new area of transcriptome knowledge. This is another example of researchers cracking open human and animal genomes and gaining new insights into the processes supporting life.

For clinical laboratories and pathologists, diagnostic testing to reverse aging and guide the effectiveness of therapies may one day be possible—kind of like science’s take on the mythical Fountain of Youth.  

—Donna Marie Pocius

Related Information:

Aging Is Driven by Unbalanced Genes

Aging Linked to Gene Length Imbalance and Shift Towards Shorter Genes

NIH: Transcriptome Fact Sheet

Aging Is Associated with a Systemic Length-Associated Transcriptome Imbalance

Aging Is Linked to More Activity in Short Genes than in Long Genes

Spatial Transcriptomics Provide a New and Innovative Way to Analyze Tissue Biology, May Have Value in Surgical Pathology

Swiss Researchers Develop a Multi-omic Tumor Profiler to Inform Clinical Decision Support and Guide Precision Medicine Therapy for Cancer Patients

Human Salivary Proteome Wiki Developed at University of Buffalo May Provide Biomarkers for New Diagnostic Tools and Medical Laboratory Tests

Major Breakthrough in Human Genome Sequencing, as Full Y Chromosome Sequencing Completed after a More than 20 Year Journey

Clinical laboratories and pathology groups may soon have new assays for diagnosis, treatment identification, patient monitoring

It’s here at last! The human Y chromosome now has a full and complete sequence. This achievement by an international team of genetic researchers is expected to open the door to significant insights in how variants and mutations in the Y chromosome are involved in various diseases and health conditions. In turn, these insights could lead to new diagnostic assays for use by clinical laboratories and pathology groups.

After decades of attempts, genetic scientists led by the Telomere-to-Telomere Consortium—a team of researchers funded by the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health (NIH)—have finally “generated the first truly complete sequence of a human Y chromosome,” which is “the final human chromosome to be fully sequenced,” of the 24 human chromosomes, SciTechDaily reported.

Pathologists and clinical laboratories involved in genetic research will understand the significance of this accomplishment. The full Y chromosome sequence “fills in gaps across more than 50% of the Y chromosome’s length, [and] uncovers important genomic features with implications for fertility, such as factors in sperm production,” SciTechDaily noted.

This breakthrough will make it possible for other research teams to gain further understanding of the functions of the Y chromosome and how specific gene variants and mutations contribute to specific health conditions and diseases. In turn, knowledge of those genetic sequences and mutations would give clinical laboratories the assays that help diagnosis, identify relevant therapies, and monitor a patient’s progress.

The researchers published their findings in the journal Nature titled, “The Complete Sequence of a Human Y Chromosome.”

“When you find variation that you haven’t seen before, the hope is always that those genomic variants will be important for understanding human health,” said Adam Phillippy, PhD, a senior investigator and head of the Genome Informatics Section at the National Human Genome Research Institute, in a press release. Clinical laboratories and anatomic pathology groups may soon have new assays based on the T2T study findings. (Photo copyright: National Human Genome Research Institute.)

Study Background and Recognition

Revolutionary thinking by the Telomere-to-Telomere (T2T) scientists led to the team’s breakthrough. The researchers “applied new DNA sequencing technologies and sequence assembly methods, as well as knowledge gained from generating the first gapless sequences for the other 23 human chromosomes,” SciTechDaily reported.

In 1977, the first complete genome of an organism was sequenced. Thus began the commencement of sequencing technology research. Twenty years ago the first human genome sequence was completed. The result was thanks to years of work through the preferred “chain termination” (aka, Sanger Sequencing) method developed by Fred Sanger and a $2.7 billion contribution from the Human Genome Project, according to a study published in the African Journal of Laboratory Medicine (AJLM).

By 2005, a new era in genomic sequencing emerged. Scientists now employed a technique called pyrosequencing and the change had great benefits. “Massively parallel or next-generation sequencing (NGS) technologies eliminated the need for multiple personnel working on a genome by automating DNA cleavage, amplification, and parallel short-read sequencing on a single instrument, thereby lowering costs and increasing throughput,” the AJLM paper noted.

The new technique brought great results. “Next-generation sequencing technologies have made sequencing much easier, faster and cheaper than Sanger sequencing,” the AJLM study authors noted.

The changes allowed more sequencing to be completed. Nevertheless, more than half of the Y chromosome sequence was still unknown until the new findings from the T2T study, SciTechDaily reported.

Why the TDT Breakthrough Is So Important

“The biggest surprise was how organized the repeats are,” said Adam Phillippy, PhD, a senior investigator and head of the NHGRI. “We didn’t know what exactly made up the missing sequence. It could have been very chaotic, but instead, nearly half of the chromosome is made of alternating blocks of two specific repeating sequences known as satellite DNA. It makes a beautiful, quilt-like pattern.”

Phillippy’s research was groundbreaking enough to earn him and his team finalist positions in the 2023 Science, Technology, and Environment segment of the Samuel J. Heyman Service to America Medals.

Much can be gained in knowing more about the Y chromosome. Along with the X chromosome, it is significant in sexual development. Additionally, current research is showing that genes on the Y chromosome are linked to the risk and severity of cancer.

Might What Comes Next Give Clinical Labs New Diagnostic Tools?

The variety of new regions of the Y chromosome that the T2T team discovered bring into focus several areas of new genetic research. For instance, the “azoospermia factor region, a stretch of DNA containing several genes known to be involved in sperm production” was uncovered, and “with the newly completed sequence, the researchers studied the structure of a set of inverted repeats or palindromes in the azoospermia factor region,” SciTechDaily reported.

“This structure is very important because occasionally these palindromes can create loops of DNA. Sometimes, these loops accidentally get cut off and create deletions in the genome,” said Arang Rhie, PhD, a staff scientist at NHGRI and first author of the Nature study.

Missing regions would challenge the production of sperm, impacting fertility, so being able to finally see a complete sequence will help research in this area.

Scientists are only just beginning to recognize the value of this breakthrough to future genetic research and development. As genetic sequencing costs continue to drop, the T2T research findings could mean new treatment options for pathologists and diagnostic assays for clinical laboratories are just around the corner.

—Kristin Althea O’Connor

Related Information:

Complete Human Y Chromosome Sequence Assembled for the First Time

The Complete Sequence of a Human Y Chromosome

Scientists Release the First Complete Sequence of a Human Y Chromosome

Will Long-Read Sequencing Technologies Replace Short-Read Sequencing Technologies in the Next 10 Years?

Researchers Assemble the First Complete Sequence of a Human Y Chromosome

Adam Phillippy Finalist in Samuel J. Heyman Service to America Medals for Science, Technology, and Environment

Southern California Physician and Clinical Laboratory Owners Charged in Federal Crackdown on Pandemic-Related Billing Fraud

Federal prosecutors build the new healthcare-related fraud cases on previous nationwide enforcement actions from 2022

Federal charges have once again been brought against a number of physicians and clinical laboratory owners in what the US Department of Justice described as the “largest ever” coordinated nationwide law enforcement effort against COVID-19 pandemic-related healthcare fraud.

In total, the DOJ filed criminal charges against 18 defendants in five states plus the territory of Puerto Rico, according to an April 20 press release.

The highest dollar amount of these frauds involved ENT physician Anthony Hao Dinh, DO, who allegedly defrauded the Health Resources and Services Administration (HRSA) COVID-19 Uninsured Program for millions of dollars, and Lourdes Navarro, owner of Matias Clinical Laboratory, for allegedly “submitting over $358 million in false and fraudulent claims to Medicare, HRSA, and a private insurance company for laboratory testing” while performing “COVID-19 screening testing for nursing homes and other facilities with vulnerable elderly populations, as well as primary and secondary schools,” the press release states. Both court cases are being conducted in Southern California courtrooms.

The DOJ’s filing of charges came rather speedily, compared to other cases involving fraudulent clinical laboratory testing schemes pre-pandemic. The amount of money each defendant managed to generate in reimbursement from the fraud represents tens of thousands of patients. If feds were paying $100 per COVID-19 test, then the $153 million represents 153,000 patients, in just 18 to 24 months.

Assistant Attorney General Kenneth A. Polite, Jr.

“Today’s announcement marks the largest-ever coordinated law enforcement action in the United States targeting healthcare fraud schemes that exploit the COVID-19 pandemic,” said Assistant Attorney General Kenneth A. Polite, Jr. (above), in an April 20 DOJ press release. “The Criminal Division’s Health Care Fraud Unit and our partners are committed to rooting out pandemic-related fraud and holding accountable anyone seeking to profit from a public health emergency.” Clinical laboratory managers may want to pay close attention to the DOJ’s prosecution of these newest cases of alleged COVID-19 fraud. (Photo copyright: Department of Justice.)

Matias Clinical Laboratory, Inc.

The DOJ first brought fraud charges against Lourdes Navarro, owner of Matias Clinical Laboratory (Matias) in Baldwin Park, California, in April 2022. The Dark Daily covered that federal crackdown in “California Clinical Laboratory Owners among 21 Defendants Indicted or Criminally Charged for COVID-19 Test Fraud and Other Schemes Totaling $214 Million.

Then, in April of 2023, the DOJ filed expanded charges against the 18 defendants, including the owners of Matias which provided COVID-19 screening for schools, rehab facilities, and eldercare facilities, according to a United States Attorney’s Office, Central District of California press release.

Prosecutors allege that Navarro and her husband, Imran Shams, who operated Matias—also known as Health Care Providers Laboratory—perpetrated a scheme to perform medically unnecessary respiratory pathogen panel (RPP) tests on specimens collected for COVID-19 testing, even though physicians had not ordered the RPP tests and the specimens were collected from asymptomatic individuals.

In some cases, the indictment alleges, Navarro and Shams paid kickbacks and bribes to obtain the samples.

The indictment notes that reimbursement for RPP and other respiratory pathogen tests is generally “several times higher” than reimbursement for COVID-19 testing. Claims for the tests were submitted to Medicare and an unidentified private insurer, as well as the HRSA COVID-19 Uninsured Program, which provided support for COVID-19 testing and treatment for uninsured patients.

Claims to the HRSA falsely represented that “the tested individuals had been diagnosed with COVID-19, when in truth and in fact, the individuals had not been diagnosed with COVID-19 and the tests were for screening purposes only,” the First Superseding Indictment states.

The indictment further states that both Navarro and Shams had previously been barred from participating in Medicare and other federal healthcare programs due to past fraud convictions. Navarro, the indictment alleges, was reinstated in December 2018 after submitting a “false and fraudulent” application to the HHS Office of Inspector General.

It also alleges that Navarro and Shams concealed their ownership role in Matias so the lab could maintain billing privileges.

More Alleged Abuse of HRSA Uninsured Program

In a separate case, Federal prosecutors alleged that Anthony Hao Dinh, DO, an ear, nose, and throat physician in Orange County, California, engaged in a scheme to defraud the HRSA COVID-19 Uninsured Program as well.

Dinh, prosecutors allege, “submitted fraudulent claims for treatment of patients who were insured, billed for services that were not rendered, and billed for services that were not medically necessary.”

The criminal complaint, filed on April 10, alleges that Dinh submitted claims for approximately $230 million, enough to make him the program’s second-highest biller. He was paid more than $153 million, prosecutors allege, and “used fraud proceeds for high-risk options trading, losing over $100 million from November 2020 through February 2022,” states the US Attorney’s Office, Central District of California press release.

Dinh was also charged for allegedly attempting to defraud the federal Paycheck Protection Program (PPP) and Economic Injury Disaster Loan (EIDL) program. He faces a maximum sentence of 50 years in federal prison, the press release states.

Dinh’s sister, Hang Trinh Dinh, 64, of Lake Forest, California, and Matthew Hoang Ho, 65, of Melbourne, Florida, are also charged in the complaint, the Los Angeles Times reported.

Both of these cases are notable because of the size of the fraud each defendant pulled off involving COVID-19 lab testing. Clinical laboratory managers may want to review the original court indictments. The documents show the brazenness of these fraudsters and detail how they may have induced other doctors to refer them testing specimens.

Stephen Beale

Related Information:

Justice Department Announces Nationwide Coordinated Law Enforcement Action to Combat COVID-19 Health Care Fraud

DOJ Announces Nationwide Coordinated Law Enforcement Action to Combat Health Care Fraud Related to COVID-19—Summary of Criminal Charges

Criminal Complaint: US v. Dinh, et al.

Criminal Complaint: US v. Navarro

Newport Coast Physician Faces Federal Charges in Healthcare Fraud Cases

COVID Fraud Takedowns: Feds Charge 18 People, Including Doctors, with Raking in Nearly $500M from Scams

California Clinical Laboratory Owners among 21 Defendants Indicted or Criminally Charged for COVID-19 Test Fraud and Other Schemes Totaling $214 Million

;