Two studies show the accuracy of perception-based systems in detecting disease biomarkers without needing molecular recognition elements, such as antibodies
Researchers from multiple academic and research institutions have collaborated to develop a non-conventional machine learning-based technology for identifying and measuring biomarkers to detect ovarian cancer without the need for molecular identification elements, such as antibodies.
Traditional clinical laboratory methods for detecting biomarkers of specific diseases require a “molecular recognition molecule,” such as an antibody, to match with each disease’s biomarker. However, according to a Lehigh University news release, for ovarian cancer “there’s not a single biomarker—or analyte—that indicates the presence of cancer.
“When multiple analytes need to be measured in a given sample, which can increase the accuracy of a test, more antibodies are required, which increases the cost of the test and the turnaround time,” the news release noted.
Unveiled in two sequential studies, the new method for detecting ovarian cancer uses machine learning to examine spectral signatures of carbon nanotubes to detect and recognize the disease biomarkers in a very non-conventional fashion.
Perception-based Nanosensor Array for Detecting Disease
In the Science Advances paper, the researchers described their development of “a perception-based platform based on an optical nanosensor array that leverages machine learning algorithms to detect multiple protein biomarkers in biofluids.
“Perception-based machine learning (ML) platforms, modeled after the complex olfactory system, can isolate individual signals through an array of relatively nonspecific receptors. Each receptor captures certain features, and the overall ensemble response is analyzed by the neural network in our brain, resulting in perception,” the researchers wrote.
“This work demonstrates the potential of perception-based systems for the development of multiplexed sensors of disease biomarkers without the need for specific molecular recognition elements,” the researchers concluded.
In the Nature Biomedical Engineering paper, the researchers described a fined-tuned toolset that could accurately differentiate ovarian cancer biomarkers from biomarkers in individuals who are cancer-free.
“Here we show that a ‘disease fingerprint’—acquired via machine learning from the spectra of near-infrared fluorescence emissions of an array of carbon nanotubes functionalized with quantum defects—detects high-grade serous ovarian carcinoma in serum samples from symptomatic individuals with 87% sensitivity at 98% specificity (compared with 84% sensitivity at 98% specificity for the current best [clinical laboratory] screening test, which uses measurements of cancer antigen 125 and transvaginal ultrasonography,” the researchers wrote.
“We demonstrated that a perception-based nanosensor platform could detect ovarian cancer biomarkers using machine learning,” said Yoona Yang, PhD, a postdoctoral research associate in Lehigh’s Department of Chemical and Biomolecular Engineering and co-first author of the Science Advances article, in the news release.
How Perception-based Machine Learning Platforms Work
According to Yang, perception-based sensing functions like the human brain.
“The system consists of a sensing array that captures a certain feature of the analytes in a specific way, and then the ensemble response from the array is analyzed by the computational perceptive model. It can detect various analytes at once, which makes it much more efficient,” Yang said.
“SWCNTs have unique optical properties and sensitivity that make them valuable as sensor materials. SWCNTS emit near-infrared photoluminescence with distinct narrow emission bands that are exquisitely sensitive to the local environment,” the researchers wrote in Science Advances.
“Carbon nanotubes have interesting electronic properties,” said Daniel Heller, PhD, Head of the Cancer Nanotechnology Laboratory at Memorial Sloan Kettering Cancer Center and Associate Professor in the Department of Pharmacology at Weill Cornell Medicine of Cornell University, in the Lehigh University news release.
“If you shoot light at them, they emit a different color of light, and that light’s color and intensity can change based on what’s sticking to the nanotube. We were able to harness the complexity of so many potential binding interactions by using a range of nanotubes with various wrappings. And that gave us a range of different sensors that could all detect slightly different things, and it turned out they responded differently to different proteins,” he added.
The researchers put their technology to practical test in the second study. The wanted to learn if it could differentiate symptomatic patients with high-grade ovarian cancer from cancer-free individuals.
The research team used 269 serum samples. This time, nanotubes were bound with a specific molecule providing “an extra signal in terms of data and richer data from every nanotube-DNA combination,” said Anand Jagota PhD, Professor, Bioengineering and Chemical and Biomolecular Engineering, Lehigh University, in the news release.
This year, 19,880 women will be diagnosed with ovarian cancer and 12,810 will die from the disease, according to American Cancer Society data. While more research and clinical trials are needed, the above studies are compelling and suggest the possibility that one day clinical laboratories may detect ovarian cancer faster and more accurately than with current methods.
Factors contributing to shortage of med techs and other lab scientists include limited training programs in clinical laboratory science, pay disparity, and staff retention, notes infectious disease specialist Judy Stone, MD
Staff shortages are a growing challenge for medical laboratories, and now the problem has grabbed the attention of a major media outlet.
In a story she penned for Forbes, titled, “We’re Facing a Critical Shortage of Medical Laboratory Professionals,” senior contributor and infectious disease specialist Judy Stone, MD, wrote, “Behind the scenes at every hospital are indispensable medical laboratory professionals. They performed an estimated 13 billion laboratory tests in the United States each year before COVID. Since the pandemic began, they have also conducted almost 997 million diagnostic tests for COVID-19. The accuracy and timeliness of lab tests are critically important, as they shape approximately two-thirds of all medical decisions made by physicians.”
Though Stone states in her Forbes article that clinical laboratories in both the US and Canada are facing staff shortages, she notes that the problem is more acute in the US.
As Dark Daily reported in February, the so-called “Great Resignation” caused by the COVID-19 pandemic has had a severe impact on clinical laboratory staffs, creating shortages of pathologists as well as of medical technologists, medical laboratory technicians, and other lab scientists who are vital to the nation’s network of clinical laboratories.
In her analysis, however, Stone accurately observes that the problem pre-dates the pandemic. For examples she cites two surveys conducted in 2018 by the American Society for Clinical Pathology (ASCP):
Many pathologists and clinical laboratory managers would agree that Stone is right. Dark Daily has repeatedly reported on growing staff shortages at clinical laboratories worldwide.
And in “Lab Staffing Shortages Reaching Dire Levels,” Dark Daily’s sister publication, The Dark Report, noted that CAP Today had characterized the current lab staffing shortage as going “from simmer to rolling boil” and that demand for medical technologists and other certified laboratory scientists far exceeds the supply. Consequently, many labs now use overtime and temp workers to handle daily testing, a strategy that has led to staff burnout and more turnover.
Why the Shortfall?
In her Forbes article, Stone notes the following as factors behind the shortages:
Decline in training programs. “There are only [approximately] 240 medical laboratory technician and scientist training programs in the US, a 7% drop from 2000,” Stone wrote, adding that some states have no training programs at all. She notes that lab technicians must have a two-year associate degree while it takes an average of five years of post-secondary education to obtain a lab science degree.
Pay disparities. Citing data from the ASCP, Stone wrote that “medical lab professionals are paid 40%-60% less than nurses, physical therapists, or pharmacists.” Moreover, given the high cost of training, “many don’t feel the salary is worth the high investment,” she added.
Staff retention. In the ASCP’s 2018 job satisfaction survey, 85.3% of respondents reported burnout from their jobs, 36.5% cited problems with inadequate staffing, and nearly that many complained that workloads were too high.
Inconsistent licensing requirements. These requirements “are different from state to state,” Stone wrote. For example, the American Society for Clinical Laboratory Science (ASCLS) notes that 11 states plus Puerto Rico mandate licensure of laboratory personnel whereas others do not. Each of those states has specific licensing requirements, and while most offer reciprocity for other state licenses, “California [for example] does not recognize any certification or any other state license.”
In a 2018 report, “Addressing the Clinical Laboratory Workforce Shortage,” the ASCLS cited other factors contributing to the shortages, including retirement of aging personnel and increased demand for lab services.
Possible Solutions
Stone suggested the following remedies:
Improve working conditions. “We need to reduce the stress and workload of the lab professionals before we reach a greater crisis,” Stone wrote.
Standardize state certification. This will facilitate “mobility of staff and flexibility in responding to needs,” Stone suggested.
Improve education and training opportunities. The ASCLS has called for clinical lab science to be included in the Title VII health professions program, which provides funding for healthcare training. Rodney Rohde, PhD, a clinical laboratory science professor at Texas State University, “also suggests outreach to middle and high school STEM programs, to familiarize students early with career opportunities in the medical laboratory profession,” Stone wrote.
Recruit foreign workers. Stone suggested this as an interim solution, with programs to help them acclimate to practice standards in the US.
It will likely take multiple solutions like these to address the Great Resignation and bring the nation’s clinical laboratory staffing levels back to full. In the meantime, across the nation, a majority of clinical laboratories and anatomic pathology groups operate short-staffed and use overtime and temporary workers as a partial answer to their staffing requirements.
Wearable microneedle sensors that track multiple biomarkers in interstitial fluid are finding their way into chronic disease monitoring and sample collecting for clinical laboratory testing
Wearable devices that replace finger sticks and blood draws for monitoring biomarkers of chronic diseases such as diabetes are the holy grail of non-invasive (or at least minimally invasive) technologies that collect specimens for clinical laboratory testing.
Now, in their quest for alternatives to invasive phlebotomy blood draws, engineers at University of California San Diego’s (UCSD) Center for Wearable Sensors have added their own wearable device to the mix. The scientists developed a “lab-on-the-skin” multi-tasking microneedle sensor that monitors multiple biomarkers simultaneously, according to a UCSD news release.
Advantage of Monitoring Multiple Biomarkers in Real Time
While current glucose monitors on the market only measure glucose, the UCSD wearable device also monitors alcohol and lactate, providing other additional information to diabetics when engaged in activities that affect those biomarkers.
For example, UCSD’s microneedle sensor allows diabetics to monitor their glucose level when drinking alcohol, which can lower glucose levels. Additionally, monitoring lactate while exercising also could be beneficial since physical activity influences the body’s ability to regulate glucose.
“With our wearable, people can see the interplay between their glucose spikes or dips with their diet, exercise, and drinking of alcoholic beverages. That could add to their quality of life as well,” said Farshad Tehrani, a nanoengineering PhD graduate researcher in Wang’s lab at UCSD and one of the co-first authors of the study, in the news release.
Other Microneedle Wearable Monitoring Patches
The quest for a painless alternative to in-patient blood draws for many clinical laboratory tests has been ongoing worldwide for years.
In “Researchers Develop ‘Smart’ Microneedle Adhesive Bandage System for Monitoring Sodium, Glucose, pH, and More,” Dark Daily reported on a proof-of-concept study conducted by scientists from Israel and China who developed a “smart” microneedle adhesive bandage that measures and monitors in real time three critical biomarkers that currently require invasive blood draws for medical laboratory tests commonly performed on patients in hospitals.
While further research and validation of studies are needed before UC San Diego’s wearable microneedle sensor patch can be deployed to monitor chronic diseases, it is in good company. Diabetics and other suffers of similar chronic diseases can look forward to a future where they can monitor their health conditions in real time without the need for invasive blood draws and clinical laboratory testing.
Should the device prove effective, it could replace invasive point-of-care blood draws for clinical laboratory testing during patient drug therapy monitoring
What if it were possible to perform therapeutic drug monitoring (TDM) without invasive blood draws using breath alone? Patients fighting infections in hospitals certainly would benefit. Traditional TDM can be a painful process for patients, one that also brings risk of bloodline infections. Nevertheless, regular blood draws have been the only reliable method for obtaining viable samples for testing.
One area of critical TDM is in antibiotic therapy, also known as personalized antibiotherapy. However, for antibiotic therapy to be successful it typically requires close monitoring using point-of-care clinical laboratory testing.
Now, a team of engineers and biotechnologists from the University of Freiburg in Germany have developed a biosensor that can use breath samples to measure antibiotic concentrations present in blood, according to a University of Freiburg press release.
The team’s non-invasive collection method requires no needle sticks and can allow for frequent specimen collections to closely monitor the levels of an antibiotic prescribed for a patient. The biosensor also provides physicians the ability to tailor antibiotic regimens specific to individual patients, a core element of precision medicine.
Can a Breath Biosensor Be as Accurate as Clinical Laboratory Testing?
The University of Freiburg’s biosensor is a multiplex, microfluid lab-on-a-chip based on synthetic proteins that react to antibiotics. It allows the simultaneous measurement of several breath samples and test substances to determine the levels of therapeutic antibiotics in the blood stream.
To perform their research, the University of Freiburg team tested their biosensor on blood, plasma, urine, saliva, and breath samples of pigs that had been given antibiotics. The results the researchers achieved with their device using breath samples were as accurate as standard clinical laboratory testing, according to the press release.
The microfluidic chip contains synthetic proteins affixed to a polymer film via dry film photoresist (DFR) technology. These proteins are similar to proteins used by drug-resistant bacteria to sense the presence of antibiotics in their environment. Each biosensor contains an immobilization area and an electrochemical cell which are separated by a hydrophobic stopping barrier. The antibiotic in a breath sample binds to the synthetic proteins which generates a change in an electrical current.
“You could say we are beating the bacteria at their own game,” said Wilfried Weber, PhD, Professor of Biology at the University of Freiburg and one of the authors of the research paper, in the press release.
Rapid Monitoring at Point-of-Care Using Breath Alone
The biosensor could prove to be a useful tool in keeping antibiotic levels stable in severely ill patients who are dealing with serious infections and facing the risk of sepsis, organ failure, or even death. Frequent monitoring of therapeutic antibiotics also could prevent bacteria from mutating and causing the body to become resistant to the medications.
“Rapid monitoring of antibiotic levels would be a huge advantage in hospital,” said H. Ceren Ates, PhD, scientific researcher at the University of Freiburg and one of the authors of the study in the press release. “It might be possible to fit the method into a conventional face mask.”
Along those lines, the researchers are also working on a project to create wearable paper sensors for the continuous measurement of biomarkers of diseases from exhaled breath. Although still in the development stages, this lightweight, small, inexpensive paper sensor can fit into conventional respiratory masks, according to a University of Freiburg press release.
Other Breath Analysis Devices Under Development
Devices that sample breath to detect biomarkers are not new. Dark Daily has regularly reported on similar developments worldwide.
Thus, University of Freiburg’s non-invasive lab-on-a-chip biosensor is worth watching. More research is needed to validate the effectiveness of the biosensor before it could be employed in hospital settings, however, monitoring and managing antibiotic levels in the body via breath samples could prove to be an effective, non-invasive method of providing personalized antibiotic therapy to patients.
Clinical trials on human breath samples are being planned by the University of Freiburg team. This type of precision medicine service may give medical professionals the ability to maintain proper medication levels within an optimal therapeutic window.
‘Balwani is no Johnny Depp,’ says an expert on juror behavior, as prosecution and defense rest in fraud trial of the former executive of the now-defunct lab test company
Clinical Laboratory directors and pathologists continue to focus like a laser beam on the trials of former founders and executives of the now-defunct blood test company Theranos. But as the criminal fraud trial of ex-president and COO Ramesh “Sunny” Balwani comes to a close, legal experts maintain the 57-year-old businessman may face an uphill battle to win an acquittal.
Balwani faces 12 counts of wire fraud and conspiracy to commit wire fraud while serving as second in command at Theranos, the former Silicon Valley medical laboratory test startup. The fraud trials of Balwani and Theranos founder Elizabeth Holmes have made headlines for more than a year as the two once-high-flying executives face a reckoning for allegedly defrauding patients, investors, and physicians about their proprietary Edison blood-testing device, which they claimed could conduct hundreds of blood tests using a finger-prick of blood.
Before resting their case, Balwani’s defense team called only two witnesses: information-technology consultant Richard Sonnier III, and naturopathic physician Tracy Wooten, NMD, of Arizona, who sent more than 100 patients to Theranos.
According to The Wall Street Journal(WSJ), Wooten “backtracked some of her support for Theranos on the stand.”
The WSJ reported that Sonnier’s testimony “had been hotly litigated by attorneys,” and that US District Judge Edward Davila ruled in May that Sonnier would be permitted to testify—with limitations—about the Theranos Laboratory Information System (LIS), which contained patient test results.
Theranos LIS Not Accessible to Government Prosecutors
Sonnier was hired by Balwani’s legal team to assess the accessibility of data held in the LIS, which the defense believed would have provided evidence of Theranos test accuracy.
The WSJ noted that in 2018, the year Balwani and Holmes were indicted, the government subpoenaed a copy of the LIS, which Theranos provided. However, the LIS data was delivered on an encrypted hard drive.
“Not only was the hard drive itself encrypted, but the data it contained was also encrypted with a separate passcode required,” the WSJ wrote. “The government didn’t have the passcode to access the data, and a day or two after sending the hard drive to US attorneys, Theranos officials ordered the entire original database dismantled, according to court testimony.”
The WSJ reported that Sonnier testified he was unable to access the encrypted data on a backup hard drive despite having a list of possible passcodes found in Theranos documents. Sonnier also testified that it would have been “very straightforward” to reassemble the original LIS and “recover that data.” The missing password wouldn’t be an issue, Sonnier testified.
The Prosecution Rests
Federal prosecutors rested their case last month after calling more than 24 witnesses. The government alleges Balwani worked closely with Holmes and conspired with her to defraud investors and patients about the startup’s blood testing technology. They allege he knew about the accuracy and reliability problems that plagued Theranos’ Edison blood-testing device.
Holmes was convicted in January on three of the nine fraud counts and one of two conspiracy counts. She was acquitted on four counts related to defrauding patients, one charge of conspiracy to commit wire fraud and three charges of wire fraud.
While prosecutors failed to persuade jurors that Holmes intentionally sought to defraud patients, Bloomberg legal reporter Joel Rosenblatt told the Bloomberg Law Podcast he believes Balwani is “inherently more vulnerable” on the patient-related fraud counts because he “oversaw” the operation of Theranos’ clinical laboratories.
“As a result of that role, [Balwani] was more aware of not only the faulty Theranos blood test results, but all the problems that employees were pointing out about those results,” Rosenblatt added. “So, he was the first high-level executive to be dealing with those complaints.”
Rosenblatt noted that Balwani’s defense centers not only on trying to show that Theranos’ proprietary blood-testing machine worked, but that it “works maybe well enough or worked as well as other [medical] laboratories.” He said Balwani also maintains that Holmes, as CEO and founder, was in charge long before he joined Theranos as president.
“It’s a difficult argument to make because all the emails show how cooperative they were, how closely they worked together. They were intimately involved but they were working side by side for years and really during the years where all the money started coming in,” Rosenblatt said in the podcast.
“He has a lot of problems that [Elizabeth Holmes] didn’t have,” Taylor said. “He kind of fits the part from a juror’s standpoint. He’s got the power, the authority, he’s got the personal traits that make the allegations more credible from a perceptual standpoint for the jury.”
In contrast, Taylor says, “People don’t love Elizabeth Holmes, but I think what she had going for her was that she pitched herself as a true believer in the company. She was the voice and the face of Theranos.”
‘Balwani is not Johnny Depp’
While a jury recently awarded actor Johnny Depp significantly more damages than actress Amber Heard in their well-publicized defamation trial, Taylor maintains jurors are unlikely to view Balwani as a sympathetic figure.
“Sunny Balwani is not Johnny Depp. He doesn’t have the halo that Johnny Depp has, or the fan base,” Taylor said. “He does not present as that type of person, so I don’t know that the jurors will have any sympathy towards him. And I think they would actually be more inclined to believe Holmes’ allegations.”
The Theranos fraud trials of Holmes and Balwani continue to capture the attention of clinical laboratory directors and pathologists who are now witnessing the final chapters in the downfall of the one-time Silicon Valley power couple.