News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Breakthrough DNA Editing Tool May Help Pathologists Develop New Diagnostic Approaches to Identify and Treat the Underlying Causes of Diseases at the Genetic Level

The advent of the CRISPR/Cas9 genetic editing tool is already generating novel therapies for diseases and will create new opportunities for pathologists and medical laboratories

In just 24 months, a new gene-editing tool has become the hot topic worldwide among researchers working to understand DNA and develop ways to manipulate it for therapeutic purposes. It goes by the acronym CRISPR and it may soon become quite familiar to most pathologists and medical laboratory scientists.

CRISPR stands for clustered regularly interspaced short palindromic repeats. The gene editing platform is known as CRISPR/CAS9. (more…)

New Insights into Genetic Mechanisms Common to Humans and Simpler Species May Form the Basis for New Diagnostic Tests Performed by Clinical Pathology Laboratories

Scientists participating in the modENCORE study have the goal of understanding the causes of hereditary genetic diseases in humans

New discoveries about the interaction of genes and transcription factors in creating different types of RNA will be of interest to pathologists and clinical chemists performing genetic tests and molecular diagnostic assays in their medical laboratories.

The goal of this research is to better understand hereditary genetic disease in humans. The new knowledge is based on studies of the common fruit fly, or Drosophila melanogaster (D. Melanogaster), and to a lesser extent a tiny worm Caenorhabditis elegans (C. elegans). Both have been used as research models to study the human condition.

Research Could Give Pathologists New Diagnostic Tools (more…)

Geneticist at University of California Davis Sequences His Unborn Baby’s DNA in a Global First for Whole Genome Sequencing

Prenatal genome sequencing raises ethical issues for gene sequencing labs and clinical labs, since a baby’s genetic information may present lifelong consequences for that individual

Pathologists and clinical laboratory managers will be interested to learn that another milestone in genetic testing was reached earlier this year. A geneticist at the University of California at Davis, has sequenced the whole human genome of his unborn baby, the first time this feat has been accomplished.

Notably, it was geneticist and graduate student Razib Khan of the UC Davis School of Veterinary Medicine who sequenced his unborn son’s genome during the third trimester of pregnancy using a sample of the fetus’ placenta. This is the first healthy person born in the United States with his entire genetic makeup deciphered prior to birth, noted a recent story published by the MIT Technology Review(more…)

‘Genetic Testing Handbook’ Provides Physicians, Pathologists, and Clinical Lab Managers with Comprehensive Reference for Clinical Genome and Exome Sequencing

This new tool offers clinicians the dos and don’ts of genetic testing, what physicians need to know to do it properly 

Clinical use of gene sequencing information has advanced to the point where a team of genetic experts has compiled and issued the Genetic Testing Handbook. The goal of the clinical genome and exome sequencing (CGES) handbook is to provide clinicians—including pathologists and clinical laboratory scientists—with a useful reference tool.

The authors of the Genetic Testing Handbook are Leslie G. Biesecker, M.D., of the National Human Genome Research Institute (NHGRI) in Bethesda, Maryland, and Robert C. Green, M.D., M.P.H., a geneticist who is an Associate Professor of Medicine at Harvard Medical School.

Primer Distills Human Genome Project Technologies for Practical Use

“The technologies that were used for the Human Genome Project are now distilled down to practical tools that clinicians can use to diagnose and, hopefully, treat diseases in patients that they couldn’t treat before,” stated Biesecker, who serves as Chief and Senior Investigator at the NHGRI’s Medical Genomics and Metabolic Genetics Branch, in a press release issued by the National Institutes of Health (NIH). (more…)

New studies in UK and at Stanford University Show Lung Cancer Cells Circulating in Blood; Findings Could Make it Possible for Pathologists to Diagnose Cancer with ‘Liquid Biopsies’

Researchers at two different universities find circulating tumor cells in blood specimens and suggest that CTCs might be incorporated into medical laboratory tests for detecting cancer

One goal of many research initiatives is to develop a clinical laboratory test which can detect circulating tumor cells (CTC) in blood. This would be a less invasive method for testing and it is hoped such a test could detect cancer at a much earlier stage, when treatment can be much more successful.

Much effort is being put into developing what pathologists call a “liquid biopsy.” Recently, researchers at The University of Manchester in the United Kingdom (UK) and at Stanford University in the United States each published articles in Nature Medicine offering compelling data about the role blood tests could play in the diagnosis and treatment of lung cancer. (more…)

;